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Abstract
An integrated model of the PUNQ-S3 reservoir in the North Sea was constructed. Then, 16 parameters with the highest 
impact on target functions were selected for sensitivity analysis. The sensitivity analysis was based on the two-level Plack-
ett–Burman design of experimental method. Finally, seven variables with the highest impact on the target functions were 
selected. Net present value, cumulative oil production, and cumulative water production were three target functions. The 
proxy model was constructed using the three-level Box–Behnken experimental design for each of the three target functions, 
taking into account the effect of the variable’s interactions on each other. Then the compliance and predictivity of the proxy 
model for each target function were validated according to the decision variables. In the end, multiobjective optimization 
was conducted with the aim of maximizing net present value and cumulative oil production and minimizing cumulative 
water production using a parameter called composite desirability.

Keywords Integrated production model · Optimization · Box–Behnken · Design of experiment · Plackett–Burman · 
Composite desirability

Abbreviations
DOE  Design of experiments
IPR  Inflow performance relationship
NPV  Net present value
PVT  Pressure–volume–temperature
RSM  Response surface methodology
VLP  Vertical lift performance

List of symbols
�i   Residual value
�   Porosity
Qg  Cumulative gas production
Qo  Cumulative oil production
Wp  Cumulative water production
dc  Choke size
di  Individual desirability
Di   Composite desirability
h  Aquifer thickness
i  Interest rate
k  Number of factors
kx  Horizontal permeability

N  Number of experiments
p  Number of predictors
Pi   Cumulative probability of normal residues
Pin   Initial reservoir-aquifer pressure
Psep   Separator operating pressure
SS Error  Residual sum of squares
SS Total  Dependent response for every independent 

input
T  Target value for target function set by user
U  Limit for target function set by user
wi   Importance of each factor
y   Value of target function at each step
ŷi   Value of yi that line predicted
yi   Average value of yi
Yi   Actual value of target function
Ŷi   Fitted value of target function

Introduction

Increasing the duration of a reservoir production gradually 
changes the dynamic characteristics of reservoir, and actual 
production conditions diverge from the default designing 
conditions considered for well completion. This leads to a 
lack of compliance of reservoir production potential with the 
potential of the well production which often could be seen 
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in the form of wellhead or downhole flowing pressure drop 
leading to a reduction in production and eventually the plug-
ging of the well (Shahsavari and Khamehchi 2018). One of 
the main tasks of petroleum engineers, especially production 
engineers, is to identify the causes of the problems of such 
wells and to investigate possible solutions to the problem 
and restore the well to the production loop (Boyun et al. 
2007; Mahdiani et al. 2019). In some cases, it is also nec-
essary to maximize the utilization of a designed operating 
system. The best solution to do this is to simulate the pro-
duction system and check the performance of the well flow 
to minimize energy losses and pressure drop in the produced 
fluid lines. In this way, in fact, it is possible to separate the 
production potential capacity of each well and the reservoir 
through the nodal analysis concept and, by comparing them 
together, identify the limiting factor of production, and then 
propose a suitable solution for it to be eliminated (Beggs and 
Howard Dale 1980). Due to the existence of multiphase fluid 
in oil production wells and the complexity of mathematical 
relationships and the high computing volume, the use of a 
computer program is required to simulate and review diverse 
production optimization scenarios and demonstrate the 
importance of optimization in industrial projects (Naderi and 
Khamehchi 2016) (Hamedi and Khamehchi 2012) (Rashidi 
et al. 2010) (Vasant et al. 2017). Stoisits were among the first 
who implemented integrated optimization. In their study, the 
goal was to provide a method to increase the production flow 
rate, and variables were including the amount of injected 
gas allocated to each well and the allocation of any produc-
tion wells to the surface equipment (Stoisits et al. 2001). In 
recent years, the construction of an integrated model and, 
consequently, the optimization of particular functions have 
been greatly increased by applying many constraints. At the 
same time, Denney optimized the production rate of each 
well and the amount of gas allocated to lift produced fluid in 
two wells using a genetic algorithm (Denney 2003).

Lake et al. (2007) used a quadratic programming method 
to optimize water injection as a way to increase productiv-
ity (Lake et al. 2007). Ehtesham et al. (2011) presented an 
article using an integrated reservoir and surface equipment 
model to optimize the performance of five surface separators 
with two optimized separators (Ehtesham et al. 2011). Codas 
et al. (2012) also carried out studies on the Urucu oil field in 
Brazil, succeeded in optimizing the production flow rate as 
an objective function by using variables of producing gas/
oil ratio, water cut and bottom-hole pressure (Codas et al. 
2012). Naderi and Khamehchi (2017) also used metaheuris-
tic optimization methods such as genetic and bat algorithms. 
They chose the net present value (NPV) as the target func-
tion and investigated the effect of well location on it (Naderi 
and Khamehchi 2017).

Marmolejol and Rodriguez used Chambers–Mallows 
and Stuck algorithm for simulating alpha stable random 

variables characterizing demand patterns of real electrical 
systems. The use of Chambers–Mallows–Stuck method for 
simulating stable random variables provided a new way to 
generate test systems widely used in power systems research 
(Marmolejo and Rodriguez 2015).

Experimental designs have been used to the optimiza-
tion of analytical methods more often than the past. Several 
benefits could be regarded for these methods like a reduction 
in the number of tests that need to be done which will lead 
to reduction in costs and consumption of resources. Mean-
while, these methods permit the construction of mathemati-
cal models that allow prediction of the target function value 
such as Box–Behnken design as well as identifying the most 
influential factors affecting target function using sensitivity 
analysis such as a two-level Plackett–Burman method.

In Box–Behnken design, each test can be considered as 
a combination of a two-level (full or fractional) factorial 
design with an incomplete block design. In each block, a 
certain number of factors are put through all combinations 
for the factorial design, while the other factors are kept at the 
central values (Box and Behnken 1960). Plackett–Burman 
designs are highly efficient designs. They use the minimum 
number of runs to quickly identify the factors with a signifi-
cant effect on the response. The factors that are identified as 
important are then investigated more thoroughly in subse-
quent experiments (Plackett and Burman 1946a, b).

In this paper, an integrated production model was devel-
oped based on the available data for the PUNQ-S3 field. 
Then, using the Plackett–Burman design of experimental 
method, the sensitivity analysis on the net present value 
(NPV) target function was performed to determine the most 
effective factors. By selecting effective parameters and 
utilizing the Box–Behnken designing as one of the meth-
ods for analyzing the response surface, another design was 
also developed based on three target functions of the net 
present value, cumulative oil production, and cumulative 
water production. By conducting experiments and analyz-
ing the results, a high-precision proxy model was generated 
and then multiobjective optimization by defining a function 
called composite desirability was performed.

Integrated model description

The field in this study is the PUNQ-S3 field in the North Sea 
basin. The data file for this field has been prepared from a 
reservoir study on a real field sample. Six wells are located in 
different parts of the reservoir, each with a production choke 
at surface. Figure 1 shows a schematic of an integrated design 
for wells and surface installations. As shown in Fig. 1, the pro-
duced fluid from each well comes together at point A (mani-
fold) and directed toward a separator. In the following, we will 
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study the construction of an integrated water drive reservoir, 
well and surface installations model.

Integrated water drive reservoir model

The PUNQ-S3 is known as a small-size reservoir with nine-
teen grid blocks along the x-axis, twenty-eight grid blocks 
along the y-axis, and five grid blocks along the z-axis, with 
a total of 1761 active grid blocks. Six wells have been drilled 
in different sections. The reservoir is restricted to two slightly 
strong aquifers from north and west and two faults from the 
east and south. There are no injection wells, and the geometry 
of the reservoir is modeled by a corner point geometry method. 
The initial reservoir pressure is 234 bar and produces heavy oil 
with density of 912 kg/m3. The produced gas/oil ratio for the 
reservoir oil sample at the surface is 74  m3gas/m3oil, which 
is expected to increase with time and further pressure drops 
below the bubble point (Odi 2013). The physical reservoir rock 
and fluid properties are given in Table 1 (Gu and Dean 2005). 
The parameters of the table are constant and do not change in 
the different design of experiments.

well model

Six production wells are located in different parts of the 
reservoir, named Pro1, Pro4, Pro5, Pro11, Pro12, and Pro15, 
with no injection well in the reservoir.

Calculation of produced fluid properties in the well

The produced reservoir fluid properties (oil + gas) should be 
specified along the well. For this purpose, the properties of 
the fluid measured in the fluid properties laboratory (PVT 
Lab) in various pressure steps are presented in Table 2.

In this paper, these values are adjusted to existing empiri-
cal relationships and are used to calculate fluid properties 
along wells and pipelines. The values of each parameter in 
Table 2 were subjected to PVT matching, and the values of 
the shift and multiplier parameters were obtained as statisti-
cal correction of empirical relationships. The correlations 
of Glaso (1980), Standing (1947), Lasater (1958), Vasquez-
Beggs (1977), Petrosky et al. (1993), and Al-Marhoun et al. 

Fig. 1   Schematic diagram of connection of six wells to the manifold and separator

Table 1  Reservoir parameters used in reservoir simulation assumed 
constant during experiments

Reservoir fixed parameters Value

Initial reservoir pressure  (barabsolute) 234
Reservoir temperature (°F) 212
Total GOR ( Sm3/Sm3) 74

Oil density ( kg/m3) 912
Gas-specific gravity 0.86
Water density ( kg/m3) 1000
Rock compressibility at reference pressure = 235 (bara) 0.00045
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(1988) were used in order to obtain the best value for bub-
ble point pressure, oil formation volume factor, and solu-
tion gas/oil ratio. In addition, the empirical relationships 
of Beal et al. (1946), Beggs et al. (1975), Petrosky et al. 
(1995), and Bergman–Sutton (2006) were used to match 
experimental data obtained from the measurement of viscos-
ity with empirical relationships. The PVT matching results 
are shown in Table 3. The following three statistical param-
eters were compared to determine the best consistency with 
experimental data for each empirical relationship, which 
can be seen in Table 3 (1) shift, (2) multiplier, (3) standard 
deviation.

Shifting data is adding a constant k to each member of a 
data set, where k is a real number. In reality, it is lifting the 
entire distribution of data points and shifting a distance of k.

Multiplier (Scaling): Rescaling data is multiplying each 
member of a data set by a constant k. Rescaling will change 
the spread of our data as well as the position of data points. 
What remains unchanged is the shape of the distribution and 
the relative attributes of our curve.

Standard deviation shows the overall goodness of fit. The 
lower the standard deviation, the better the fit (Rietz and 
Carver 1924).

In order to better comparing the results and to choose 
the best fit between experimental data and empirical rela-
tionships for fluid properties, Fig. 2 is plotted. In Fig. 2a, 
b, in addition to the main measured data in the labora-
tory, which are characterized by solid squares, six other 
graphs are drawn, each of which is presented in legends. 

In Fig. 2c, in addition to the original data shown with solid 
squares, five other graphs are also observed in different 
colors. According to Fig. 2, the results obtained from the 
Beal et al. correlation for viscosity and the Glaso rela-
tionship for gas/oil ratio, oil formation volume factor, and 
bubble point pressure have the best fitting with the origi-
nal data. The results of Table 3 also confirm this claim. 
The best fitting according to the statistical parameters is 
defined as follows:

A) The closest value of the shift parameter to zero.
B) The closest value of multiplier to one.
C) The lowest value of standard deviation.

All of which agree with two above-mentioned 
relationships.

Calculation of the produced fluid pressure along the well

Each of the six wells in the PUNQ-S3 reservoir is vertical. 
In order to calculate the amount of pressure drop in the well, 
PE2 relationship was used. This relationship is quite suitable 
for vertical wells. In this empirical relationship, a flowchart 
was used to determine the flow regime presented by Gould 
et al. (1974). After determining the flow regime, to calculate 
the pressure drop in each particular flow regime separately, 
the empirical relationships were utilized (Griffith and Wallis 
1961; Hagedorn and Brown 1965; Duns Jr and Ros 1963).

Table 2  Fluid properties 
measured in the laboratory 
at different pressure steps to 
perform PVT matching

Pressure (Bara) Solution gas oil 
ratio ( Sm3

/Sm
3)

Oil formation 
volume factor 
( m3

/Sm
3)

Oil viscosity (cp) Tempera-
ture (°C)

Bubble point 
pressure (Bara)

40 11.46 1.064 4.338 100 234.46
60 17.89 1.078 3.878 100 234.46
80 24.32 1.092 3.467 100 234.46
100 30.76 1.106 3.1 100 234.46
120 37.19 1.12 2.771 100 234.46
140 43.62 1.134 2.478 100 234.46
150 46.84 1.141 2.343 100 234.46
160 50.05 1.148 2.215 100 234.46
170 53.27 1.155 2.095 100 234.46
180 56.49 1.162 1.981 100 234.46
190 59.7 1.169 1.873 100 234.46
200 62.92 1.176 1.771 100 234.46
210 66.13 1.183 1.674 100 234.46
220 69.35 1.19 1.583 100 234.46
230 72.57 1.197 1.497 100 234.46
234.46 74 1.2 1.46 100 234.46
250 80 1.198 1.541 100 234.46
300 80 1.194 1.787 100 234.46
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Nodal analysis for connecting the well and reservoir

The coupling of the reservoir and well was performed 
using the nodal analysis method (Ebrahimi and Khamehchi 
2015). In each test design, for each set of well and reser-
voir settings, the relationship between rate and pressure in 
the upstream and downstream of the node (connecting grid 
block between reservoir and well) is written; then, from the 
intersection point of these two figures, flow rates and opera-
tional pressure are given. The pressure at the upstream node 
(reservoir) is calculated by executing the reservoir simulator 
and calculating the bottom-hole pressure for a specific pro-
duction rate. At the downstream of the node, the vertical lift 
performance (VLP) curves using the empirical relationships 
in Sect. 2.2.2 have been generated for 20 different liquid flow 
rate values, 10 different water cut values, 10 different gas/
oil ratio values, and 10 different surface pressure. Due to the 
fluid production rate conditions, water cut, gas/oil ratio, and 
wellhead pressure, the appropriate VLP chart is selected and 
intersected with the IPR chart.

Surface facilities model

Chokes are considered as the connection point of well and 
surface pipeline for each of wells. The well is known as 
upstream and surface pipe as downstream. The VLP graphs 
are dominant in the upstream of the choke (as nodes).

Using the various relationships provided, downstream 
pressure in choke can be obtained. In this paper, the uti-
lized relationships are provided by Perkin (1993), which are 

known in the choke modeling software as the ELF method. 
The produced fluid from any well is directed to the manifold 
by a pipeline. The accumulated fluid in the manifold is ter-
minated through a pipeline to the separator. Specifications 
for pipelines are shown in Table 4, respectively. Consider-
ing the isothermal conditions around the surface pipelines 
(surrounding temperature 60 °F) and the identical type of 
the pipes (roughness = 0.0006) and the entirely horizontal 
pipelines, the PE2 relationships indicated in Sect. 2.2 are 
used to calculate pressure over the surface pipeline.

Methodology

Sensitivity analysis and verification

In this section, the purpose is to determine the parameters 
with the greatest impact on the target functions in a pro-
duction system. Three target functions were selected in this 
study, which are: (1) net present value (NPV), (2) cumula-
tive oil production, (3) cumulative water production. Given 
the perspective of this issue, by selecting three functions as 
target functions, the problem becomes a multiobjective opti-
mization problem. The first step in this path is to analyze the 
sensitivity and select the parameters with the greatest impact 
on the target functions in the integrated system. Regarding 
the complexity of the simultaneous sensitivity analysis on 
the three target functions, a simplistic assumption is used in 
this problem, so that only sensitivity is performed on the net 

Table 3  The shift, multiplier, 
and standard deviation 
parameters derived from PVT 
matching of laboratory data 
with empirical relationships 
for four parameters: (A) bubble 
point pressure, (B) solution 
gas oil ratio, (C) oil formation 
volume factor, (D) oil viscosity

Glaso Standing Lasater Vazquez-Beggs Petrosky et al Al-Marhoun
(A) Bubble point pressure
Shift 1.07232 1.18252 1.19508 1.0884 1.13432 1.20157
Multiplier 213.798 452.073 474.397 254.158 358.101 485.622
SD – – – – – –
(B) Solution gas oil ratio

Glaso Standing Lasater Vazquez-Beggs Petrosky et al Al-Marhoun
Shift 0.85951 0.67556 0.65399 0.83185 0.86034 0.58801
Multiplier 8.14954 17.9431 11.6974 6.8239 -32.6991 40.5153
SD 7.48456 7.41953 11.0101 3.17814 13.6398 14.2669
(C) Oil formation volume factor

Glaso Standing Lasater Vazquez-Beggs Petrosky et al Al-Marhoun
Shift 0.84175 0.77527 0.79646 0.99881 0.78691 0.87445
Multiplier 0.1628 0.21179 0.18658 -0.040714 0.20822 0.084572
Std deviation 0.0050943 0.0022763 0.0040383 0.00077065 0.0066179 0.0020182
(D) Oil viscosity

Beal et al Beggs et al Al-Marhoun Egbogah et al Bergman –
Shift 1.3479 1.83515 1.27658 0.24499 7.1 –
Multiplier − 0.76191 − 0.31628 -0.80494 0.39456 − 2.46917 –
SD 0.020605 0.083944 0.037459 0.060903 0.060903 –
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Fig. 2   a Compliance of gas/oil ratio with empirical relationships. b Matching of the oil formation volume factor with empirical relationship; c 
compliance of the viscosity laboratory data to the empirical relations
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present value function. This will not make many errors in the 
study because the NPV in this study is defined as follows:

where CAPEX is capital expenditure, OPEX equals opera-
tion expenses, cw is cost per barrel of water produced, cginj 
is gas injection cost (ignored in this study), i is interest rate, 
pg is gas price per thousand cubic foot, po equals oil price a 
barrel, Qo is the cumulative amount of oil produced in a time 
step, Qg is the cumulative amount of gas produced in a time 
step, and Wp is the cumulative amount of water produced in 
a time step.

In Eq. 1, it was assumed that the price per barrel of oil 
is equivalent to 75 dollars and every 1000 cubic feet of gas 
would be Sect. 3, and the production of a barrel of water 
would cost 5 dollars. As can be seen, the NPV itself is 
expressed as a function of cumulative production of water, 
oil, and gas, and in other words, it is affected by these three 
functions.

With a review of previous studies performed in this 
area, sixteen parameters are selected for sensitivity analysis 
(Artun 2011) (Avansi 2009) (Shepherd 2009) (Gao 2014). 
The sixteen selected parameters will include all three 

(1)

NPV = −NPVt=0(CAPEX) +

Ts

∫
0

(1 + i)−t
(

poQo + pgQg

−cwWp − cginjQginj − OPEX
)

dt

water-drive reservoirs, well, and surface systems. In order to 
perform sensitivity analysis of the net present value function 
to sixteen selected parameters, a two-level Plackett–Burman 
test is first designed in which each parameter is set to two 
upper and lower limit levels. The Plackett–Burman design 
is a factorial design in two levels and is used to study k fac-
tor or variables in two levels. In this method, if the number 
of experiments is equal to N, the number of factors (k) is 
obtained from the relation k = N − 1 (Plackett and Burman 
1946a, b). Given that the number of parameters in this study 
is sixteen, so the minimum number of experiments will be 
equivalent to seventeen experiments. However, in order to 
enhance the statistical population and cover all aspects of 
the problem, the number of experiments in this study was 
considered to be 24 tests.

According to the Plackett–Burman method, the order and 
the procedure for performing the tests are determined. The 
values of each parameter are set in the designed integrated 
model, and with the model implementation, the cumulative 
oil, water, and gas production rate will be obtained. Moreo-
ver, using Eq. (1), the net present value will be obtained at 
each stage of the experiment. These are raw feed results for 
sensitivity analysis. The method used to perform sensitivity 
analysis and related parameters is summarized in Table 5. In 
this study, for the purpose of sensitivity analysis, the goal of 
fitting a model with high compliance with the NPV target 
function is based on the sixteen parameters; hence, we start 
the process with all possible variables. Then, in each step, 
the variable with the least impact will be eliminated from 
the model. The process stops when all of the P values of the 
variables in the model are less than or equal to the alpha to 
remove. Alpha is a parameter whose value is applied by the 
user. Asymptotic significance (P value) indicates that the rela-
tionship or difference observed in the sample is the result of 
a chance, and there is no such difference in the society where 
the sample is selected. In a simpler sense, P value provides us 
with information about the reality of a result. From technical 
point of view, the P value is a decreasing index of reliability of 
a result, and the larger it is, the confidence to the reality of the 
results reduces. P value shows the probability of an error in 
accepting the validity of the observed results, although noting 
that "credibility" means that the observed results represent a 

Table 4  Length and size of pipelines from each well to manifold and 
from manifold to separator

Line pipe coordination Line pipe length 
(meter)

Line pipe 
diameter 
(inch)

Well Pro1-Manifold 768.6 6
Well Pro4-Manifold 178.135 6
Well Pro5-Manifold 432.486 6
Well Pro11-Manifold 326.3 6
Well Pro12-Manifold 1279.83 6
Well Pro15-Manifold 136.9 6
Manifold-Separator 1500 12

Table 5  Parameters related to 
sensitivity analysis by two-level 
Plackett–Burman method

Sensitivity Analysis Responses Net present value (Million $) Cumulative oil 
production (BBL) Cumulative water production 
(BBL)

Confidence level for all intervals 95%
Type of confidence intervals Tow sided
Box–Cox transformation No transformation
Stepwise method Backward elimination
Alpha to remove 0.15
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well-known society. Now, "selecting the P value level", the 
greater the value of which will be rejected as invalid, is con-
tractual and subject to the condition of the problem and is 
known in our study as Alpha to remove (StatSoft 2006).

Now, by performing sensitivity analysis, the accuracy 
of the selected parameters as the most effective parameter 
on the net present value target function is investigated. 
For this purpose, the R2, which is a statistical parameter, 
is used. Since R2 is a parameter for assessing regression 
quality, it may create a question in the reader’s mind to 
be used to validate the sensitivity analysis. In response 
to this question, as mentioned earlier, by analyzing the 
results of experiments designed using the Plackett–Bur-
man method, the most effective parameters are selected 
and a mathematical model is created based on them for 
predicting the target function. In this section, R2 represents 
the degree of compliance of existing data to the fitted math 
model. Here, the details of the mathematical model are 
discarded, because the goal is only sensitivity analysis and 
building the proxy model in Sect. 3.2 will be discussed in 
detail. The R2 statistical parameter shows the status of the 
data around the regression diagram. Its value varies from 
zero to one hundred percent; 0% indicates the excessive 
dispersion of data around the fitted line and their signifi-
cant distances from the average value. 100% indicates the 
data are close to the average fitted line on the data.

Therefore, the closer the R2 to 100 is, the higher the 
regression quality. The value of R2 in this study was calcu-
lated from Eq. 2.

where SS Error is residual sum of squares, SS Total is 
total sum of squares, yi is dependent response for every inde-
pendent input, ŷi is value of yi that line predicted, and yi is 
average value of yi . Adjusted R2 is the modified R2 parameter 
which is defined as Eq. 3:

where p is number of predictors and N is total sample 
size. If the optional predictor parameter is selected that has 
slight effect on the target function, the R2 may be affected, 
but the adjusted R2 value will remain constant. So it helps 
you determine whether you need to add a new predictor or 
not.

Define proxy and its validation

The response surface methodology, or RSM, is a set of sta-
tistical techniques and applied mathematics for constructing 

(2)R2 = 1 −
SS Error

SS Total
= 1 −

∑
�

yi − ŷi
�2

∑
�

yi − yi
�2

(3)R2
adj

= 1 −

(

1 − R2
)

(N − 1)

N − p − 1

empirical models (Mahdiani et al. 2015). The goal in such 
schemes is to optimize the response (output variable), which 
is influenced by several independent variables (input vari-
ables). Theoretically, RSM was developed for modeling of 
empirical responses and then led to modeling numerical 
experiments. An important aspect of RSM is the design of 
experiments, commonly known as DOE. This strategy was 
originally developed for fitting experimental models, but can 
also be used for numerical experiments. The DOE’s goal 
is to select the points where the response should be evalu-
ated (Chatterjee et al. 2015). Selection of testing designs 
can have a great impact on the accuracy of the estimation 
and the cost of constructing the surface model (Naderi and 
Khamehchi 2017). In a traditional DOE, screening tests are 
carried out in the early stages of the process, when there are 
a large number of potential project variables that may have 
small effects or no effect on the response (Box and Draper 
1987). To avoid this problem, in step 3.1, sensitivity analysis 
was performed to identify the variables that have a potential 
impact on the target function. The result was the selection 
of a number of affecting parameters on the net present value 
target function.

In order to build a proxy model, the three-level 
Box–Behnken design of experimental method (Fer-
reira 2007) and the analysis of the results are used. The 
Box–Behnken is a three-level experimental factorial design 
model and a subfield of the surface response method, which 
is made up of a combination of two-level factorial and 
incomplete block design in a special case. In this design, 
the selected parameters in Sect. 3.1 are set at three levels of 
low, average, and upper limit. By carrying out experiments 
in the integrated model, the volumetric flow rates of water, 
oil and gas are calculated, and then using Eq. 1, the net 
present value is calculated in each step. The proxy model is 
constructed by analyzing the response surface, taking into 
account the linear and quadratic effects of each parameter, 
as well as the effect of the interaction of the parameters with 
each other for each target function of cumulative oil produc-
tion, cumulative water production, and the net present value 
separately.

Validation and evaluation of the proxy model for each 
of the target functions were done in three ways. The first 
method is to use the R-squared parameter, which was previ-
ously used for sensitivity analysis verification. In the second 
method of the proxy validation made for each of the target 
functions, the fitted model was analyzed and interpreted 
using the residual value-based curves. The issue that needs 
to be considered first for each regression is the underlying 
assumption that analysis is performed based on them. This is 
a very important point; unfortunately, it is often neglected in 
analysis and undermines the results of modeling. The under-
lying assumptions for a regression model are as follows:
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1. The error term ε has an average of zero.
2. The error term ε has a constant variance.
3. The error term ε is uncorrelated.
4. The error term ε has a normal distribution.

If the fitting pattern is appropriate, the residues must con-
firm the above assumptions. It means that because we are 
fitting a linear model, we assume that the relationship really 
is linear, and that the errors, or residuals, are simply random 
fluctuations around the true line. We assume that the vari-
ability in the response does not increase as the value of the 
predictor increases. This is the assumption of equal variance. 
We also assume that the observations are independent of 
one another. Correlation between sequential observations, or 
auto-correlation, can be an issue with time series data that is 
with data with a natural time ordering.

The residue is the difference between the observed value 
and the fitted value by the model observed from Eq. 4.

where �i is residual value, Yi is actual value of target func-
tion, and Ŷi is fitted value of target function. In other words, 
the residue is a measure of the variability of the response 
variable that is not expressed by the regression model. Resi-
dues can be considered a representative of pattern errors, so 
any deviation from the four regression assumptions about 
errors might be seen in the residues. A convenient way to 
see the regression model’s efficiency value for fitting data 
is to plot the residual curve. Chatterjee et al. analyzed the 
graphs drawn for regression according to Fig. 3. Figure 3a 
is a favorable situation in which the variance of the errors 
is constant. In Fig. 3b, the points are dispersed in a funnel 
form and result in a nonconstant error of variance. In this 
case, it is not possible to conduct tests and form confidence 
intervals, nor to estimate the parameters in the least squares 

(4)𝜀i = Yi − Ŷi

method, and it is necessary to estimate the coefficients using 
another method. Figure 3c, nonlinear diagram, shows that 
conversion is required, such as logarithmic or second power 
transformations, on a predictor variable, or a variable to be 
added to the proxy model (Chatterjee et al. 2015).

In the third method of verifying the proxy model, the nor-
mal probability plot of residuals is used in terms of residual 
values. Since in the calculation of statistics for construct-
ing a proxy model such as P value for regression tests and 
also for calculating confidence intervals, the assumption of 
normal-distributed errors is used, so large deviations from 
normal distribution can affect the accuracy and validity of 
the results obtained. Additionally, if the errors follow dis-
tributions with narrower or wider sequences than normal 
distributions, the least square fitting may be sensitive to a 
small change in the data. A simple way to check the assump-
tion of normalization is to draw a normal probability plot of 
residuals. If we arrange εi as an ascending order and draw 
εi against the cumulative probability of normal residues, 
which is obtained from Eq. 5, the points must be placed on 
a straight line.

The presence of one or more large residues in this graph 
can be a sign of the existence of distant points, which should 
be examined precisely. The four different modes in these 
charts are predictable:

1. A graph with no linear state: This behavior is unusual 
for the graph.

2. The graph has a linear behavior but one or more points 
away from the diagram: data out of the range

3. The graph shows the slope change: There is an undefined 
and unrecognized variable in the function.

4. Linear and straight diagram: normal and ideal mode.

(5)Pi =
i − 0.5

n
; i = 1;2;3;…

Fig. 3   Interpretation of residual values in a regression and possible states. a Ideal mode, b nonuniformity mode, c nonlinear mode (Chatterjee 
et al. 2015)
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Multiobjective optimization

Obviously, the purpose of this study is to maximize the two 
functions of net present value and cumulative oil production 
and minimize cumulative water production. Water produc-
tion imposes a lot of costs on our manufacturing system, and 
the aim is to prevent its production.

Proxy models made by analyzing the DOE results of the 
Box–Behnken experiment are optimized for three target 
functions, multiobjective optimization, and a parametric def-
inition called desirability. For this purpose, in the first step, 
for each target function, individual desirability is defined 
according to the factors affecting them, and for a combi-
nation of several target functions, composite desirability is 
defined. The goal is to maximize the value of desirability. 
The individual desirability for each target function is defined 
according to Eq. 6:

The Ymini and Ymaxi correspond to the desired limits for 
target function i. In Eq. 6, a and b are user-defined weights 
which enable the user to determine tighter or wider desir-
ability functions around a target value (Ti) for a response i. 
Target value for NPV has been set 5,000,000,000 $. This 
value differs with maximum quantity of target function 
(i.e.,  NPVmax). The desirability function method uses RSM 
approaches to fit polynomials for each response Yi(x), then 
substitute the fitted polynomial function in Eq. 6, and sub-
stitute the individual desirabilities di(Yi(x)) into Eq. 7 at the 
end. After that, a search-based optimization method is uti-
lized to get x such that D(x) is maximized, because we want 
D(x) as close to unity as possible. So in this study, we used 
Hooke–Jeeves method in order to proxy model optimization.

Hence, after defining and obtaining the individual desir-
ability values for each of the target functions proposed in 
this study, the composite desirability is defined as Eq. 7. The 
goal of multiobjective optimization is to maximize compos-
ite desirability:

(6)di
�

Yi(x)
�

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

Yi−Ymin i

Ti−Ymin i

�a

if Ymini ≤ Yi(x) ≤ Ti
�

Yi−Ymax i

Ti−Ymax i

�b

if Ti ≤ Yi ≤ Ymaxi

0 Otherwise

As can be seen, the effect of the individual desirability 
(di) of each function depends on its importance (wi). In this 
paper, given that in the sensitivity analysis, the parameters 
were selected based on the net present value function, and 
this parameter takes the most importance (value 3). Cumu-
lative oil production parameters and cumulative water pro-
duction are also of prime importance. Parameters related to 
optimization are more fully presented in Table 6. The lower 
or upper limits are set according to the target function and 
the target values for each function. There is no constraint on 
the predictor parameters.

Results and discussion

Table 7 indicates sixteen selected parameters with each level 
up and down. Parameters are selected by searching the litera-
ture and from previous studies. The two-level Plackett–Bur-
man method was designed to calculate the net present value 
based on the sixteen parameters studied, in which Table 8 
shows the order and the way of the 24 stages of the experi-
ment. The high level is indicated by the (+) and the lower 
level with the (−) sign for each parameter. Given the con-
ditions and values stated in Table 8 for each parameter at 
each stage of experimental design, its value changes in the 
integrated production model. Then, by setting the values of 
all sixteen parameters in the integrated model, the model is 
implemented and first, the cumulative oil production, cumu-
lative gas production, and cumulative water production are 
obtained in the separator. Then, using Eq. 1 discussed, the 
net present value (NPV) is calculated. Cumulative water 
production, cumulative oil production, and cumulative gas 
production resulting from the implementation of the test at 
each stage and the resulting net present value are shown in 
Table 9. The results of Table 9 are the raw feed for sensitiv-
ity analysis.

Sensitivity analysis was performed by analyzing the 
design of a two-level factorial (Plackett–Burman), and tak-
ing into account the amount of alpha to remove as 0.15, 
the sensitivity results were obtained according to Table 10. 
In this table, seven parameters with the greatest impact on 
the net present value (NPV) target function are observed. 

(7)Di =

(

∏
(

d
wi

i

)

)
1

w

Table 6  Optimization 
parameters used in this study, 
such as the importance, the 
upper and lower values of each 
function

a Cum oil: cumulative oil production/ Cum water: cumulative water production/ NPV: net present value

Response Goal Lower Target Upper Weight Importance

Cum  oila Maximum 30.1963 54.0221 – 1 1
Cum  watera Minimum – 0.8315 14.7843 1 1
NPVa Maximum 2.2880 4.1165 – 1 3
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As noted earlier, all values of P value in this table are 
less than the alpha to remove value. The seven parameters 
that have the greatest impact on NPV include porosity, 

horizontal permeability, choke size, net pay thickness, 
separator operating pressure, reservoir-aquifer initial pres-
sure, and aquifer thickness. Meanwhile, reservoir-aquifer 
initial pressure and net pay thickness had the nearest value 
to zero which indicates their high importance.

In the next step, the R2 statistical function is used to 
validate the sensitivity analysis performed by the Plack-
ett–Burman method, the results of which are shown in 
Table 11. According to Table 11, the R2 value is 92.67%, 
which shows high compliance. But since in this study, the 
effect of seven independent variables on a target func-
tion is being studied, it is better to use the adjusted R2, 
because if another predictor is added to the model, which 
has little effect on the target function, then R2 changes, 
but the adjusted R2 will remain constant. The adjusted R2 
is calculated according to Eq. 3. For sensitivity analysis, 
24 samples were selected. Therefore, N in Eq. 3 will be 
twenty-four. Also, seven predictors were selected with the 
highest impact on the target function. Therefore, P is equal 
to seven. So, the adjusted R2 value is 89.46%, according 
to Table 11.

In order to construct a proxy model, the seven selected 
parameters in the sensitivity analysis are set at three lev-
els: low, medium, and high, and the results are shown in 
Table 12. According to the seven predictors presented in 

Table 7  Sixteen selected parameters of the integrated production sys-
tem with upper and lower levels for each sensitivity test

Parameters Upper limit Lower limit

Porosity Multiplier 1 0.8
Net pay thickness 60 40
Kx Multiplier 1 0.8
Kz Multiplier 1 0.8
Wellhead pressure (psi) 400 300
Choke size (in) 1 0.7
Tubing inside diameter (in) 3.85 2.347
Separator pressure (psi) 150 50
Aquifer perm 200 100
Aquifer pressure 300 234
Aquifer compressibility 5 × 10–5 3.5 × 10–5

Aquifer porosity 0.4 0.2
Aquifer radius 3500 3000
Aquifer thickness 15 6
Aquifer salt concentration 385 285
Mechanical skin 10 5

Table 8  The order and design of the experiment by Plackett–Burman method

φ Kx Kz Pwh dch dT Psep H Kaq Φaq Pin Caq Raq haq Saq S

1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 1
2 − 1 − 1 1 1 − 1 1 − 1 1 1 1 1 1 − 1 − 1 − 1 − 1
3 1 − 1 1 1 1 1 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1
4 1 − 1 1 − 1 1 1 1 1 1 − 1 − 1 − 1 − 1 1 − 1 1
5 1 1 − 1 1 − 1 1 1 1 1 1 − 1 − 1 − 1 − 1 1 − 1
6 − 1 1 1 − 1 1 − 1 1 1 1 1 1 − 1 − 1 − 1 − 1 1
7 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 1 1
8 1 − 1 − 1 1 1 − 1 1 − 1 1 1 1 1 1 − 1 − 1 − 1
9 − 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1
10 − 1 − 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 1 1 1
11 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1
12 − 1 1 1 1 1 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1
13 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 1
14 − 1 − 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 1 − 1
15 − 1 1 − 1 1 1 1 1 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1
16 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1
17 1 1 1 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1 1 − 1
18 1 1 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1
19 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 1 1 1 − 1 − 1
20 − 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 1 1 1 − 1
21 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 1
22 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1
23 1 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1
24 1 1 1 1 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1 1
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this study, the Box–Behnken designs 57 experiments to 
build proxy model based on the predictors. By carrying 
out each stage of the test, cumulative oil, water, and gas 
production will be recorded. Then, according to Eq. 1, the 
net present value is calculated. The results of the target 
functions at each step of the experiment are presented in 
Table 13.

The proxy model is presented in terms of first-order and 
quadratic terms, and the effect of interaction of the param-
eters with each other in the form of Eqs. 8, 9, and 10 for each 
target function:

Table 9  The values of target 
functions for the 24 stages 
of the Plackett–Burman 
experimental design (derived 
from the implementation of the 
integrated model at each step)

Number NPV ($) Cumulative water pro-
duction (Million bbl)

Cumulative gas produc-
tion (Million bbl)

Cumulative oil 
production (Million 
bbl)

1 2,108,574,500 3.4403 15,402 27.7276
2 4,080,125,450 6.61721 32,168 53.5561
3 2,203,445,850 2.21703 19,452 28.749
4 2,687,527,170 0.210366 17,723 35.1388
5 2,959,281,850 0.14323 23,166 38.54
6 4,097,234,050 6.16399 28,933 53.8834
7 4,590,532,450 5.88541 31,804 60.3273
8 3,017,833,500 17.9736 26,953 40.3579
9 3,701,677,450 4.82821 28,252 48.5475
10 2,234,650,460 0.786308 16,904 29.1716
11 1,677,118,900 3.15592 17,862 21.8575
12 2,761,095,000 15.1299 24,274 36.8523
13 1,870,314,550 2.67349 14,654 24.5296
14 2,645,106,500 1.3202 21,090 34.5125
15 2,627,477,000 0.0626 19,795 34.2454
16 2,642,213,000 19.3019 22,995 35.5965
17 3,160,551,500 23.1479 28,782 42.5326
18 3,004,116,800 1.13144 25,408 39.114
19 5,400,686,300 9.83144 39,782 71.0733
20 2,855,022,500 28.5872 24,127 39.0077
21 3,817,731,800 1.80254 31,254 49.7731
22 2,713,425,500 12.2561 25,632 35.9708
23 1,828,534,800 2.73684 16,068 23.9202
24 1,929,949,950 3.75861 18,856 25.229

Table 10  The values of P value calculated for the seven parameters with the greatest effect on the target function

Predictor Porosity x-Permeability Choke size Separator pressure Net pay thickness Aquifer initial pressure Aquifer thickness

P value 0.016 0.148 0.076 0.032 0.0003 0.0002 0.140

Table 11  Validation of the 
sensitivity analysis performed 
on the NPV target function 
using statistical variables

R2 (%) 92.67
Adjusted R2 (%) 89.46
R2 prediction (%) 83.5

Table 12  High, medium, and low levels of variables required to build 
a proxy model

Parameters Low level Inter-
mediate 
level

High level

Porosity coefficient 0.8 0.9 1
Horizontal permeability coefficient 0.8 0.9 1
Perforated thickness (m) 40 45 50
Choke size (In) 0.7 0.85 1
Separator operating pressure (Psi) 50 100 150
Aquifer thickness (m) 10 15 20
Initial reservoir-aquifer pressure 

(Bara)
234 267 300
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where � is porosity, kx is horizontal permeability (md), h 
is perforated thickness, haqu is aquifer thickness, Pin is initial 
reservoir-aquifer pressure, Psep is separator operating pres-
sure, and dc is choke size.

It should be noted that in the above equations the predic-
tor parameters are encoded. The values of the input param-
eters must be numerically between the two lower and upper 
levels in the range [− 1, + 1]. Meanwhile, the values of h 
and dc are different for each well, but since the equation is 
encoded, when, for example, the value + 1 is assigned to 
each of the two parameters, it means that the upper level of 
that parameter in each well should be used in the equation. 
In addition, interaction effect of the two parameters has no 
significant effect on the target functions and did not appear 
in the proxy model. The seven parameters are therefore inde-
pendent of each other and have their own separate effect on 
target functions.

Validation and evaluation of the above equations were 
done in three ways due to adapt them to the data used to 
construct the proxy and to check the prediction power of 
the testing data. The first method is to use the R-squared 
parameter, which was previously used for sensitivity analysis 
verification. Table 14 shows the results of validation using 
R2. These results are examined in two aspects.

Firstly, for two cumulative oil production and net present 
value target functions, R2 values are above 98%. Compliance 
between proxy model and test data is high. High adaptation 
is the result of the correct selection of predictive parameters. 
In other words, proxy results indicate the accuracy and valid-
ity of the sensitivity analysis.

Secondly, for the cumulative water production target 
function, the R2 ratio is less than the other two target func-
tions (about 88%). The degree of compliance is acceptable 
since it should be assumed that the uncertainty about the 
water-drive parameters is high as the main cause of water 
production.

In the second verification method, the fitted model was 
analyzed and interpreted using the residual values-based 

(8)

NPV = 3.3807 + 0.155� + 0.1227k
x
+ 0.6045h

+ 0.0194P
in
+ 0.1102h

aqu
+ 0.083d

c

− 0.0628P
sep

− 0.2391h
2 − 0.8756P

2

in

− 0.0756P
2

sep

(9)

Cumoil = 44.341 + 2.004� + 1.642k
x
+ 7.688h

+ 0.258Pin + 1.54haqu + 1.095d
c
− 0.903Psep

− 2.893h2 − 11.618P2
in
− 0.933P2

sep

(10)

Cumwater = 4.577 + 0.582k
x
− 3.649h − 0.059Pin

+ 1.234haqu − 1.375Psep + 2.892h2 − 3.518P2
in

Table 13  The results of 57 test designs by the Box–Behnken method 
to build a proxy model

Order NPV Cumulative 
water

Cumulative gas Cumulative oil

1 2.41425 14.7843 18,697 32.4277
2 2.78974 19.8993 22,365 37.6286
3 2.31683 0.8315 18,448 30.2086
4 3.66763 8.3028 26,436 48.3978
5 3.44200 3.0292 24,283 45.1239
6 3.11383 6.4066 23,417 41.0081
7 2.86404 21.5509 23,410 38.6875
8 3.67794 6.3411 26,800 48.3900
9 3.50730 2.8765 25,151 45.9497
10 3.23601 2.5433 23,882 42.3611
11 2.56034 1.1682 18,829 33.4626
12 2.70579 1.1005 18,751 35.4005
13 3.34455 4.6911 24,420 43.9300
14 2.49197 0.8328 18,539 32.5402
15 3.08835 4.0524 23,675 40.5011
16 2.40864 11.1429 19,788 32.0666
17 2.78833 14.2248 21,880 37.2508
18 3.38778 6.4424 24,692 44.6122
19 2.78686 1.1283 20,625 36.4083
20 2.33025 0.8915 16,851 30.4554
21 3.27798 6.9057 23,336 43.2334
22 4.02328 3.5831 27,294 52.7908
23 3.24755 3.9293 24,919 42.5658
24 3.05250 3.3460 22,238 40.0335
25 2.58035 13.6208 21,045 34.4709
26 2.28800 6.4639 18,531 30.1963
27 2.68534 13.7455 20,699 35.8930
28 3.78709 2.6343 27,610 49.5657
29 2.55545 1.1098 18,205 33.4184
30 3.36452 5.6534 26,255 44.1869
31 4.36079 6.9539 31,265 57.3569
32 3.66206 4.9970 25,213 48.1521
33 2.51916 0.9275 18,892 32.8949
34 3.70104 3.1079 25,447 48.5365
35 2.00398 1.6907 15,739 26.2029
36 2.64911 6.7906 21,874 34.8992
37 3.53592 4.4234 24,996 46.4407
38 4.11655 4.3725 28,917 54.0221
39 2.90862 0.6950 20,414 38.0114
40 2.48293 8.1756 19,341 32.8771
41 3.15945 2.7426 22,088 41.4253
42 2.49197 0.8328 18,539 32.5402
43 2.12895 2.9937 17,029 27.9044
44 2.69449 0.2048 18,048 35.2183
45 3.25756 3.5010 23,030 42.7463
46 3.77814 4.2396 27,670 49.5511
47 2.78686 1.1283 20,625 36.4083
48 3.47636 3.3736 25,608 45.5521
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curves. Figure 4 shows the status of the residue diagram 
for each of the three target functions in this study. Com-
parison of these diagrams with Fig. 3 makes it clear that 
Fig. 4a, c are corresponding graphs of net present value 
and cumulative oil production target function, respectively, 
which are symmetrical compared to the midline drawn 
in each graph and most similar to Fig. 3a. Figure. 4b, as 
seen in the R2 test, has a slight deviation in the results of 
the proxy model and actual values, but the difference is 
not significant (according to the R2 corresponding to this 
model). Therefore, an effective parameter on cumulative 
water seems to be ignored. But the model constructed for 
NPV and cumulative oil production is highly adapted and 
the residual-based graph is well distributed.

In the third method of proxy model verification, the 
normal residue probability chart is used in terms of resid-
ual values. Figure 5a–c shows linear behavior, so that 
points are scattered around the line drawn on the graph. 
The straight line diagram shows the normal and ideal state 
of the proxy model. In Fig. 5b, most points are located 
around the drawn line, but there are three points far from 
the straight line. According to the results of the Chatterjee 
et al. study, the presence of data out of the defined range 
for the proxy is deduced according to the shape of the 
graph.

If the results of the three validation methods are compared 
and summarized, it concludes that the proxy model for the 
two functions of cumulative oil production and net present 
value has a high accuracy and acceptable conformance with 

Table 13  (continued)

Order NPV Cumulative 
water

Cumulative gas Cumulative oil

49 2.49197 0.8328 18,539 32.5402
50 2.51916 0.9275 18,892 32.8949
51 4.26476 6.2645 29,996 56.0812
52 2.33025 0.8915 16,851 30.4554
53 2.31683 0.8315 18,448 30.2086
54 2.48960 1.1777 18,701 32.5252
55 3.36515 4.6714 25,574 44.1571
56 2.40545 1.1098 18,205 31.4184
57 2.95941 2.1972 22,100 38.7213

Table 14  The values of statistical parameters indicating the conform-
ity of the data with the proxy model and the degree of compliance 
with the prediction data

R2 (%) Adjusted R2 (%) Predicted R2 (%)

Cumulative water production
 91.05 89.56 87.08

Cumulative oil production
 98.86 98.57 98.14

Net present value
 98.86 98.56 98.11

Fig. 4   Residue diagram status for three target functions a cumulative oil production, b cumulative water production, c net present value
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the data from the integrated model, and the seven parameters 
obtained from the sensitivity analysis have the ability to pre-
dict the values of the target functions. However, the proxy 
model made for the cumulative water production target func-
tion has a roughly ninety percent R-squared; according to the 
validation charts, it seems that by adding a parameter related 
to the amount of water production and aquifer physical prop-
erties to the proxy model, it can improve data compliance. In 
other words, the effect of a parameter is ignored.

By calculating the individual desirability values followed 
by the composite desirability value, a multiobjective opti-
mization is performed. The results are in accordance with 
Table 15.

Net present value has the highest individual desirability 
among the three target functions. The main reason for this 
issue should be found in the proxy model for each of the 

functions. In the net present value mathematical model, three 
parameters have appeared with a second order: the initial 
reservoir-aquifer pressure, the separator pressure, and the 
perforated interval height. Meanwhile, with the change in 
the perforated interval height in the interval defined between 
the two upper and lower levels, the net present value func-
tion behaved quite descending. However, the other two 
parameters showed nonlinear behavior and their optimal 
values were calculated according to Table 15.

The net present value has a higher importance than two 
other target functions (w = 3). Therefore, in order to achieve 
the highest amount of composite desirability, it is reasonable 
that the individual desirability value of NPV would be set 
at its highest (d = 1).

Only two parameters of initial reservoir-aquifer pressure 
and aquifer thickness showed a nonlinear effect on composite 

Fig. 5   The diagram of probability of normal residues based on ascending order for a cumulative oil production, b cumulative water production, 
c net present value

Table 15  Multiobjective optimization results using a proxy model made for each of the target functions

Parameters Values Parameters Values

Porosity 1 Cumulative oil in optimum situation 53.4933
Horizontal permeability 1 Cumulative water in optimum situation 2.16898
Perforated thickness 1 Net present value in optimum situation 4.11653
Initial reservoir-aquifer pressure − 0.0303030 Individual desirability of cum oil in optimum situation 0.97781
Aquifer thickness − 0.494949 Individual desirability of cum water in optimum situation 0.90414
Choke size 1 Individual desirability of cum NPV in optimum situation 1.0000
Separator pressure 1 Composite desirability 0.9757
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desirability. The behavior of each of the parameters affecting 
the target functions in terms of the individual desirability 
and composite desirability is shown in Fig. 6. The behavior 
corresponds to the degree of parameters in the proxy model, 
because reservoir-aquifer pressure and aquifer thickness 
appeared in a second-order proxy model. However, other 
parameters have a linear relationship with the target func-
tions, and their interaction with each other has no significant 
effect on the target function and the optimal values. By opti-
mizing the multiobjective problem, optimal conditions were 
obtained for control variables. The value of the composite 
desirability in optimal mode, compared to the nonoptimal 
state of the current production of the reservoir, is 21% higher.

Lyu et al. (2019) aimed to provide an efficient method 
to optimize the well configuration in the fractured reser-
voir. They have proposed a method for the optimization of 
multilateral well trajectories and determination of the suit-
able well configuration in the fractured reservoir with the 
objective function being the maximum profits and mini-
mum costs. The effectiveness and accuracy of the method 
have been verified through a series of benchmark tests, 
but they have not considered the water and gas produc-
tion; meanwhile, they have not conducted the sensitivity 
analysis to identify the most influential parameters.

In addition, integration of well and surface facility devel-
opment is crucial to guarantee the selection of the optimum 

configuration for oil and gas field developments. It is an impor-
tant step in early planning to minimize investment and reduce 
the planning period. So Almedallah et al. have presented an 
integrated model that combines surface and subsurface infra-
structure design. The model uses a Monte Carlo Markov chain 
method to explore the field connectivity, coupled with an opti-
mization routine based on a detailed cost model to determine 
facility placement (Almedallah and Walsh 2019). But the main 
differences between this paper and previous works are:

Sensitivity analysis which examine the contribution of 
each parameter on target function.
Conduction multiobjective optimization by means of 
composite desirability function evaluation.

Conclusions

In this study, using Plackett–Burman method, a sensitiv-
ity analysis was performed to identify the most influential 
parameter on the net present value of the PUNQ-S3 oil 
field. Among the 16 parameters, seven effective ones were 
selected based on the comparison of the P value of each 
predictor with alpha to remove.

The mathematical model was constructed and verified 
to predict net present value, cumulative oil production, and 
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cumulative water production of the field based on the seven 
selected parameters. The accuracy of constructed model was 
well over 90%, which indicates great compliance with test data.

By optimizing the multiobjective problem, optimal condi-
tions were obtained for control variables. The value of the 
composite desirability in optimal mode, compared to the 
nonoptimal state of the current production of the reservoir, 
is 21% higher.
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