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Abstract
Carbonated reservoirs with high percentage of  CO2 have been discovered and produced in the Brazilian pre-salt cluster. 
Recovery techniques, such as  CO2-WAG, have hence been evaluated and applied, as in the Lula field. Although studies dem-
onstrate the advantages of this technique, it is still difficult to estimate an increase in oil recovery. Thus, this work presents 
a methodology to evaluate the impacts of the main phenomena that occur and how  CO2 recycling can benefit the manage-
ment of these fields. The results showed an increase in recovery with the modeling of the main phenomena such as relative 
permeability hysteresis and aqueous solubility of  CO2, accompanied by a significant increase in  CO2 injection. However, 
the recycling of the  CO2 produced was shown to be fundamental in the reduction in this injection and to increase the NPV. 
The results showed a 4% increase in oil production and 9% in NPV, considering a producer–injector pair.

Keywords CO2-WAG  · Relative permeability hysteresis · Aqueous solubility · Cyclical reinjection

Introduction

Recent discoveries of reservoirs with high concentrations of 
carbon dioxide  (CO2) have boosted the research and appli-
cations of EOR methods involving this gas. In Brazil, the 
pre-salt carbonate reservoirs can have up to 50% of the molar 
fraction of  CO2. This high percentage of  CO2 in the reser-
voirs, together with the long distance from the coast, limita-
tions of handling, drainage and storage of the gas produced, 
as well as the possible environmental impacts caused by the 
release of this gas into the atmosphere, made the technique 
of water alternating  CO2 injection  (CO2-WAG) one of the 
main special recovery methods to be used in these reser-
voirs. In fact, this method has already been used by Petrobras 
in the Lula field, in the Santos Basin, since 2011, but the 
increase in its recovery factor cannot yet be safely estimated.

In fields with a high percentage of  CO2, it is extremely 
relevant to investigate the best type of recovery, such as con-
tinuous gas injection (CGI), injection of water alternated 
with  CO2  (CO2-WAG), simultaneous injection of water and 
 CO2 (SWAG), as well as the reinjection of the natural gas 
produced (hydrocarbon gas) or other gases. Regarding the 
miscibility of  CO2 in the oil, we can still have immiscible 
WAG (IWAG) and miscible WAG (MWAG). The type of 
gas injected is also a highlight; applications with  CO2 injec-
tions have produced better results than hydrocarbons or other 
gases (Christensen et al. 1998). The literature results also 
showed higher efficiency of  CO2-WAG injections compared 
to pure  CO2 injections (Duchenne et al. 2014). However, 
these recovery methods present high operating costs due to 
the gas, which represents a large fraction of the total cost, 
besides requiring compression and gas injection equipment, 
especially for  CO2. The main problems encountered were 
related to the early arrival of water or gas (breakthrough), 
injectivity in the wells and formation of asphaltenes and 
hydrates. For  CO2 injection, severe corrosion problems were 
also observed, although they also occur with other types of 
gases at lower intensity (Christensen et al. 1998).

Studies and production results have shown that the use 
of  CO2 as an injection fluid can also be very attractive in 
highly heterogeneous and fractured reservoirs, such as 
in pre-salt carbonate reservoirs, increasing oil recovery 
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(Christensen et al. 1998; Brown et al. 2013; Laochamroon-
vorapongse et al. 2014; Teklu et al. 2016). In fact, Laocham-
roonvorapongse et al. (2014) presented analytical tools to 
monitor the performance in the miscible WAG injection 
(MWAG) in carbonate reservoirs. The results showed the 
efficiency of these tools in analyzing producer–injector con-
nectivity and in evaluating WAG performance. Teklu et al. 
(2016) studied the  CO2-WAG injection with low salinity 
water (LS-WAG-CO2) in the recovery of carbonate reser-
voirs. The WAG method studied involved only one cycle, 
and the results were 14% and 25% increases in oil recovery 
in two samples of carbonates. Brown et al. (2013) developed 
a three-dimensional, three-phase and parallel simulator to 
treat a large computational effort involving  CO2 in the WAG 
process in a carbonate reservoir model. The algorithms were 
developed to calculate three-phase relative permeability and 
capillary pressure, including the effects of gas entrapment 
and relative permeability hysteresis. They concluded that it 
was extremely important to correctly model the entrapment 
of oil, water and gas, because the incorrect estimation of the 
imprisoned fluids resulted in the over or underestimation of 
the  CO2 stored in the reservoir and the increase in the oil 
recovery.

Thus, the process of alternating water and gas injection 
aims to increase the efficiency of sweeping and, conse-
quently, the recovery factor of the reservoir. The continuous 
injection of  CO2 can cause a high gas mobility in the reser-
voir, which could lead to the early arrival of this gas in the 
wells (early breakthrough). One way to overcome this prob-
lem is to make it miscible in the reservoir fluid, to delay the 
effect. Thus, increased efficiency will occur more strongly 
above the minimum miscibility pressure (MMP) (Chris-
tensen et al. 1998; Kulkarni and Rao 2005). A combination 
of the advantages of  CO2 and water injections is expected 
by improving microscopic displacement and macroscopic 
sweeping efficiency (Christensen et al. 2001), respectively, 
reducing the residual oil. As is known, the efficiency of mac-
roscopic sweeping due to water is obtained by the product 
of vertical and horizontal sweeping efficiencies. In turn, the 
efficiency of the microscopic displacement occurs with the 
decrease in the gas mobility and capillary forces, guarantee-
ing greater efficiency in the displacement due to the gas, by 
causing a low interfacial tension between the oil and gas 
phases, tending to zero when the gas becomes miscible in 
the reservoir fluid (Egermann et al. 2006). Because recov-
ery efficiency is the product of vertical and horizontal effi-
ciencies with displacement efficiencies, these expected and 
combined effects will result in increased reservoir recovery. 
Batruny and Babadagli (2015) showed that a large volume of 
water initially injected significantly reduces the miscibility 
of the gas in the oil, hindering the oil recovery. In their work, 
there was a critical limit for the initial water volume injec-
tion. Wang et al. (2017) carried out experiments to measure 

the minimum miscibility pressure (MMP) and to guarantee 
the  CO2 miscibility condition, to evaluate the recovery and 
the reduction in permeability caused by asphaltene and inor-
ganic deposition in low permeability sandstone reservoirs. 
Laochamroonvorapongse et al. (2014) also studied the mis-
cible and immiscible conditions. Teklu et al. (2016) experi-
mentally verified the condition of miscibility using rising 
bubble apparatus (RBA) and multiple mixing cell (MMC). 
Kulkarni and Rao (2005) showed that the results with WAG 
recovery were better than CGI and the miscible condition 
was more favorable than the immiscible. Duchenne et al. 
(2014) investigated the microscopic efficiency of  CO2 in the 
WAG injection well above the minimum pressure of misci-
bility (MMP) in the samples. They found recovery factors 
of the order of 80%, measured through a precise system of 
monitoring the saturations of the three phases and by cal-
culating the volume produced. Wang et al. (2020) studied 
the transition from immiscible to near miscible conditions 
in  CO2-WAG injection and continuous  CO2 in two simple 
models (1D and 2D). These models were used to analyze 
two physical mechanisms, namely compositional effects and 
low interfacial tension (IFT). The first produced oil strip-
ping effects while the second implied an increased mobility 
of oil phase due to enhanced film formation. The latter was 
studied through two different models, Betté and Coats, due 
to an alteration in the oil relative permeability. The authors 
used tracer analysis in simulations to demonstrate the effect 
of combining both mechanisms, a viscous crossflow between 
non-preferential and preferential flow paths. They concluded 
that IFT effects could have a great impact on the fluid behav-
ior and the oil recovery in near miscible WAG injection. 
However, their work did not consider the impact of rela-
tive permeability hysteresis and aqueous solubility of  CO2 
in these mechanisms and the optimization of operational 
parameters in  CO2-WAG.

In WAG recovery, there is also the need to optimize sev-
eral parameters, the main ones being the relation between the 
water injected and gas flows, known as WAG ratio, and the 
duration of the cycle of alternating injections, known as the 
WAG cycle. A few studies have focused on the  CO2-WAG 
injection optimization process (Rahmawati et al. 2013; Pan-
jalizadeh et al. 2015; Chen and Reynolds 2017; You et al. 
2020). This is largely due to the EOR optimization processes 
requiring many simulations, with high computational and 
financial costs. Rahmawati et al. (2013) used an optimiza-
tion approach called mixed integer for nonlinear problems 
(MINLP) and an optimization method called Nelder–Mead 
simplex reflection to maximize the NPV. However, they 
studied only a single cycle of gas (hydrocarbon) injection 
followed by water and used only top hole pressure (THP) as 
the control variable. Chen and Reynolds (2017) employed 
a method called ensemble based for the simultaneous opti-
mization of bottom hole pressures (BHP), well rates and 
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inflow control valves (ICVs). Spiteri and Juanes (2006) did 
not use any optimization method to maximize the recovery, 
using three WAG cycles, 1:1 WAG ratio, BHP constants and 
100% of voidage replacement (VREP) as constant param-
eters. You et al. (2020) developed a robust computational 
framework that couples artificial neural networks (ANN) and 
multi-objective optimization in  CO2-EOR recovery. They 
used multiple-objective optimization to maximize oil recov-
ery,  CO2 storage volume and project NPV. The authors con-
cluded that this multi-objective optimization could provide 
a significant insight into the decision-making process of the 
 CO2-EOR project. They also failed to consider the impact of 
physical phenomena and main operational parameters in the 
optimization process, such as the WAG ratio and cycle. In 
none of the reviewed articles was the reinjection of the  CO2 
produced by the reservoir evaluated. Therefore, the develop-
ment of a methodology that is efficient in optimizing  CO2 
reinjection in WAG processes in carbonates is an important 
gap in the literature.

The WAG injection recovery method involves more com-
plexity due to the occurrence of the relative permeability 
hysteresis caused by the injection alternation (imbibition and 
drainage processes) that occurs during the recovery method. 
Thus, the compositional simulation of a WAG injection 
becomes more complex, as they affect the capillary pressures 
and relative permeabilities in the two and three-phase sys-
tems; also, other phenomena are involved, such as solubility 
and diffusion. The current knowledge involved in the three-
phase flow is limited, and quantifying and predicting the 
results of these processes is therefore difficult. Measuring 
the relative permeability is very difficult, costly and time-
consuming. Thus, many correlations have been proposed to 
calculate the relative permeability in the three-phase system 
from available biphasic data. Phenomena such as solubility 
also have relevant roles, are poorly evaluated in the WAG 
injection and are often ignored. Thus, using a compositional 
simulator, we aim to adequately represent the multiphase 
flow and the mass transfer of the gas phase components to 
the oil phase and vice versa. Wang et al. (2017) performed 
the analysis of permeability reduction due to asphaltene pre-
cipitation and solubility. Some articles have studied only 
the three-phase relative permeability and hysteresis (Shah-
verdi et al. 2011; Spiteri and Juanes 2006), while other arti-
cles have only evaluated the solubility effects of  CO2 due 
to altered salinity in the water injected (Kulkarni and Rao 
2005; Teklu et al. 2016). However, in the case of the WAG 
model, it is not possible to determine the effect of capillary 
pressure. Brown et al. (2013) have developed algorithms 
to calculate three-phase relative permeability and capillary 
pressure and thus to include the effects of gas entrapment 
and relative permeability hysteresis. Few articles on WAG 
considered the occurrence of physical phenomena in the 
recovery process.

It is fundamental to model the fluids and to adjust the 
state equations to study the optimal number of pseudo-com-
ponents in the compositional model, to evaluate the influ-
ence of rock wettability (hysteresis in WAG) and the solubil-
ity of  CO2 in water. This type of injection was also strongly 
influenced by rock type, injection strategy, gas miscibility 
and well spacing (Christensen et al. 1998).

This article aims to develop an optimization framework 
to understand the advantages and disadvantages of recov-
ery in carbonate reservoirs, focusing on the water alternated 
with  CO2 injection. For this, we employed the fast genetic 
algorithm to optimize the main parameters related with this 
recovery method and compositional simulator for modeling 
the physical phenomena (hysteresis and solubility) and rein-
jection of the  CO2 produced by the reservoir.

Methodology

The methodology was developed to provide the modeling 
to evaluate the  CO2-WAG recovery, making the analyses 
more realistic considering: carbonate reservoir modeling, 
PVT handling, physical phenomena involved and reinjection 
of the  CO2 produced, in order to maximize the NPV through 
global optimization, considering the costs in the process. 
The flowchart of the general methodology is shown in Fig. 1.

Carbonate reservoir model

The geological model was elaborated by Mello et al. (2013) 
and represents a typical region of a carbonate reservoir with 
grainstone facies. This model was built using  RMS® soft-
ware. It was elaborated considering the relation between the 
petrophysical properties (porosity and permeability) and 
interparticle porosity relation (Lucia 2002). In this model, 
porosity ranges from 6.8 to 18.7% with a mean of 11.8% and 
a wide permeability range (30 to 2233 mD) with a mean of 
426 mD were used. The transform between permeability and 
interparticle porosity can be defined for each of the three 
petrophysical classes. Reduced major axis (RMA) trans-
forms calculated based on data presented by Lucia (2002) for 
petrophysical class 3 (dolostones) are given by the equation:

where k is the permeability in mD and ∅ip is the porosity as 
a fraction. The relation between the vertical and horizontal 
permeabilities is 0.1 (Lucia 2002).

PVT handling

PVT data published by Moortgat et al. (2010) were used 
herein. For handling PVT data, the method of Scanavini 

(1)k =
(

2.884.103
)

⋅ �4.275
ip
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et al. (2013) was used. This method uses the critical prop-
erties suggested by Katz and Firoozabadi (1978) and the 
simultaneous regression by the method of least squares of 
Levenberg–Maarqdt (Levenberg 1944) for calibrating EOS. 
More details of this method can be seen in Scanavini et al. 
(2013).

Physical phenomena modeling

Results from the literature have shown that ignoring the 
physical phenomena that occur in WAG recovery may over 
or underestimate the results, leading to inconsistent results 
and conclusions regarding the data observed in the produc-
tion. We therefore briefly describe the models used in the 
modeling of relative permeability hysteresis and solubiliza-
tion of  CO2 in water.

Relative permeability hysteresis

Hysteresis refers to the phenomenon of directional satura-
tion, exhibited by the relative permeability curves, when a 
given phase saturation of a fluid is increased or decreased. 
In a two-phase system, the relative permeability of oil 
decreases as the water injection is performed, until the 
residual oil saturation is reached. At the same time, the 

relative permeability of water increases until a maximum 
value is reached, when the oil is injected until the water 
stops draining. This oil can flow back through the same 
pores that were previously emptied by the water cycle, that 
is, the relative permeability of oil can increase along the 
same path. However, the relative permeability of water 
presents hysteresis because the drainage and imbibition 
curves do not follow the same process. As a result, the 
new minimum irreducible water saturation value does not 
return to the original connate water saturation.

In a multiphase flow, a typical  CO2 injection process, 
which includes injecting water alternately with  CO2, 
causes changes in saturations during each cycle. These 
changes in saturation also result in changes in the relative 
permeability of the non-wetting and intermediate phases. 
These are related to the effect that  CO2 has on the relative 
permeability of water after the first  CO2 injection cycle. 
In the same way,  CO2 is affected by the relative perme-
ability of water.

This work used the model of Larsen and Skauge (1998) 
to reproduce the behavior of relative permeability curves in 
the imbibition and drainage processes, valid for water-wet 
systems as the one used herein. This model is incorporated 
in the GEM compositional simulator of  CMG® and is also 
known as 3P-WAG model (CMG 2019). The main feature of 
the model is the reduction in gas mobility with the increase 
in mobile water saturation. Figure 2 shows the hysteresis of 
the relative permeability of gas in two cycles of water alter-
nated with gas injection. We can see a significant reduction 
in the relative permeability of gas from the first to the second 
process of increasing gas saturation.

Fig. 1  Flowchart of the general methodology

Fig. 2  Hysteresis loops during three-phase flow with the reduction in 
gas permeability (Larsen and Skauge 1998)
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In this model, the gas phase (non-wetting phase) hyster-
esis model follows the theory of Land (1968) and Carlson 
(1981). The water phase (wetting phase) model interpolates 
between two-phase and three-phase relative permeability 
curves, whereby the three-phase water relative permeability 
is interpreted as the relative permeability after gas flood-
ing. The final element of the model is the reduction in the 
minimal oil saturation (Som) used in Stone’s first model for 
three-phase oil relative permeability. For the non-wetting 
phase (gas), consider a typical drainage process (increasing 
gas saturation) reaching a maximum gas saturation (Sgm) fol-
lowed by an imbibition process (decreasing gas saturation) 
leading to a trapped gas saturation (Sgr). The trapped gas 
saturation is given by Eq. 2:

where C is Land’s parameter, calculated to be consistent 
with Sgcrit and the maximum Sg. Sgcrit is the critical gas 
saturation.

The gas relative permeability on the drainage to imbibi-
tion scanning curve is given by:

The free gas saturation (Sgf) is calculated from Land’s 
equation:

If the gas saturation once again decreases, then a sec-
ondary drainage curve will follow. The secondary drainage 
curves are calculated using the following equation:

In this equation, Kdrain
rg

 is the relative permeability calcu-
lated for the secondary drainage, Kinput

rg  is the input relative 
permeability at Sg, K

input
rg

(

Sstart
g

)

 is the input relative perme-
ability at the gas saturation at the start of the secondary 
drainage curve, Swcon is the connate water saturation, Sstart

w
 is 

the water saturation at the start of the secondary drainage 
curve, Kimb

rg

(

Sstart
g

)

 is the relative permeability at the start of 
the secondary drainage process (that is the Krg at the end of 
the imbibition curve), and α is the reduction exponent input.

The term raised to exponent α in Eq. (5) accounts for 
reduction in the gas phase relative permeability in the 
presence of mobile water. Equation (5) implies that the 
gas phase relative permeability is a function of the history 

(2)Sgr = Sgcrit +

(

Sgm − Sgcrit
)

1 + C
(

Sgm − Sgcrit
)

(3)Krg

(

Sg
)

= Kdrain
rg

(

Sgf
)

(4)

Sgf = Sgcrit +
1

2

{

(

Sg − Sgr
)

+

√

(

Sg − Sgr
)2

+
4

C

(

Sg − Sgr
)

}

(5)

Kdrain
rg

=
[

Kinput
rg

− Kinput
rg

(

Sstart
g

)]

[

Swcon

Sstart
w

]

�

+
[

Kimb
rg

(

Sstart
g

)]

of both the gas and water phase saturations. Further imbi-
bition curves are handled by transforming the saturation 
using Land’s Eq. (4) with the trapped gas saturation Sgr 
defined as the maximum trapped gas over all the WAG 
cycles. The transformed saturation is then verified on the 
secondary drainage curve. If Stone’s first model for the 
three-phase oil relative permeability model is used, the 
minimal residual oil saturation Som may be modified to 
account for the trapped gas saturation:

where “a” is the input by the user in the compositional simu-
lator (CMG 2019).

It has been observed that water mobility following a gas 
flood is significantly reduced relative to its mobility in the 
original oil–water system. In addition to the usual two-
phase relative permeability curve (oil–water flow), another 
curve for a three-phase flow scenario, which represents 
the water relative permeability following a gas flood, is 
required.

For an imbibition process (Sw increasing), the relative 
permeability is interpolated between the two- and three-
phase curves as follows:

In this equation, Kimb
rw

 is the calculated imbibition rela-
tive permeability, KW2

rw
 is the relative permeability at Sw 

read from the two-phase curve, KW3
rw

 is the three-phase rela-
tive permeability at Sw, Sgmax is the maximum attainable 
gas saturation (1 − Swcon − Soirg), SI

g
 is the gas saturation at 

the start of the increasing water saturation (imbibition) 
process, Swcon is the connate water saturation, and Soirg is 
the irreducible oil.

A subsequent drainage relative permeability will be 
calculated by interpolation between the imbibition curve 
and either the three-phase curve or the two-phase curve, 
depending on the gas saturation.

Thus, for this model three constants are required: constant 
α that assumes a constant value for the case of the rock to be 
water wet (as the model employed herein); constant a also 
depends on the rock wettability; and Sgrmax, which is the 
maximum residual gas saturation (CMG 2019).

Parameter a was assumed to be equal to the work by 
Larsen and Skauge (1998), and the other two parameters 
were obtained from the work by Laboissière et al. (2013). 
The three-phase water relative permeability was assumed 
to be 25% of the biphasic, an experimental observation due 
to Rogers et al. (2000), because of the absence of isoperm 
data. Thus, the values assumed were: α = 4.9, Sgrmax = 0.22 
e a = 1.1.

(6)Sommod = Som −
[

a
(

Sg − Sgf
)]

(7)Kimb
rw

= KW2
rw

(

1 −
SI
g

Sgmax

)

+ KW3
rw

(

SI
g

Sgmax

)
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Aqueous solubility of  CO2

Data from the literature of coefficients of  CO2 aqueous 
solubilization and light hydrocarbons in the water forma-
tion were acquired. If the temperature is above 200 °C, for 
example, the solubility may be as high as 18% of the mass 
fraction. Even so, it is very common not to even consider by 
Henry’s Law the aqueous solubility of these components in 
compositional simulation studies.

For estimating Henry’s constant (dissolution) of the  CO2 
in the reservoir brine, the parameter adjustment found in 
Duan and Sun (2003) and Sander (1999) was calibrated 
using the Winprop software of  CMG®.

CO2 was determined to have a solubility of 0.799627 mol/
kg at a temperature of 58.2 °C (the same as the PVT data 
used), 6400 psi (initial pressure of the reservoir) and salinity 
of 200,000 ppm (solution of 3.42 molal).

For determining the Henry constant, we used the Sander 
relation:

For the initial estimation of the volume of infinite dilu-
tion of  CO2 in the brine, Enick’s relation (Enick and Klara 
1990) was used:

For the calculations, we considered that the salinity of the 
water formation and the water injection was 200,000 ppm 
(Lake 2007). For the solubilization of supercritical com-
pounds, such as carbon dioxide, methane, ethane and pro-
pane in brine, Henry’s Law modified by Harvey (1996) was 
used. The parameters were taken from Duan and Sun (2003), 
Harvey (1996) and Haynes (2014) and adjusted in the Win-
prop software of  CMG® by means of a flash liberation and 
regression. The values found are shown in Table 1. 

CO2 recycling

The  CO2 produced to be reinjected into the reservoir was 
recycled using keywords of the GEM software of  CMG®. 
The recycling option in GEM allows mimicking certain 
processes in surface facilities, such as the stripping of 
certain components and the addition of a makeup stream. 
It defines the pressure and temperature conditions of the 
separators, the wells of which participate in the recycling, 

(8)kHdef

Sspecies (solution)

(

mol

g

)

RT

PMspecies

(atm)

(9)k
px

H(inv)
(psi)def

kHT(K)14.69

12.2
(psi)

(10)V∞
dil(H)

=

(

1799.36 − 17.8218 ∗ T + 0.06599297 ∗ T2 − 1.05786 ∗ 10−4T3 + 6.2275 ∗ 10−8T4
)

103

(

l

mol

)

as well as the fraction of  CO2 produced that will be rein-
jected (CMG 2019).

Selection of main parameters

This section presents the optimization parameters selected 
to evaluate the  CO2-WAG recovery. These parameters were 
chosen because they are the parameters that most impact 
the NPV maximization: the WAG cycle duration (period 
between the beginning of the water injection and the end 
of the gas injection), WAG ratio (ratio between water and 
 CO2 injection rates), maximum oil rate production, water 
and gas injection rates, limits of water cut (WCUT) and 
gas–oil ratio (GOR).

Adjustment of numerical control

The numerical adjustment was made to minimize three 
main components: the processing time, the percentage of 
error in the material balance and the percentage of failures 

in the simulation. For this, we used maximum timestep 
control, showing that the timestep size could have signifi-
cant impact on the simulator performance. Normal varia-
tion per timestep was also used, applying maximum change 
in specific variables: pressure, saturation and global com-
position. The values were reached through manual tuning 
in order to improve the numerical performance. The WAG 
injections were only able to be completed until the end 
time using AIM (adaptive implicit method). Parallel pro-
cessing was also used to reduce the computational time, 
specifying the number of parallel threads to be used in 
each simulation.

Optimization process

For the optimization process, we employed a global opti-
mization method called fast genetic algorithm (FGA) 
which is more efficient than basic genetic algorithms. This 

Table 1  Solubility parameters of supercritical compounds in brine

Component solubilized in brine CO2 Ethane Propane

Henry solubility coefficient 
(atm)

607.240 812.140 4.376.543

Infinite dilution coefficient (L/
mol)

3.18 × 10−2 4.8 × 10−2 6.8 x  10−2
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algorithm was used to optimize all the cases (described in 
the next section).

Fast genetic algorithm (FGA)

This optimization method was successfully applied in the 
optimization processes with inflow control valves in the 
intelligent wells (Sampaio et al. 2015a), closed-loop opti-
mization (Sampaio et al. 2015b) and in the well rates opti-
mization under production constraints (Sampaio et al. 2019). 
In this work, this algorithm was used in the performance of 
 CO2-WAG recovery.

Genetic algorithms (GA) are an extremely efficient search 
technique in scanning the solution space and in finding 
solutions close to the optimal solution, being indicated in 
problems especially difficult (the so-called NP-Complete 
problems), given the high number of variables. These algo-
rithms are based on the simulation of the evolution of spe-
cies through selection, mutation and reproduction (Goldberg 
1989, Koza 1992, Mitchell 1996). It uses a population of 
structures called chromosomes or individuals, which are 
then subjected to genetic operators such as recombination 
and mutation, among others, that simulate reproduction and 
genetic mutation, respectively. Each individual is submit-
ted to an evaluation that determines its quality as a solution 
to the problem. This evaluation determines which chromo-
somes will apply genetic operators to generate offspring.

The performance of a GA depends heavily on which 
operators are used in the algorithm. There are those that 
are easier to implement computationally, that make up the 
so-called simple GA (SGA), but that are less efficient in 
finding the global maximum (Mitchell 1996). Among these 
simpler operators are: single-point crossover, mutation and 
crossover with static rates, method of fitness selection by 
roulette wheel and evaluation with direct application of the 
objective function. Single-point crossover is the simplest 
form: a single crossover position is chosen at random and 
the parts of the two parents after the crossover position are 
exchanged to form two offspring. Static rates for crosso-
ver and mutation are also present in the SGA. These rates 
remain fixed throughout the execution of the algorithm, but 
have different characteristics at the beginning and end. In the 
selection known as roulette wheel, a proportion of the wheel 
is assigned to each of the possible selections based on their 
fitness value. This could be achieved by dividing the fitness 
of a selection by the total fitness of all the selections, thereby 
normalizing them to 1. Then, a random selection is made 
similarly to the way the roulette wheel is rotated. Finally, the 
simple evaluation can be made using the objective function 
directly in problem to be solved.

As this work aims at the good performance of the GA, 
the operators that present the best efficiency in the conver-
gence of the best individuals used are presented below. The 

algorithm used, called the fast genetic algorithm (FGA), uses 
advanced operators: uniform crossover, mutation and crosso-
ver with deterministic rates, selection of parents by uniform 
stochastic sampling and modification of the evaluation func-
tion by Sigma Scaling. A brief explanation of each of these 
operators is provided as follows.

In the uniform crossover, a mask of random binary num-
bers is used and applied to the two individuals selected for 
the crossing. Where number zero appears on the mask, the 
gene for each individual is preserved, that is, there is no 
exchange of genes. Where number one is on the mask, there 
is an exchange of genes between individuals in that position. 
As this type of crossing has a greater capacity to combine 
schemes than those of a single point, whether large or small, 
its performance is eventually superior and tends to obtain the 
best results. Hu and Di Paolo (2007) showed the efficiency 
gain of the genetic algorithm when using the uniform crosso-
ver for an air traffic problem.

Deterministic rates for mutation and crossover can mod-
ify these parameters depending on the algorithm execution 
time. Using high crossover rates with low mutation rates 
alongside large population size refers to the diversity in 
the large population; however, in the small population size, 
the mutation rates become larger in order to provide diver-
sity and to increase the search quality, bringing diversity 
to the population using crossover rates and mutation rates 
to increase the efficiency of the GA (Hassanat et al. 2019).

In the uniform stochastic sampling, the individuals are 
mapped to contiguous segments of a line, such that each 
individual segment is equal in size to its fitness exactly as 
in the roulette wheel selection. Equally spaced pointers are 
placed over the line in the same number as the individuals to 
be selected. Considering N the number of individuals to be 
selected, then the distance between the pointers is 1/N and 
the position of the first pointer is given by a randomly gener-
ated number in the range [0, 1/N]. Thus, the individuals with 
the highest evaluation will have a greater chance of repro-
ducing, as they will be represented by larger line segments, 
without totally excluding the possibility of reproduction of 
individuals with lower evaluation, although with less prob-
ability of occurring, just as occurs in nature, improving the 
selection (Mitchell 1996).

Sigma scaling is a variant of linear scaling whereby an 
individual’s fitness is scaled according to its deviation from 
the mean fitness of the population, measured in standard 
deviations. Diwaker and Dhull (2011) published an article 
specifically to analyze the effects of sigma scaling on GA 
performance. They concluded that it prevents the GA from 
premature convergence, maintains diversity in the popula-
tion and always improves the performance of GA.

Thus, by replacing each simple operator by an advanced 
operator that improves the efficiency at each stage of the algo-
rithm, we can ensure that replacing the SGA with the FGA 
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will make the search for the optimal solution more efficient. 
Table 2 presents a summary of the SGA operators and the 
changes in the FGA for better understanding the algorithms.

To solve the problem proposed herein, a program was cou-
pled to the commercial reservoir simulator. The genes in this 
study are the values of parameters previously mentioned. Thus, 
the methodology used can be considered an optimal strategy 
of the WAG injection at different times over the exploitation 
of the field to maximize the NPV.

Case studies

This section presents the case studies in which the methodol-
ogy will be applied and the reservoir model, with one producer 
and one injector, in order to also analyze the influence between 
producer–injector.

Reservoir model

The simulation model used is shown in Fig. 3; the rock and 
fluid properties are based on the Brazilian pre-salt field, a 
model previously used by Mello (2015). For the petrophysi-
cal data of the model, only grainstone facies were consid-
ered. The dimensions of the grid are of 20 × 20 × 7 blocks, 
each block being 200ft × 200ft × 30ft in size. The grid used 
in the models was Cartesian. The oil used was light oil with 
 27◦API, bubble pressure of 5581 psi and initial water satu-
ration of 13.5%. The initial pressure of the field was 6400 
psi and the minimum miscibility pressure was estimated at 
4400 psi, the maximum MMP calculated by GlasØ (1985).

Well configurations

One producer and one injector were used, in a configuration 
of a quarter of five spots, all vertical, with 200ft in length. 
The producer and injector wells were completed in all the 
layers of the model. The operational restrictions of the wells 
are listed in Table 3.

These values remained fixed throughout the optimiza-
tion process. An operating condition, voidage replacement 
(VREP), was also used to limit the maximum amount of 
water injected to the total volume of fluid produced, so as to 
avoid the high pressurization of the reservoir.

Optimization parameters

For optimizing the WAG injection, the following parameters 
were used:

• Limit water cut (WCUT lim): maximum water cut to reach 
the maximum NPV. These values assumed 0.1 to 1.0;

• Gas–oil ratio (GOR): maximum value of gas–oil ratio;
• Maximum oil produced (STO): maximum oil production 

rate;
• Maximum water injection (STW): maximum water injec-

tion rate;
• Maximum gas injection (STG): maximum gas injection 

rate.
• Only for case 5 is there an additional parameter:
• Fraction of  CO2 reinjection (recycling): fraction between 

0.1 and 1. This value is the fraction of  CO2 produced that 
will be reinjected in the reservoir;

Table 2  SGA and FGA operators

Operator SGA FGA

Fitness function Objective function Sigma scaling
Selection method Roulette wheel Uniform 

stochastic 
sampling

Crossover Single point Uniform
Rates Static Deterministic

Fig. 3  Model employed, representing a region between the producer 
and the injector of a synthetic model of a Brazilian pre-salt field

Table 3  Operational restrictions 
of the wells

Producer well
Control mode

Water injector
Control mode

Gas injector
Control mode

Minimum BHP 4000 psi Maximum BHP 8800 psi Maximum BHP 8800 psi
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The ranges of the values of each variable are shown in 
Table 4. As can be seen, the FGA is composed of variables 
with two ranges, one from 0.1 to 1 and the other from 3000 
to 12,000. This was possible by dividing the population of 
the FGA into two subpopulations, each with different inter-
vals, that evolve in parallel and are used in the same evalua-
tion. The crossover and mutation operators had to be adapted 
to respect these intervals.

Fast genetic algorithm (FGA)

Table 5 presents the FGA parameters used in each control 
variable. The stopping criterion used in this optimization 
was established when 15 generations occurred without 
increasing the maximum NPV. The population size was 
defined by tests made previously. The size was six times 
the number of control variables. The rates of mutation and 
crossover have values varying linearly along the execution of 
the algorithm; mutation rate begins with 0.1, increasing until 
reaching 0.9. The crossover rate had an inverse behavior.

Although GAs are indicated for especially difficult 
problems, with a high number of variables, the number of 
variables herein was reduced. This was done aiming at the 
next stage, which is the application in a complete reservoir 
model where we have not only one producer–injector pair, 

but several pairs. This results in a high number of variables, 
where the FGA has better computational efficiency and has 
its application recommended.

Economic scenario

The values for the probable scenario are shown in Table 6. 
The economic base model is selected following a simplified 
Brazilian fiscal regime, assuming: 25% of the corporate tax 
rate, 10% of the royalties, 9% of the social benefit contribu-
tions and 10-year linear depreciation. Also presented are 
data on the  CO2 production costs in the reservoir and the 
cost of reinjection (NETL 2017). In all the cases studied, 
the investments were not considered.

Cases

To carry out this work, five cases were created. Case 1 was 
the base case, without modeling phenomena and without the 
reinjection of  CO2 produced. Case 2 added the modeling of 
the relative permeability hysteresis to case 1. Hence, case 
2 was created to analyze the effects of hysteresis in relative 
permeability in relation to case 1, without modeling. Case 
3 added the modeling of  CO2 solubility to the water in case 
1. This case was created to analyze the effects of aqueous 
solubility in relation to case 1. Case 4 added the modeling 
of relative permeability hysteresis and aqueous solubility to 
case 1. This was done to jointly analyze the effects of hys-
teresis of relative permeability and  CO2 solubility in water. 
Finally, case 5 added relative permeability hysteresis, aque-
ous solubility and  CO2 recycling to case 1. In this case, we 
can analyze the effects of the modeled phenomena together 
with the reinjection of the  CO2 produced. The modeling of 
each case is summarized in Table 7.

For each case, we created four options. These options had 
different WAG cycle values. The first option has a 6-month 

Table 4  Range of each parameter used in the optimization process

Parameters Lower value Upper value

Maximum WCUT 0.1 1.0
Fraction of  CO2 Recycling 0.1 1.0
Maximum GOR  (ft3/bbl) 3000 12,000
Maximum STO  (ft3/d) 3000 12,000
Maximum STW  (ft3/d) 3000 12,000
Maximum STG  (ft3/d) 3000 12,000

Table 5  Fast genetic algorithm 
parameters

Parameters Case 1 Case 2 Case 3 Case 4 Case 5

Number of generations 80 80 80 80 80
Size of population 30 30 30 30 36
Number of elite individuals 1 1 1 1 1
Mutation rate 0.1→0.9 0.1→0.9 0.1→0.9 0.1→0.9 0.1→0.9
Crossover rate 0.9→0.1 0.9→0.1 0.9→0.1 0.9→0.1 0.9→0.1

Table 6  Economic data for a probable economic scenario

Economic 
scenario

Discount rate (% 
p.a.)

Oil price (US$/
bbl)

Oil production 
cost (US$/bbl)

Water produc-
tion cost (US$/
bbl)

CO2 production 
cost (US$/bbl)

Water injection 
cost (US$/bbl)

CO2 injection 
cost (US$/bbl)

Probable 8.00 50.00 8.00 1.50 0.004 1.00 0.004
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WAG cycle. The other three options have WAG cycles equal 
to 12, 18 and 24 months, as shown in Table 8. These options 
were created to find the best WAG cycle for each case.

As can be seen, we have 5 cases, each with 4 options, 
totalizing 20 scenarios to be equally optimized. All the cases 
were optimized with the parameters listed in “Optimization 
parameters” section. The only difference between cases 

in the optimization is the inclusion of the parameter that 
defines the fraction of  CO2 to be reinjected in case 5. All 
the other cases used the same parameters in the optimization 
process. Thus, cases 1 to 4 had five parameters and only case 
5 has six optimization parameters.

Results and discussions

Table 9 provides the results of the optimization process; 
case 1 shows that the best option was A, with a 6-month 
WAG cycle. In this option, we can verify the greater oil 
recovery obtained. However, this increase in oil production 
was accompanied by higher water production and injection, 
while lower  CO2 injection was obtained. This option can 
thus achieve the maximum NPV. In our comparisons, as 
explained earlier, this case will be considered the base case 
to establish relations between all the cases.

Figure 4 provides the graphs for the water and  CO2 injec-
tion rate curves, cumulative production and water injection 
for case 1. There is alternation between the water and  CO2 
injections, the injection of water being more expressive than 
 CO2. In fact, the best WAG ratio for this case was 14.67. 
This graph also shows 49 cycles of water alternating with 
 CO2 over 30 years.

Table 7  Modeling implemented in each case

Cases Modeling

1 Without physical phenomena and  CO2 recycling
2 Relative permeability hysteresis
3 Aqueous solubility of  CO2

4 Relative permeability hysteresis + aqueous solubility of  CO2

5 Physical phenomena and  CO2 recycling

Table 8  WAG cycle for each 
case selected in this work

WAG cycle (options) Months

A 6
B 12
C 18
D 24

Table 9  Results of case 1 
(without physical phenomena 
modeling and reinjection)

Options Oil production 
 (106 std  m3)

CO2 produc-
tion  (108 std 
 m3)

Water produc-
tion  (106 std 
 m3)

Water injec-
tion  (106 std 
 m3)

CO2 injection 
 (106 std  m3)

NPV (US$ 
millions)

A 2.10 4.49 1.37 4.08 0.31 115.81
B 2.07 4.51 0.98 3.65 0.84 112.34
C 2.05 3.97 0.86 3.43 1.19 112.94
D 2.03 3.97 0.77 3.31 1.34 111.42

Fig. 4  Graphs of (a) water and  CO2 injection rate curves and (b) cumulative productions and water injection for WAG recovery in case 1
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For the results of case 2, Table 10 shows that even with 
hysteresis modeling, option A was also the best option. The 
oil production and NPV are observed to increase in rela-
tion to case 1, showing that the modeling of the hysteresis 
phenomena presented a favorable result in WAG recovery. 
In fact, the incorporation of physical phenomena, especially 
relative permeability hysteresis, favors the oil recovery fac-
tor (Spiteri and Juanes 2006; Ghomian 2008). This increase 
in oil recovery is caused by a reduction in the residual oil 
saturation by gas trapping, forcing the water flow to non-
swept areas.  CO2 production, water production and injec-
tion decrease in relation to case 1. Note that the injection 
of  CO2 increased four times in relation to the base case. 
This occurred due to one of the most common problems 
associated with changes in relative permeability during a 
WAG process, which is the loss of injectivity (Rogers et al. 
2000). Therefore, it becomes necessary to raise the injection 
to compensate this loss.

In Fig. 5, the graphs show the curves for case 2. In this 
case, the water injection rate is more expressive than  CO2, 
but with a smaller proportion than in the previous case, with 
the best WAG ratio equal to 3.34. The curves of the oil pro-
duction and water production and injection are compared 
with base case.

For case 3, with aqueous solubility of  CO2, as shown in 
Table 11, the best option was A again. As observed, this 
case increases the NPV more than the other cases. This can 
also be seen in the lower value of the WAG ratio found. Due 
to the solubility of  CO2 in the water, in this case there is a 
three times greater  CO2 injection than in the base case. This 
can be explained by the fact that the dissolution of  CO2 in 
the water can prevent a part of the  CO2 injected from com-
ing into contact with the oil, which can be compensated by 
increasing the  CO2 injection (Enick and Klara 1992).

In Fig. 6, the graphs show the results for case 3. The 
WAG ratio was 5.26, lower than the base case and higher 
than the previous case. We can also see that cumulative 
water production and injection are higher than in the base 
case, but the oil production was anticipated in relation to the 
base case, resulting in higher NPV than the previous cases.

For case 4, with the joint modeling of both physical phe-
nomena, as shown in Table 12, the best option was A. In 
this option, the water production and injection and  CO2 pro-
duction decrease in relation to the base case, increasing the 
NPV. Oil production was practically the same as in the base 
case, with the difference of the anticipation of production, as 
observed in the previous case. In this case, we can observe a 
mixture of the two effects previously studied.

Table 10  Results of case 2 
(only relative permeability 
hysteresis)

Options Oil production 
 (106 std  m3)

CO2 produc-
tion  (108 std 
 m3)

Water produc-
tion  (106 std 
 m3)

Water injec-
tion  (106 std 
 m3)

CO2 injection 
 (106 std  m3)

NPV (US$ 
millions)

A 2.11 3.99 1.13 3.76 1.25 117.00
B 2.09 4.00 0.94 3.55 1.32 116.25
C 2.07 3.98 0.79 3.39 0.58 113.24
D 2.05 4.02 0.72 3.31 1.41 112.24

Fig. 5  Graphs of (a) water and  CO2 injection rate curves and (b) cumulative production and water injection for WAG recovery in case 2 in com-
parison with case 1
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Figure 7 presents the graphs for alternated injections and 
comparison of cumulative productions and injection between 
case 4 and the base case. Note the reduction in water produc-
tion and injection at the end of production. In this case, the 
best WAG ratio was 3.23.

Finally, for case 5, with the joint modeling of the physical 
phenomena and reinjection of the  CO2 produced, as shown 
in Table 13, the best option was A again, with the lowest 
WAG cycle, lasting 6 months. This was the case with the 
highest NPV among the all cases analyzed. The oil produc-
tion increases together with the little increase in water pro-
duction and injection. The  CO2 production also decreases, 
increasing the NPV, while  CO2 injection was a little higher 
than the base case. The oil production increased 3.9%, and 
the NPV increased 8.8% in relation to the base case.

Figure 8 presents the graphs for water and  CO2 injection 
rate curves, besides the cumulative production and injec-
tion in case 5. The WAG ratio for this case was 12.93. We 
can highlight that the cumulative oil production increases 
in relation to the base case. We can also conclude that the 
 CO2 reinjection had a fundamental role in this case, since 
 CO2 production was the lowest of all the cases, generating 
the highest oil recovery and resulting in the highest NPV.

Table 14 reproduces the best solutions of each case to 
facilitate comparison. Case 5, with physical phenomena and 
 CO2 reinjection modeling, besides being the most realistic 
case, was the one that provided the best results by increasing 
the oil production and the NPV in relation to the base case. It 
can also be observed that the increase in  CO2 injections with 
the modeling of physical phenomena can be significantly 

Table 11  Results of case 3 
(only aqueous solubility of  CO2)

Options Oil production 
 (106 std  m3)

CO2 produc-
tion  (108 std 
 m3)

Water produc-
tion  (106 std 
 m3)

Water injec-
tion  (106 std 
 m3)

CO2 injection 
 (106 std  m3)

NPV (US$ 
millions)

A 2.10 4.06 1.58 4.26 0.90 121.33
B 2.08 4.00 1.06 3.66 1.31 116.32
C 2.06 4.02 0.97 3.57 0.86 114.69
D 2.03 3.98 0.77 3.31 1.19 111.29

Fig. 6  Graphs of (a) water and  CO2 injection rate curves and (b) cumulative production and injection for WAG recovery in case 3 in comparison 
with the base case

Table 12  Results of case 4 
(with hysteresis and solubility)

Options Oil production 
 (106 std  m3)

CO2 produc-
tion  (108 std 
 m3)

Water produc-
tion  (106 std 
 m3)

Water injec-
tion  (106 std 
 m3)

CO2 injection 
 (106 std  m3)

NPV (US$ 
millions)

A 2.09 4.01 0.93 3.74 1.39 120.57
B 2.09 4.00 0.91 3.53 1.31 115.97
C 2.07 4.01 0.77 3.39 1.17 113.20
D 2.05 4.03 0.72 3.31 1.23 112.12
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reduced with  CO2 reinjection modeling. The last column 
highlights the difference in the NPV of each case in relation 
to the base case (case1). Case 5 provided a gain of about 10 
million dollars over the base case.

Note that the computational cost among the six cases 
did not vary much (around 720  s) requiring only an 

adequate adjustment of the numerical control for each 
case. As the optimization process required several simula-
tions, the total time for the cases remained very close. An 
additional cost occurred in case 6 due to an extra variable 
in the optimization.

Fig. 7  Graphs of (a) water and  CO2 injection rate curves and (b) cumulative production and injection for WAG recovery in case 4 in comparison 
with the base case

Table 13  Results of case 5 
(with hysteresis, solubility and 
 CO2 reinjection)

Options Oil production 
 (106 std  m3)

CO2 produc-
tion  (108 std 
 m3)

Water produc-
tion  (106 std 
 m3)

Water injec-
tion  (106 std 
 m3)

CO2 injection 
 (106 std  m3)

NPV (US$ 
millions)

A 2.18 3.96 1.56 4.25 0.36 125.96
B 2.16 3.93 1.10 3.75 0.91 122.31
C 2.12 3.88 0.78 3.39 1.08 116.75
D 2.11 3.90 0.72 3.31 1.09 115.66

Fig. 8  Graphs of (a) water and  CO2 injection rate curves and (b) cumulative production and injection for WAG recovery in case 5 in comparison 
with base case
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Table 15 shows the optimized values for each case in 
option A. These values of the parameters generated the 
results in Table 14. The best value of the fraction of  CO2 
produced and reinjected in the reservoir was 0.57, that is, 
57% of the  CO2 produced was reinjected into the reservoir 
to maximize NPV.

Figure  9a depicts the behavior of the WAG ratio 
throughout the cases, showing that the modeling of the 
phenomena demanded the increase in the  CO2 injection in 
relation to the water injection. Figure 9b shows the evolu-
tion of the maximum NPV for the base case and case 5 
over the generations of the genetic algorithm.

Figure 10 shows the results of the sensitivity analysis 
with all the parameters used, along with the influence of 
each parameter on the NPV and the ranges of values that 
influence the results, when analyzed individually. This 
graph was obtained by analyzing one parameter at a time 
(OPAAT Analysis) using the CMOST software of  CMG® 
in case 6 option A. As observed, the maximum water injec-
tion rate was the parameter that most impacted the WAG 
recovery. The other parameters that had less influence on 
NPV were maximum oil rate production and limit of water 
cut (WCUT). The parameters gas injection rates and gas–oil 
ratio (GOR) had almost no effect on the results, probably 
because of the low cost of  CO2. It is worth mentioning that 

Table 14  Comparison between results of option A

Cases 
(option A)

Oil production 
 (106 std  m3)

CO2 production 
 (108 std  m3)

Water production 
 (106 std  m3)

Water injection 
 (106 std  m3)

CO2 injection 
 (106 std  m3)

NPV (US$ 
millions)

∆NPV 
(US$ mil-
lions)

1 2.10 4.49 1.37 4.08 0.31 115.81 —–
2 2.11 3.99 1.13 3.76 1.25 117.00 1.19
3 2.10 4.06 1.58 4.26 0.90 121.33 5.52
4 2.09 4.01 0.93 3.74 1.39 120.57 4.76
5 2.18 3.96 1.56 4.25 0.36 125.96 10.15

Table 15  Results of the optimized values of each case in option A

Cases 
(option A)

Water cut 
(WCUT)

Fraction of reinjec-
tion (RECY)

Maximum gas–oil rate 
(GOR)  (ft3/bbl)

Maximum oil rate 
(STO)  (ft3/d)

Maximum  CO2 injec-
tion (STG)  (ft3/d)

Maximum water 
injection (STW) 
 (ft3/d)

1 0.98 ——- 3677.35 2054.11 2270.54 5931.86
2 0.95 ——- 4362.73 3659.32 9178.36 5462.93
3 0.96 ——- 4795.59 4290.58 6617.23 6202.40
4 0.93 ——- 10,494.99 3154.31 10,278.56 5913.83
5 1.00 0.57 6292.59 3298.60 2685.37 6184.37

Fig. 9  (a) Behavior of WAG ratio in all the cases and (b) evolution of NPV for cases 1 and 5 during the execution of the FGA
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the impact of the WAG cycle and WAG ratio were previously 
measured in the case optimizations, evidencing the great 
impact on the  CO2-WAG recovery.

Figure 11a shows the evolution of the average pressure of 
reservoir over the production lifetime. It can be seen that the 
pressure was above the minimum miscibility pressure (MMP) 
of 4400 psi, which guarantees the miscibility of the WAG 
recovery, showing that the process studied herein was of the 

 CO2-MWAG (miscible  CO2-WAG) type. Water was injected 
to pressurize the reservoir until reaching the MMP to enhance 
the macroscopic sweep efficiency. After the water injection, 
 CO2 was used to improve microscopic displacement efficiency, 
forming a miscible front with reservoir fluids. Figure 11b 
depicts the impact of the phenomena and  CO2 reinjection on 
oil recovery. Case 6 presents the greatest increase in recovery 
in relation to the base case, about 3.4%, reaching the value of 

Fig. 10  Sensitivity analysis of 
the parameters used in this work

Fig. 11  (a) Average pressure of the reservoir and (b) oil recovery in all the cases after optimizations
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70.7%. This value is significant, since the maximized objective 
function was the NPV and not the recovery factor.

Conclusions

The results from modeling the physical phenomena and cyclic 
reinjection in a  CO2-WAG process showed that:

• It is not enough to analyze the increase in oil recovery in 
WAG methods, since besides the water and  CO2 produc-
tions, we have their respective injections, presenting costs 
that must be reduced to maximize the NPV;

• The absence of modeling the physical phenomena can 
cause significant differences in the results;

• As previously observed by other authors, the modeling of 
relative permeability hysteresis showed to favor oil recov-
ery, causing loss of injectivity, which can increase injection 
costs and reduce the benefits of increased recovery;

• The modeling of the solubility of  CO2 in water can raise 
costs due to the need to increase the injection of  CO2 dis-
solved in water. However, this phenomenon showed to be 
able to anticipate oil production, positively reflecting in the 
cash flow;

• In WAG recovery methods aiming at the reuse of the  CO2 
produced, it is necessary to model the cyclic reinjection, 
which showed better results. In fact, the modeling of physi-
cal phenomena increases by three or four times the  CO2 
injection, but the  CO2 reinjection modeling can decrease 
significantly, maximizing the NPV;

• The results show that the joint modeling of the physical 
phenomena can have an incremental consequence to the 
recovery, around 4% in a producer–injector pair. In turn, 
the modeling of  CO2 separation, followed by reinjection, 
provided the highest NPV among all cases, increasing 
about 9% in relation to the base case.
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