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Abstract
In this paper, we present the palynostratigraphy, petrography, scanning electron microscopy (SEM) and X-ray diffraction 
(XRD) investigations to evaluate hydrocarbon reservoir potential of the Jurassic clastic-carbonate mixed sequence of the 
Kala Chitta Range, northwest Pakistan. The chronostratigraphic sub-divisions of the diverse lithologies within the sequence 
were made by using palynostratigraphy. The clastic dominated sequence of Datta Formation was assigned Toarcian-Bajocian 
age, while the Shinawari Formation was deposited during the Bajocian-middle Bathonian. The carbonate shoal facies of 
the Samana Suk Formation showed late Bathonian-Tithonian time of deposition. The primary and secondary porosities 
augmented by the plug porosity and permeability data suggest that the sandstone of Datta Formation is an excellent reser-
voir. The dominance of diverse matrix within the Shinawari Formation occluded the primary porosity. However, based on 
dissolution and dolomitization, the Shinawari Formation is categorized as a moderate reservoir. The dominance of various 
types of matrix and cement with superimposed burial diagenesis has occluded the primary porosity within the Samana Suk 
Formation. However, the diagenetic dissolution and dolomitization during the telogenetic stage were supported by the SEM 
and bulk geochemical data. Such diagenetic overprinting has significantly enhanced the reservoir potential of the unit.

Keywords  Jurassic · Palynostratigraphy · Reservoir · Porosity

Introduction

Pakistan has over 9 billion barrels of petroleum oil and 
105 trillion cubic feet (TCF) natural gas (including shale 
gas) reserves (according to the data of United States Energy 
Information Administration EIA 2013). The recoverable oil 
reserves stand at approximately 340 million barrels, and 
the gas reserves are 20 TCF (MPCL 2020). The prevail-
ing energy crises in Pakistan calls for immediate attention 
to device novel strategies for the exploration and exploita-
tion of the hidden and existing hydrocarbon resources and 
to assess the contribution of novel strategies for Pakistan’s 
energy endowment in the future.

The current study aims to investigate the hydrocarbon 
reservoirs in the unexplored Kala Chitta Range in northwest 
Pakistan. The Kala Chitta Range is an east-west trending 
intensely deformed mountainous belt which merges laterally 
into the Hazara Mountains in the east and the Kohat and 
Samana ranges in the west (Yeats and Hussain 1987). It is 
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bounded to the north by the Hissartang Thrust Fault, while 
the Main Boundary Thrust (MBT) lies in its south (Yeats and 
Hussain 1987; Fig. 1). The exposed sedimentary succession 
of the study area ranges in age from the Jurassic-Miocene, 
which includes the Datta, Shinawari, Samana Suk, Chichali, 
Lumshiwal, Kawagarh, Lockhart, Patala, Margalla Hills, and 
Murree formations (Shah 2009; Fig. 1). The study area is a 
lateral stratigraphic continuation of the petroliferous strata 
of the Kohat and Potwar basins in the west (Kadri 1995). 
A viable unexplored petroleum system is expected in the 
Kala Chitta Range. The Jurassic units of Kala Chitta Range 
include Datta, Shinawari and Samana Suk formations (Shah 
2009). These units have diverse lithologies ranging from del-
taic dominated sandstone/shales to shallow-marine carbon-
ates (Iqbal et al. 2015; Ali et al. 2019; Wadood et al. 2020). 
Such diverse variation in lithology of Datta Formation can 

host various hydrocarbon source rock intervals, reservoir 
compartments and cap rocks (Kadri 1995). The organic-
rich black shales in the lower part of the Datta Formation 
was deposited in the dysoxic to anoxic water setting, which 
may act as a potential source rock for the sandstone unit 
within the Datta Formation (Kadri 1995). Previously, the 
source rock potential of the Datta Formation is established 
in the adjacent Potwar Basin in the west (Kadri 1995). The 
Datta Formation is also a proven oil-producing reservoir 
in the Chanda, Dhulian, Mial and Toot oil fields in Banu, 
Kohat, and Punjab platform of the Upper Indus Basin (Kadri 
1995; Khan and Rehman 2019). The organic-rich shales in 
the upper part of the Datta Formation and lower part of the 
Shinawari Formation can be a seal for the sandy reservoir 
intervals of the Datta Formation. The same shale interval 
may have acted as a potential source for the Shinawari and 

Fig. 1   Tectonic map of Pakistan (modified after Banks and Warburton 1986; Kazmi and Rana 1982) and lithological log of the Datta, Shinawari 
and Samana Suk formations in the study area at the left side
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Samana Suk formations (see, e.g., Shah and Ahmed 2018). 
The Shinawari and Samana Suk formations are producing 
oil reservoirs in the Dhulian, Mial, and Toot oil fields (Kadri 
1995). The glauconitic siltstone/shale in the lower part of the 
Early Cretaceous Chichali Formation can be a good seal for 
the carbonate intervals of the Shinawari and Samana Suk 
formations (Kadri 1995). The Jurassic units (Datta, Shina-
wari and Samana Suk formations) were previously evalu-
ated by various researchers in the context of sedimentology, 
sequence stratigraphy, diagenesis and reservoir evaluation 
in different ranges and sections in the Upper Indus Basin 
(e.g., Ahmed et al. 1997; Ali et al. 2013; Bender and Raza 
1995; Cheema 2010; Fatmi et al. 1990; Hallam and Maynard 
1987; Latif 1970; Mertmann and Ahmad 1994; Nizami and 
Shiekh 2009; Nizami 2009; Qureshi et al. 2008; Shah 2009; 
Wadood et al. 2020). However, no integrated studies have 
been carried out for a viable chronostratigraphic calibra-
tion and evaluation of the hydrocarbon reservoir potential of 
Jurassic strata in the study area.

Worldwide, the initial exploration of oil and gas was 
based on the conventional methods (i.e., regional tecton-
ics, structure and stratigraphic evaluation). At present, the 
excessive exploration activities demand careful assessment 
of reservoir using more advanced techniques such as the 
petrographic, geochemical and SEM analyses which are 
widely used to study the evolution of porosity and impacts 
of diagenesis on the overall reservoir potential of a rock 
unit (Ali et al. 2010). Similarly, the porosity–permeability 
analysis determines pore throats size, geometric arrange-
ment and interconnection of pores which may help in the 
productivity and efficient recovery of hydrocarbons from a 
reservoir (Jodry 1972; Bliefnick and Kaldi 1996; Wardlaw 
and Cassan 1978; Kopaska-Merkel et al. 1994). The iden-
tification of typical minerals and cement types by using the 
X-ray diffraction analysis greatly affects the porosity–perme-
ability of hydrocarbon reservoirs. The clay minerals such as 
smectites, bentonites and montmorillonites swell as it mixes 
with freshwater and thus causes blockage for the fluid flow 
within the pore spaces (Wilson et al. 2014). The primary 
(matrix) and secondary permeability originate during depo-
sition and diagenesis, respectively (Selley and Sonnenberg 
2014). The diagenetic alteration also reduces the perme-
ability by cementation and compaction (Evans 1987). The 
dominance of platy minerals, e.g., muscovite and laminated 
shale hinders the vertical flow of hydrocarbons (Potter et al. 
2012). Therefore, comprehending the clay mineralogy, their 
abundance, distribution as well as the composition of the 
pore fluids is obviously important. The clay minerals coating 
the grain surfaces either expand or dislodged as a result of 
a change in the chemistry of the pore fluids and mud filtrate 
consequently reducing the permeability of a reservoir (Pot-
ter et al. 2012). The porosity and permeability of the strata 
can be affected by the extent and location of cementation 

within the pore space. Furthermore, the percolating mineral 
solutions of low PH within the carbonate rocks along with 
the primary pores, fissures, fractures and bedding planes 
enhances the effective porosity of the reservoirs. Such kind 
of diagenetic changes in clastic and carbonate intervals can 
be better elucidated with integrated studies.

The integration of petrography with advance microscopic 
and geochemical techniques including XRD and SEM analy-
ses unravel the evolution of nano-porosity, cement stratigra-
phy, and hydrodynamic history of the sedimentary basins. It 
also helps in the clear understanding of hydrocarbon matura-
tion, migration, and destruction history (i.e., Foscolos 1984; 
Burruss et al. 1985; Moore and Druckman 1981; Surdam 
et al. 1984, 1989; Crossey et al. 1986; Edman and Surdam 
1986; Hutcheon et al. 1989; Spirakis and Heyl 1988; Maz-
zullo and Harris 1989). Therefore, in the current study, we 
used the pollen and spores data for establishing a sound and 
reliable palynostratigraphic framework, detailed petrogra-
phy focusing on the diagenetic fabric, cement, and poros-
ity types, X-ray diffraction analysis (XRD) for confirming 
the type of minerals, scanning electron microscopy (SEM) 
for the evaluation of nano-porosity, and plug porosity/per-
meability analysis for the direct measurement of porosity/
permeability of the Jurassic strata in the Kala Chitta Range, 
northwest Pakistan. It is expected that we may use these 
techniques as a valuable tool for the hydrocarbon reservoir 
characterization at various stages of exploration, appraisal, 
and development studies in the region.

Materials and methods

The geological fieldwork was carried out in the Kala Chitta 
Range (Fig. 1), and random rock samples were collected 
from the Datta, Shinawari, and Samana Suk formations for 
various laboratory analyses at the Department of Geology, 
University of Peshawar, Pakistan. Standard petrographic 
thin-sections were made. For the palynostratigraphy, 
200 g clay samples were first grinded to 2 mm size par-
ticles. The grinded samples were put in the glass beaker, 
and 10% hydrochloric (HCl) acid was added to remove the 
carbonate fraction. The supernatants were sieved through a 
10-micron nylon sieve. The leftover residue was added to a 
Teflon beaker, and 60% hydrofluoric (HF) acid was added 
to remove the silicate fraction. The samples were retained in 
HF overnight. The supernatants were sieved again through 
a 10-micron nylon sieve. The water was removed through 
pipette from the organic residue, and the residue was put 
on glass slides for the petrographic studies. A drop of water 
was added for the better visibility and photomicrography 
of the organic microfossils. The diagenetic features were 
systematically recorded to unravel its effects on the porosity 
and permeability. The SEM images and XRD analysis were 
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performed in the Centralized Resource Laboratory, Univer-
sity of Peshawar, Pakistan. The plug porosity and permeabil-
ity analyses of the samples were carried out at the Hydro-
carbon Development Institute of Pakistan. The core plugs of 
about 2.54 cm were placed in porosimeter and permometer 
for analyses. The data were automatically acquired and dis-
played in real-time and stored in user-selectable directories 
without any operator intervention. The porosity/permeability 
data acquired through plug testing were used to understand 
the relationship between porosity and permeability by con-
structing cross-plots following Wadood et al. (2020).

Results

Palynostratigraphic framework

The Jurassic outcrops have stratigraphic similarities with 
the Cretaceous-Paleocene strata in the Kala Chitta Range. 
Lack of the Jurassic bio-palynostratigraphic framework hin-
ders the accurate stratigraphic identification and correlation. 
Therefore, pollen and spore data from the clastic-carbonate 
mixed lithologies of the Jurassic rocks of the study area were 
used to construct an accurate and viable chronostratigraphic 
framework. The palynostratigraphic calibration greatly influ-
ences the reservoir fingerprinting, the stratigraphic correla-
tion at surface and subsurface, unconformity, seal and trap 
demarcation and appraisal in various stages of hydrocarbon 
exploration and development studies. The combination of 
various lithological attributes and floral elements were used 
to assign relative ages to the uncertain stratigraphic units.

Datta Formation

The Datta Formation mostly consists of mixed sandstone, 
siltstone, carbonaceous iron-rich clays, and coal seams at 
places (Abbasi et al. 2012). In the study area, the rock unit is 
overlain disconformably by the Triassic Kingriali Formation 
and underlain conformably by the Samana Suk Formation. 
Based on the occurrence of age diagnostic pollen and spores 
Callialasporites turbatus assemblage biozone is defined. 
This biozone contains Callialasporites diamperi and Cal-
lialasporites turbatus which confirms a Toarcian-Bajocian 
age of the Datta Formation (Fig. 2).

Shinawari Formation

The name Shinawari Formation was introduced by Fatmi 
(1973) for the transition zone between the Datta and over-
lying Samana Suk Formation of the Surghar Group in the 
western Samana Range. The Shinawari Formation is domi-
nated by mixed limestone, sandstone, shale, marls, silt-
stone, and mudstone units with the association of laterite, 

hardgrounds, and coal layers. The pollen and spores record 
of the unit marks the Callialasporites trilobatus assemblage 
biozone which confirms the Bajocian-middle Bathonian age 
of the Shinawari Formation (Fig. 2).

Samana Suk Formation

The Samana Suk Formation is named by various researchers 
which include Cotter (1933), Middlemiss (1896) and Gee 
(1945) as “Kioto Limestone”, Gee (1945) as “Baroach Lime-
stone”, Latif (1970) as “Sikhar Limestone”, and Shah (2009) 
as “Samana Suk Formation”. The rock unit mainly consists 
of thin to thick-bedded oolitic limestone, marls, dolostone, 
and interbedded clays (Ali et al. 2013; Wadood et al. 2020). 
The Samana Suk Formation has lower confirmable contact 
with Shinawari Formation and upper unconformable contact 
with the Cretaceous Chichali Formation (Shah, 2009). In the 
present palynostratigraphic study, the age diagnostic flora 
within the clays of the Samana Suk Formation includes the 
Perinopollenites elatoides, Tasmanites suevicus, and Lep-
tolepidites verrucatus that confirm a late Bathonian-Titho-
nian age of the Samana Suk Formation (Fig. 2).

Hydrocarbon reservoir assessment

Petrographic analysis

Various petrographic attributes including grain types, 
matrix, cement, and porosity types are recorded in detail. 
The semi-quantitative data are calculated by visual estima-
tion. The data are subsequently used to evaluate the reservoir 
potential of the rock units. The petrographic studies of the 
Datta Formation elucidated the abundance of quartz as a 
framework component (Fig. 3a–d; Table 1). It also contains 
a minor amount of other mineral grains, i.e., feldspars and 
heavy minerals. The grains are medium to coarse-grained 
and are sub-rounded. The rock unit is texturally immature; 
however, the abundance of quartz grains make the rock 
unit mature  mineralogically. The irregular contact between 
the quartz grains provided conduits for fluid flow (inter-
granular porosity). However, at places, these pore spaces 
are filled by ferruginous clays, minor matrix, and silica-rich 
cement. The dolomite cement is seen between the quartz 
grains. The rock unit constitutes abundant dissolution (mol-
dic) and fracture porosity. 

The petrographic analysis of the Shinawari Formation 
revealed the dominance of matrix with grains showing 
mud-wacke-grainstone texture (Fig. 3e–h; Table 2). How-
ever, among these textures, the mud-wackestone textures 
are dominantly observed. The grains are embedded in the 
micritic matrix and minor cement. At places, intergranu-
lar, intragranular, and fracture porosities are observed. The 
clastic rock unit shows the irregular occurrence of highly 
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compacted quartz grains. However, the clastic unit still 
shows signs of dolomitization and intergranular porosity.

The microscopic analysis of the carbonates of Samana 
Suk Formation show both skeletal and non-skeletal grains 
(Fig. 3i–l; Table 3). The limestone mostly shows grainstone 
texture with alternate minor mud-wackestone textures. The 
grains are mostly bioclasts, ooids, pellets, and peloids. How-
ever, unfilled fractures and abundance of dissolution cavities 
are observed in the mud-wacke texture. Similar activities 
are also noticed in the grain dominated fabric with minor 
intercrystalline and intracrystalline porosity.

Scanning electron microscopic analysis

The nano-porosity evolution and differentiation of the Juras-
sic rocks are attained by using the SEM analysis. The Datta 

Formation revealed the presence of abundant quartz grains 
associated with clays and iron oxides (hematite) (Fig. 4a–c). 
The randomly distributed clay minerals are interpreted 
as illite and smectite. The intense dissolution activities 
are also observed which have resulted in the creation of 
micro–macro-pores. The SEM analysis confirmed the pres-
ence of intergranular porosity.

Likewise, the Shinawari Formation also constitutes 
the dissolution, intergranular, and intragranular porosi-
ties (Fig. 4d–f). The fine-grained calcite rich matrix shows 
intense dissolution activities throughout the rock unit.

The SEM analysis of the Samana Suk Formation divulges 
the presence of intergranular, intragranular, and dissolution 
porosities (Fig. 4g–i). At places, randomly distributed minor 
dolomite rhombs are observed in the carbonates of Samana 
Suk Formation.

Fig. 2   Pollen and spores of 
Datta Formation: a–c Classopo-
lis turbatus d–f Callialasporites 
dampieri, Pollen and spores 
of Shinawari Formation: g–j 
Callialasporites trilobatus, Pol-
len and spores of Samana Suk 
Formation: k Perinopollen-
ites elatoides l Leptolepidites 
verrucatus (Note: while scale 
bar is 300 um)



3116	 Journal of Petroleum Exploration and Production Technology (2020) 10:3111–3123

1 3

X‑ray diffraction analysis

The XRD analysis of the Datta Formation shows the pres-
ence of abundant quartz followed by calcite and minor 
kaolinite (clay) components (Fig. 5a). Similarly, the Shi-
nawari Formation is comprised of calcite and minor quartz 
minerals (Fig. 5b). The carbonates of the Samana Suk For-
mation constitute calcite, dolomites, and albite minerals 
(Fig. 5c).

Plug porosity and permeability analyses

The visually estimated porosity and permeability of the 
Jurassic strata are further supplemented by the quantita-
tive plug porosity and permeability analyses. According 
to the porosity and permeability data, the Datta Forma-
tion has porosity values range from 12.1 to 23.6%, while 
the permeability ranges from 2.1 to 6.1 Ka mD (Table 4). 
The Shinawari Formation shows porosity range from 0.8 to 

Fig. 3   Photomicrographs of the Jurassic Datta a–d, Shinawari e–h 
and Samana Suk i–l formations, Kala Chitta Range, Northwest Paki-
stan. Ferrugenious clays (F), Fracture porosity (FP), Dissolution 

porosity (DP), Quartz (Q), Dolomite (D), Intergranular porosity (IP), 
Intragranular porosity (IG), Cement (CE), and Matrix (MT)
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2.9%, while permeability ranges from 0.01 to 0.09 Ka mD 
(Table 4). Likewise, the Samana Suk Formation provides 
porosity values from 0.9 to 4.3% and permeability from 0.04 
to 0.5 Ka mD (Table 4). The macro- and micro-porosity 
distribution using conventional thin-section petrography 
(macro) and scanning electron microscopy (micro) of the 
Jurassic Datta, Shinawari, and Samana Suk formations are 
also calculated (Table 5). The relationship between porosity 
and permeability is calculated by cross-plotting the porosity 
and permeability values (Fig. 6). The Datta and Shinawari 
formations show a covariant trend between porosity and per-
meability (Fig. 6). However, the lower part of the Samana 
Suk Formation does not show a direct relationship between 
porosity and permeability (Fig. 6).

Discussion

Reservoir potential of Datta Formation

The pore spaces in the sandstone of Datta Formation are 
partially filled by dolomites and iron-rich clay matrix (cal-
cite and kaolinite minerals). The dolomite has a significant 
impact on enhancing the reservoir quality of the rock unit 
(see, e.g., Wadood et al. 2019). However, the clay minerals 
can significantly hinder the fluid flow (Aksu et al. 2015). 
The genesis of dolomite follows certain criteria including 
(1) thermodynamic (2) kinetic and (3) hydrologic (Machel 
2004). In the case of Datta Formation, the supply of magne-
sium may be linked with the seawater diffusion. The intense 
dissolution within the Datta Formation may have added to 
the reservoir potential of the rock unit. The microscopic 
study demonstrates that dissolution activities are higher in 
calcite than dolomite; it shows that the rate of precipitation 
of dolomites was far lesser than the dissolution activities 
(Machel 2004). The presence of fibrous-platy hematite in the 
pore spaces might have encumbered the overall porosity of 
the Datta Formation. The hematite in the rock unit may have 
been formed by the alteration of goethite (Walker et al. 1981; 
Catling and Moore 2003). The goethite is usually formed at 
intermediate temperatures (alkaline conditions), while the 
hematite is dominant at high temperatures under the neutral 
pH (Schwertmann and Murad 1983), which indicates that 
the goethite form prior to the hematite during the course 
of diagenesis. The dominant higher values of quantitative 
plug porosity/permeability, the coarse grain sizes, and high 
secondary porosity hint toward excellent reservoir potential 
of the Datta Formation.

Reservoir potential of Shinawari Formation

The intergranular pores within the depositional fabric of 
the Shinawari Formation are filled by micrite, ferruginous Ta
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clays, and dolomites. The calcite has filled the micro-
scopic fractures. The dolomitization is closely linked 
with ferruginous-clay solutions released during the late 
diagenetic process which might have contributed to the 
overall secondary porosity (see, e.g., Mattes and Mountjoy 
1980; Gregg 1985; Gregg and Shelton 1989; Machel and 
Anderson 1989; Keller et al. 2000). The bulk geochemical 
analysis shows the presence of calcite with minor quartz 
in the rock unit. However, dissolution and intergranular 
porosities are observed during SEM analyses which may 
provide a sufficient path for the flow of hydrocarbons. The 
dolomitization, fracturing, and dissolution have appended 
to the enhancement of the reservoir potential. The Shina-
wari Formation has experienced deep burial diagenetic 
processes. Such diagenesis enhances the porosity (by dis-
solution/by enhancing pre-existing pores) and also reduces 
the porosity (by compaction and cementation). Such dia-
genetic modifications can be related temporally and spa-
tially to the burial depth temperature—hydrologic history 
of sedimentary basins and their hydrocarbon maturation 
migration—destruction history (i.e., Burruss et al. 1985; 
Crossey et al. 1986; Edman and Surdam 1986; Druck-
man and Moore 1985; Hutcheon et al. 1989; Surdam et al. 
1984, 1989; Mazzullo and Harris 1989). Based on detail 
petrographic, SEM, plug porosity/permeability, and XRD 
observations, the Shinawari Formation is categorized as a 
moderate reservoir in the study area.

Reservoir potential of Samana Suk Formation

The Samana Suk Formation is dominantly comprised of 
limestone with alternate marls and sandstone. The pet-
rographic studies revealed the presence of various types 
of matrix and cement including coarse-fine dolomites, 
micrite, and calcite. The calcite cementation most prob-
ably has occurred at the shallow diagenetic phase, as it is 
dependent on pressure, temperature, salinity, the compo-
sition of pore water, fabric, and mineralogy (James and 
Choquette 1983). The calcite cement may produce by the 
dissolution of aragonite and high-magnesium calcite and 
convert these into low magnesium calcite (Boggs and 
Boggs 2009). The diagenetic processes in the Samana Suk 
Formation have greatly affected the porosity of the rock 
unit. The late diagenetic phase has released ferruginous 
solutions forcing the dolomite formation. The stylolites 
(filled with siderite) and neomorphic calcite are developed 
as a result of deep burial. The presence of calcite filled 
veins and dolomites suggest the pronounced effects of the 
telogenetic phase. Although the diagenesis has destroyed 
much of the primary porosity, however, a late deep dia-
genetic phase has greatly enhanced the secondary poros-
ity. Thus, the dissolution and inter-intragranular porosity 
rank the Samana Suk Formation as a potential hydrocar-
bon reservoir.

Table 2   Petrographic analysis of the Jurassic Shinawari Formation

Pr present, Ab absent, L low, G good, Mo moderate

Sample # Grain% Matrix% Cement% Porosity types Visual estimation

Intergranular Intragranular Fracture Dissolution Porosity Permeability

1 75 10 15 Pr Ab Ab Pr L L
2 09 80 11 Ab Ab Pr Pr L L
3 78 12 10 Pr Ab Ab Pr Mo L
4 25 70 05 Pr Pr Pr Pr G L
5 08 87 05 Ab Ab Ab Pr L L
6 81 5 14 Pr Pr Pr Pr G L

Table 3   Petrographic analysis of the Jurassic Samana Suk Formation

Pr present, Ab absent, L low, G good, Mo moderate

Sample # Grain% Matrix% Cement% Porosity types Visual estimation

Intergranular Intragranular Fracture Dissolution Porosity Permeability

1 70 10 20 Ab Ab Pr Pr Mo L
2 80 10 10 Ab Ab Ab Pr L L
3 10 85 05 Pr Pr Pr Pr G L
4 20 65 15 Pr Pr Pr Pr G L
5 82 08 10 Ab Ab Ab Pr L L
6 25 65 10 Ab Ab Pr Pr Mo L
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Conclusions

The Jurassic succession (Datta, Shinawari, and Samana 
Suk formations) are well exposed in the Kala Chitta 
Range. Based on the palynostratigraphic investigations, 
the Datta Formation was assigned Toarcian-Bajocian age, 
while the Shinawri Formation was deposited in the Bajo-
cian-middle Bathonian age. Similarly, the Samana Suk 
Formation shows late Bathonian-Tithonian time of depo-
sition. The integrated results of petrography, plug porosity/
permeability, XRD, and SEM confirm the excellent reser-
voir potential of the Datta Formation. The dominance of 

micrite, ferruginous clays, and dolomite hint toward poor 
reservoir potential of the Shinawari Formation, however, 
the enhancement of inter-intragranular pores and matrix 
may have enhanced the reservoir potential of the unit. 
The same conclusion is supported by plug porosity/per-
meability values. The dominance of cement, micrite, fer-
ruginous clays superimposed by burial compaction may 
have occluded the primary porosity within the Samana Suk 
Formation. However, the diagenetic dissolution and dolo-
mitization have induced significant porosity, thus making 
the Samana Suk Formation as a promising reservoir.

Fig. 4   Scanning electron microscopic images of the Datta a–c, Shinawari d–f, and Samana Suk g–i formations, Kala Chitta Range, Northwest 
Pakistan
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Fig. 5   XRD analysis of the selected samples (average) from Datta (a), Shinawari (b), and Samana Suk (c) formations, Kala Chitta Range, North-
west Pakistan

Table 4   Quantitative plug porosity and permeability analyses of the Jurassic Datta, Shinawari, and Samana Suk formations

Datta formation Shinawari Formation Samana Suk Formation

Sample # Porosity (%) Permeability 
(Ka mD)

Sample # Porosity (%) Permeability 
(Ka mD)

Sample # Porosity (%) Perme-
ability (Ka 
mD)

1 17.2 5.1 1 1.6 0.08 1 4.34 0.04
2 12.1 3.3 2 0.9 0.09 2 3.45 0.40
3 20.1 6.1 3 0.8 0.01 3 2.24 0.30
4 16.2 4.2 4 2.9 0.04 4 1.98 0.50
5 15.1 2.1 5 2.1 0.01 5 0.90 0.20
6 23.6 5.9 6 1.8 0.01 6 2.99 0.40
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