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Abstract
The identification process of different lithologies, hydrocarbons, and water-saturated zones in oil and gas industries involves 
petrophysical studies that are carried out by geoscientists using different software packages. This study aims to propose a 
method by integrating mean cluster analysis and well logs to identify dominant lithologies, pore fluids, and fluids contact. 
For this purpose, initially, K-mean cluster analysis is applied to density log and P-wave velocity data of three wells in order 
to group them into different clusters. Based on centroids of each cluster, different lithologies have been identified. The den-
sity log equation has been utilized to compute the porosity of each cluster, and the mean of each density log cluster is used 
as matrix density. Next, sonic log equation has been inverted to compute the fluid velocity and the mean of each P-wave 
velocity cluster is used as matrix velocity. For the fluid density, sonic and density log equations are jointly inverted to com-
pute the fluid velocity of each cluster. The fluid bulk modulus and acoustic impedance are computed using fluid density and 
velocity. Based on the results of K-mean cluster analysis, different lithologies (shale, sandstone, and limestone) have been 
recognized successfully. In well-1, hydrocarbon and water-saturated zones are successfully identified and fluids contact 
has been established in the zone of interest. However, well-2 and well-3 did not show any indications of the presence of 
hydrocarbon in the respective zones.

Keywords K-mean cluster analysis · Density log · P-wave velocity · Fluid velocity · Fluid bulk modulus · Acoustic 
impedance

Introduction

In the oil and gas exploration industry, generally, petrophysi-
cists interpret well logs on the basis of their previous profes-
sional experience to identify hydrocarbon, water saturation 
zones, and fluids contact. The interpretation of well logs 
changes from person to person, and this mainly depends 
on the experience and knowledge of a geoscientist while 
the reserves estimation is a fundamental part of explora-
tion activity. The characterization of pore fluids and fluids 
contact in a reservoir is very important for volumetric com-
putation of reserves estimation in a hydrocarbon reservoir 
(Chombart 1960).

Over the period of time, numerous techniques have 
been developed for reservoir characterization. For exam-
ple, Gutierrez et al. (2000) used a rock physics model to 
identify pore fluids from the sonic log and Mukerji et al. 
(2001) integrated rock physics and seismic data through 
geostatistics in order to reduce the uncertainty of seismic 
reservoir characterization while Mark Sams (2001) used 
the geostatistical inversion for lithological and imped-
ance modeling for reservoir characterization. Afterward, 
Galikeev and Davis (2003) merged 4D seismic attributes 
and geostatistics for thin carbonate reservoir characteriza-
tion while González et al. (2006) integrated rock physics 
and seismic inversion using multipoint geostatistics for 
reservoir characterization. Later on, Jiang and Yang (2012) 
incorporated stochastic inversion and petrophysical prop-
erties for a better understanding of subsurface rock prop-
erties. Furthermore, MacAllister et al. (2014) used rock 
physics with AVO analysis to identify stratigraphic res-
ervoir and Nicholls et al. (2014) utilized 3D and 4D rock 
physics parameters to get a better picture of the reservoir 
and enhance the production. Moreover, Jing et al. (2015) 
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did the quantitative studies and integrated the rock physics 
with seismic to identify hydrocarbon-saturated zone. Dur-
ing the same period of time, Yang et al. (2015) combined 
the elastic properties with AVO for quantitative studies 
to identify potential hydrocarbon reservoir and Brede-
sen et al. (2015) incorporated rock physics with AVO to 
identify the source and reservoir rocks while Wang et al. 
(2016) used three new rock physics parameters approxi-
mation from AVO for deep reservoir studies and Xiuwei 
and Zhu (2016) used stochastic impedance inversion using 
the well and seismic data with the control sedimentary 
facies. On the other side, Huidong et al. (2016) used the 
multi-point geostatistical model for reservoir characteriza-
tion of a sand body and Jie et al. (2016) utilized AVO and 
seismic tuning for the identification of thin layer hydro-
carbon reservoir. Recently, Gomes de Mello e Silva and 
Beneduzi (2017) applied an empirical method to sonic log 
to identify pore fluid in a siliciclastic reservoir and Ali and 
Al-Shuhail (2018) did the joint inversion of P-wave veloc-
ity and impedance to identify fluids contact. Zhou et al. 
(2017) used the asymptotic equation for fluid identification 
in a carbonate reservoir.

In the present world, artificial intelligence and computer 
machines are playing a very important role. Due to their 
wide range of applications, researchers are turning towards 
the combination of artificial intelligence and computer 
machines. They are seeking their applications in every field 
of science. For example, Lin and Salisch (1994) presented 
a mathematical model by combining principle component 
and cluster analysis along with Bayes discriminant analysis 
to determine different lithologies, porosity, and permeability. 
Euzen et al. (2010) integrated cluster analysis and electro-
facies in order to identify an unconventional hydrocarbon 
prospect in Upper Mannville incised valley. Dudley et al. 
(2016) combined the borehole data and cluster analysis with 
real-time microseismic data to characterize an unconven-
tional reservoir. Cluster analysis is an unsupervised machine 
learning algorithm of clustering/grouping a large dataset into 
significant subgroups so that the data points in same class 
have same characteristics and different from another sub-
group. It was first introduced by Queen (1966). It has a num-
ber of applications in various fields, for example data mining 
(Fayyad et al. 1996), compression of data, and quantization 
of vector (Gersho and Gray 2012). Generally, K-mean clus-
ter analysis is used for continuous datasets (Fukunaga 2013; 
Duda et al. 1973). The purpose of clustering is to discover 
important patterns in large datasets (Wagstaff 2012). K-mean 
cluster analysis is easy and simple to understand, and it is 
fast and robust to cluster large dataset. In this study, in order 
to minimize the human error during the interpretation of 
well logs and to get the better reliable results, we are going 
to integrate K-mean cluster analysis and well logs to identify 
dominant lithologies and zone of interest in the well logs. It 

can be a helpful tool to interpret large well logs datasets and 
it can reduce human error in order to get better and reliable 
results.

Methodology

In this study, we have incorporated three wells logs for 
the computation purpose. The physical structure of the 
methodology can be seen in Fig. 1. K-mean cluster analy-
sis is a well-known clustering algorithm because of its 
easy implementation and efficiency (Nazeer and Sabes-
tian 2009). K-mean clustering is an unsupervised learning 
algorithm, and the main aim of K-mean clustering is to 
partition n number of observations into K number of clus-
ters. For the numerical dataset, the center of each cluster 
is represented by the mean/centroid. In each cluster, every 
observation belongs to the nearest mean. Mathematically, 
K-mean cluster analysis can be written as (Wang et al. 
2012);

here in Eq. 1, J is an objective function, K is number of clus-
ters, n is the number of observations, x(j)

i
 is the observation, 

and Cj is centroid for cluster j.K-mean cluster analysis works 
in the following way;

1. First, we need to select the number of clusters (K) ran-
domly.

2. Based on the number of clusters, the K-mean cluster will 
divide the data points into subsets and it will allocate the 
centroids to each subset or cluster.

3. Then we will redefine the number of clusters (K) and 
K-mean will compute the clusters again and assign the 
data points to their nearest centroids.

4. The second and third step will be iterating until the arith-
metic means/centroids do not change any more.

At first stage, we need to select an arbitrarily number of 
clusters for the given dataset and then compute the distance 
between each data points and cluster and allocate it to near-
est cluster. Now update the number of clusters and its aver-
ages. Then redefine the number of cluster and compute the 
new averages and assign the data points to the new cluster 
based on their closest cluster. Repeat this process, until there 
is no change in centroids.

K-mean clustering is a very efficient and robust method, 
but we need to predefine the number of clusters (K). There 
is no optimal number of clusters, and the best approach is to 
compute multiple clusters and compare the results of each 
cluster analysis and choose the best one.

(1)J =

k
∑

j=1

n
∑

i=1

x
(j)

i
− C2

j
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In this study, initially, K-mean clustering is applied to 
the density log and P-wave velocity data of three wells to 
group them into different clusters and to get the mean of 
each cluster. The mean value of each cluster is given in 
Table 1. After K-mean clustering of each well, the density 
log equation is used to compute the porosity of each den-
sity log cluster, as (Alger et al. 1963):

where ∅ is porosity in fraction, �m is matrix density in 
g∕cm3 and is the mean of each density log cluster, as given 
in Table 1, and �b is bulk density value from density log in 
g∕cm3 . �f is the fluid density value, and here it is considered 
as 1.1 g∕cm3 value of brine water.

After this, the moving average filter is used to remove 
any outliers from the porosity values and to make the 
porosity of each cluster smooth and acceptable.

Then P-wave velocity is computed from the sonic log 
as:

(2)� =
�m − �b

�m − �f

In Eq. 3,Vp is P-wave velocity in m/s and DT are sonic 
log values.

Here the sonic log equation has been used to compute 
the fluid velocity (Tixier et al. 1959);

here Vp is P-wave velocity computed from the sonic log in 
m/s, ∅ is porosity in fraction, Vf is fluid velocity in m/s, and 
Vm is matrix velocity in ma/s.

Sonic log equation (Eq. 4) is inverted to compute the 
fluid velocity of each cluster of P-wave velocity data, as:

here in Eq. 5, Vf and Vp are fluid velocity and P-wave velocity 
in m/s, respectively. Vm is matrix velocity, and it is the mean 
of each cluster of P-wave velocity data, as given in Table 1. ∅ 

(3)Vp =

(

106

3.28
∗ DT

)

(4)1

Vp

=
�

Vf

+

(

1 − �
)

Vm

(5)Vf =
Vp ∗

(

� − �2
)

− Vm ∗ �
(

1 − �
)

Fig. 1  Workflow chart of the 
proposed methodology
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is porosity in fraction and fluid velocity is computed for each 
cluster, and then, moving average filter is used to remove 
any outliers.

For the computation of fluid density, the density log 
Eq. 2 and sonic log Eq. 4 are inverted as:

The fluid density is computed for each cluster, and then, 
moving average filter is used to remove any outliers. The fluid 
bulk modulus is computed as:

here in Eq. 6, Kf  is fluid bulk modulus in Pascal.
Generally, acoustic impedance is the product of the density 

and velocity of rocks. In this the study to confirm the fluids 
contact, we used the fluid density and fluid velocity in order 
to establish and confirm the fluids contact, as:

(6)�f = �m −

(

�m − �b

)

∗ Vp

(

Vm − Vf

)

Vf

(

Vm − Vp

)

(7)Kf = (V2
f
∗ �f ∗ 1000)

here in Eq. 7, AI is acoustic impedance in kg s∕m2.

Results

In this study, three different well logs data have been used 
for the computation purpose. Initially, K-mean clustering is 
adopted for the cluster analysis of density log and P-wave 
velocity data in order to group these two datasets into differ-
ent clusters and to get the mean of each cluster. The mean of 
each cluster of density log and P-wave velocity data is used 
as matrix density and matrix velocity for further compu-
tation, respectively. The porosity, fluid velocity, fluid bulk 
modulus, and AI are computed in order to identify main 
lithologies, a potential hydrocarbon reservoir, pore fluids, 
and fluids contact.

Cluster analysis and porosity computation

K-mean cluster analysis clustered the density log and P-wave 
velocity data of well-1 and well-2 into 9 and well-3 into 6 
clusters, respectively, as shown in Figs. 2, 3,4, 5, 6, and 
7. For the porosity computation, the density log equation 
(Eq. 2) has been used to compute porosity for each cluster of 
density logs. Figures 8, 9, and 10 are correlation matrix plots 
between porosity and density of each well, respectively. For 
each cluster, K-mean cluster analysis gave us the centroid. 
Based on the centroid of each cluster, lithological discrimi-
nation has been done; centroids along with their respective 
lithologies are tabulated in Table 1. The standard published 

(8)AI = Vf ∗ �f ∗ 1000

Table 1  Mean values of each cluster

S/no Cluster Mean value 
( �m ) ( g∕cm3)

Mean value 
( Vm ) (m/s)

Lithology

Well-1
1 Cluster-1 2.013 1671 Shale
2 Cluster-2 2.066 1768
3 Cluster-3 2.067 2062
4 Cluster-4 2.15 2369
5 Cluster-5 2.153 2582
6 Cluster-6 2.46 2781 Sandstone
7 Cluster-7 2.699 3604 Limestone
8 Cluster-8 2.487 3029 Sandstone
9 Cluster-9 2.513 3397
Well-2
1 Cluster-1 2.129 2190 Shale
2 Cluster-2 2.286 2541
3 Cluster-3 2.295 2920
4 Cluster-4 2.389 3175
5 Cluster-5 2.53 3456 Sandstone
6 Cluster-6 2.556 3641
7 Cluster-7 2.614 3391
8 Cluster-8 2.621 3302
9 Cluster-9 2.644 3710
Well-3
1 Cluster-1 2.12 1910 Shale
2 Cluster-2 2.169 2480
3 Cluster-3 2.511 3297 Sandstone
4 Cluster-4 2.568 4863
5 Cluster-5 2.452 3519
6 Cluster-6 2.482 3402

Fig. 2  Well-1 cluster analysis of density log
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value of matrix density of quartz is 2.65 g/cm3 (for sand-
stone) and calcite is 2.71  g/cm3, and it uses for limestone. 
Matrix density actually represents the mineral density of 
rock, and mostly rocks are heterogeneous. So instead of 
using the published values for matrix density and matrix 
velocity, the centroid of each cluster is used as matrix den-
sity ( �m ) and matrix velocity ( Vm ) for further computation, 
respectively. For all the three wells, the values of ρm and Vm 
of each cluster are given in Table 1.

For well-1, based on the mean of each cluster, four main 
lithologies are distinguished. From surface to 1500 m, the 
mean of the first 5 clusters are ≤ 2.2 g∕cm3 so it is cate-
gorized as shale; then from 1500 to 1750 m, the mean of 
sixth cluster is 2.5 g∕cm3 and it is categorized as sandstone; 

Fig. 3  Well-1 cluster analysis of P-wave Velocity

Fig. 4  Well-2 cluster analysis of density log

Fig. 5  Well-2 cluster analysis of P-wave velocity

Fig. 6  Well-3 cluster analysis of density log

Fig. 7  Well-3 cluster analysis of P-wave velocity



2250 Journal of Petroleum Exploration and Production Technology (2020) 10:2245–2256

1 3

next, from 1750 to 2000 m, the mean of seventh cluster is 
2.7 g∕cm3 and it is categorized as limestone; and last, from 
2000 to 2500 m, the mean of eighth and ninth clusters is 
≤ 2.5 g∕cm3 and they are categorized as sandstone, as shown 
in Fig. 8. So, there are three main zones of interest based 
on lithology distribution which are starting from 1500 to 
2500 m. Porosity in the zones of interest is ranging from < 5 
to 30%, as shown in Fig. 8.

For well-2, based on the mean of each cluster, two main 
lithologies are identified. From surface to 1500 m, the mean 
of first 4 clusters is ≤ 2.2 g∕cm3 so it is categorized as shale, 
while the mean of remaining clusters has ≥ 2.5 g∕cm3 ; 
therefore, they are categorized as sandstone dominant lithol-
ogy. In the sandstone dominant part, the porosity is ranging 
from < 1 to 15%, as shown in Fig. 9.

For well-3, based on the mean of each cluster, two main 
lithologies are identified. From surface to 450 m, the mean 
of the first two clusters is < 2.2 g∕cm3 so it is categorized as 
shale, while the mean of remaining clusters has 2.5 g∕cm3 ; 
therefore, they are categorized as sandstone dominant lithol-
ogy. In the sandstone dominant part, the porosity is ranging 
from < 1 to 25%, as shown in Fig. 10. In Table 2, for all 
three wells, porosities with their corresponding depths and 
lithologies are tabulated.

Pore fluids and fluids contact identification

For the fluid velocity computation, Eq. 5 has been used to 
compute the fluid velocity for each cluster of all three wells. 
Initially, K-mean cluster analysis is applied to P-wave veloc-
ity data to cluster it into 9 and 6 clusters, respectively, and to 
get the mean of each cluster, as shown in Figs. 5, 6, and 7. 
Instead of using the published values of matrix velocity from 
the literature for the computation, the mean of each cluster of 
P-wave velocity data is used as matrix velocity. Figure 11 is 
the cross-plots of fluid velocity, bulk modulus, and acoustic 
impedance of well-1. Based on data distribution, the green 
color (fluid velocity) is ranging from 1250 to 1800 m/s and 
it is identified as brine water-saturated zones while the data 
distribution of red color (fluid velocity) is ranging from 0 to 
800 m/s and it is identified as hydrocarbon-saturated zones. 
The cross-plots of fluid bulk modulus and acoustic imped-
ance also endorse the results of fluid velocity, as shown in 
Fig. 11. Based on fluid velocity, bulk modulus, acoustic 
impedance, the hydrocarbon-saturated zones suggest that it 
is live oil. Using fluid bulk modulus and acoustic impedance, 
two fluid contacts are marked at two different depths, first at 
1500 m and second at 1950 m.

Fig. 8  Correlation matrix of 
well-1 among depth, density, 
and porosity with diagonal 
histogram and correlation coef-
ficient
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The results of fluid velocity, bulk modulus, and the acous-
tic impedance of well-2 and well-3 did not give us any prom-
inent indication about the presence of hydrocarbon reservoir 
in the sandstone dominant part, as shown in Figs. 12 and 13. 
This shows that the well-2 and well-3 were not successful 
exploratory wells. The fluid velocity range in these two wells 
exhibits that there are some traces of hydrocarbon present.

Conclusion

Well logs interpretation is an important part of exploration 
activity in order to identify different lithologies, zone of 
interest, and volumetric computation of reserves estima-
tion. In exploration industry, these objectives are mainly 
achieved through the experience of a geoscientist, which 
varies from person to person. Human error always exits 
during the interpretation process. The main objective of 

this study is to overcome this human error through inte-
gration of K-mean cluster analysis with well logs to iden-
tify main lithologies, the zone of interest, pore fluids, and 
fluids contact. In the absence of prior knowledge of the 
subsurface lithologies and formations, all the objectives 
have been successfully achieved through this study. At 
the first stage, K-mean clustering is applied to density log 
and P-wave velocity data to make the clusters. Based on 
the centroids of each cluster, the dominant lithologies are 
identified. The porosity and fluids velocity of each clus-
ter are computed. Finally, fluid bulk modulus and AI are 
computed for each cluster to confirm the existence of pore 
fluids and fluids contact. This study shows that:

• K-mean cluster analysis is an easy and robust algorithm 
to implement.

• K-mean cluster analysis is a good tool to identify the 
main subsurface lithologies.

Fig. 9  Correlation matrix of 
well-2 among depth, density, 
and porosity with diagonal 
histogram and correlation coef-
ficient
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• Based on the centroids of cluster analysis, we can iden-
tify the zone of interest in well logs.

• K-mean cluster analysis is a good tool to minimize 
human error during the interpretation of well logs.

• The standard published value of matrix density actually 
represents the mineral density of rock, and mostly rocks 
are heterogeneous. So instead of using published data for 
matrix density and velocity, we can use the mean of each 
cluster as matrix density and velocity.

• Inversion of fluid velocity, fluid bulk, and acoustic 
impedance is good tools, and if they are integrated with 
K-mean cluster analysis, these parameters can be helpful 
to identify the pore fluids and fluids contact.

Fig. 10  Well correlation matrix 
of well-3 among depth, density, 
and porosity with diagonal 
histogram and correlation coef-
ficient

Table 2  Porosity with their corresponding lithologies and depths in 
each well

S/no Depth range (m) Lithology Porosity range

Well-1
1 0–1500 Shale 0–30%
2 1500–1750 Sandstone 1–30%
3 1750–2000 Limestone 1–27%
4 2000–2500 Sandstone 1–13%
Well-2
1 0–1500 Shale 0–35%
2 1500–3130 Sandstone 1–16%
Well-3
1 0–425 Shale 0–21%
2 1200–1940 Sandstone 1–25%
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Fig. 11  Fluid velocity, bulk modulus, and acoustic impedance well-1
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Fig. 12  Fluid velocity, bulk modulus, and acoustic impedance of well-2
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tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.
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