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Abstract
This study is intended to expand the scope of microbial enhanced oil recovery (MEOR) simulation studies from 1D to field 
scale focussing on fluid viscosity variation and heterogeneity that lacks in most MEOR studies. Hence, we developed a 
model that incorporates: (1) reservoir simulation of microbe-induced oil viscosity reduction and (2) field-scale simulation 
and robust geological uncertainty workflow considering the influence of well placement. Sequential Gaussian simulation, 
co-kriging and artificial neural network were used for the petrophysical modelling prior to field-scale modelling. As per this 
study, the water viscosity increased from 0.5 to 1.72 cP after the microbe growth and increased biomass/biofilm. Also, we 
investigated the effect of the various component compositions and reaction frequencies on the oil viscosity and possibly oil 
recovery. For instance, the fraction of the initial  CO2 in the oil phase (originally in the reservoir) was varied from 0.000148 
to 0.005 to promote the reactions, and more light components were produced. It can be observed that the viscosity of oil 
reduced considerably after 90 days of MEOR operation from an initial 7.1–7.07 cP and 6.40 cP, respectively. Also, assess-
ing the pre- and post-MEOR oil production rate, we witnessed two main typical MEOR field responses: sweeping effect and 
radial colonization occurring at the start and tail end of the MEOR process, respectively. MEOR oil recovery factors varied 
from 28.2 to 44.9% OOIP for the various 200 realizations. Since the well placement was the same for all realizations, the 
difference in the permeability distribution amongst the realizations affected the microbes’ transport and subsequent interac-
tion with nutrient during injection and transport.

Keywords Artificial intelligence · Viscosity-reducing microbe · MEOR · CMG STARS · Geological uncertainty · 
Enhanced oil recovery

List of symbols
α  Dimensional constant (cross section of the 

reservoir for one-dimensional reservoir, the 
thickness of the reservoir for two-dimensional 
reservoir and 1 for the three-dimensional 
reservoir)

λ  Mobility
A  Reaction frequency factor
avisci  Viscosity correlation factor
bvisci  Temperature difference
Ci  Component concentration

Ea  Activation energy
f   Weighting factor
∅  Porosity
ρ  Density
R  Molar gas constant
Sj  Saturation of phase
T   Reaction temperature
t  Reaction time
Tabs  Absolute temperature related to viscosity
�Li

  Liquid viscosity
rmax  The maximum microbe growth rate
�p,T  Water viscosity at specific temperatures and 

pressures
x  Biomass concentration
So  Oil saturation
Sw  Water saturation
ρo  Oil density (kg/m3)
ρw  Water density (kg/m3)
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Rc  Growth and death rate of microorganism (cells/
m3 s)

Rm  Consumption rate of nutrients by microorgan-
ism (kg/m3 s)

Rp  Production rate of metabolite by microorganism 
(1/s)

Wc  Cell concentration (cells/m3)
Wm  Nutrients’ concentration (kg/m3)
Wp  Metabolites’ concentration
Φo  Flow potential of oil
Φw  Flow potential of water
qop  Production rate of oil (kg/m3 s)
qwi  Injection rate of water (kg/m3 s)
qwp  Production rate of water (kg/m3 s)
GRNN  Generalized regression neural network
MLR  Multiple linear regression
ANN  Artificial neural network
LSSVM  Least square support vector machine

Introduction

Microbes are ubiquitous in almost all global oil reservoirs; 
normally, they are noted for biodegradation of alkane com-
ponents of hydrocarbons, thereby changing its physical 
property (e.g. viscosity). The use of microbes to recover 
oil has been in existence for over a century, often referred 
to as microbial enhanced oil recovery (MEOR). MEOR is 
best suited for depleted and marginal reservoirs, thereby 
extending the life of oil wells (Lazar et  al. 2007). The 

environmental and economic advantage of this method 
makes it the point of interest as per this research. MEOR 
could be achieved by the reduction in IFT through biosur-
factant or bacteria cell, selective plugging by biopolymer, 
and oil viscosity reduction by biogas, acids and solvents.

The development of detailed MEOR model proves to be 
challenging not only by the complexity of microbiology but 
also because of the variety of physical and chemical vari-
ables that control the microbe’s behaviour in porous media. 
Table 1 highlights past researches conducted to bring light 
to MEOR simulation and the respective challenges outlined.

Considering related works regarding MEOR modelling, 
most neglect fluid viscosity changes by biodegradation and 
gas production, temperature variation and biogeochemistry 
(or redox chemistry) of the MEOR process (Table 1). More 
so, MEOR per gas production is simulated as conventional 
water-alternating gas flooding. Hence, the need to model and 
optimizing MEOR considering fluid viscosity and reservoir 
heterogeneity at field scale.

Since the early 1990s, there have been many reported 
MEOR projects involving oil viscosity reduction and its 
accompanying oil recovery increment. The San Andreas 
well in the USA discovered in 1945 started with the primary 
drive mechanism, water injection in 1967 and lastly MEOR 
in 1994. After 19 months of MEOR operations, there were 
decreased oil viscosity and 10% increase in average daily 
production (Segovia et al. 2009). In China, the Huaibei field 
(1995) and Xinjiang field (1996) were both treated to MEOR 
operation after water injection. After 12 and 24 months of 
evaluation, the Huaibei field recorded 52% incremental daily 

Table 1  Past studies related to microbial enhanced oil recovery (MEOR) modelling

Study/tool Challenge (s) Reference (s)

Compositional streamline simula-
tion (using COMSOL and MAT-
LAB)

1. Excludes fluid viscosity modification due to acids/
solvents/gases and biomass

2. Excludes temperature effect
3. Unable to simulate real field scenarios such as 

microbe-induced selective plugging and oil viscos-
ity reduction

4. Neglects redox and chemistry of reactions

Behesht et al. (2008), Bryant and Lockhart (2002), 
Desouky et al. (1996), Gianetto (1999), Islam 
and Farouq Ali (1990), Li et al. (2012), Nielsen 
(2010), Nielsen et al. (2016), Saito et al. (2016), 
Shabani-Afrapoli et al. (2011, 2012), Sugai et al. 
(2014, 2007) and Zhang et al. 1993

UTCHEM 1. Assumes in situ generation of metabolites (sur-
factant/polymer/gas) by only biodegradation

2. Limited data to validate the model

Ansah et al. (2018a) and Hosseininoosheri et al. 
(2016)

ECLIPSE 1. Microbe plus nutrient transport and their associ-
ated effects on reservoir properties cannot be 
effectively simulated

2. MEOR per biogas mechanism is simulated simply 
as conventional water-alternating-gas flooding

Ariadji et al. (2017), Shabani-Afrapoli et al. (2012), 
Spirov et al. (2014) and Thrasher et al. (2010)

CMG STARS 1. Neglect reaction rate dependent on pressure/phase 
velocity/effective permeability

2. Limited experimental data to validate microbe-
induced selective plugging mechanism

3. Oil viscosity reduction and IFT effects have 
negligible effects

Alkan et al. (2016), Ansah et al. (2018b) and Bulte-
meier et al. (2014)
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production and 36% increase for the Xinjiang field, respec-
tively. Both recovered these oil increments because of reduc-
tion in oil viscosity (Segovia et al. 2009). Also, in 2004, 
two producer wells, part of the Peruvian Block X which 
were under water flooding, were treated by microbe flood-
ing. After 2 months of evaluation, the oil viscosity reduced 
by 20% but with no significant oil decline rate improvement 
(Segovia et al. 2009).

The geological heterogeneity of most oil wells is impor-
tant regarding the optimization of most EOR field appli-
cations and its optimization. Unfortunately, geological 
uncertainty is an inherent characteristic of reservoir mod-
els because of the noisy and sparse nature of seismic data, 
error-prone core measurements and well logs (Yang et al. 
2011). Aside other crucial factors—such as rock–fluid prop-
erties, injected component and well-operating conditions—a 
change in reservoir model distribution per heterogeneity sig-
nificantly influences EOR performance (Al-Mudhafar et al. 
2018). Porosity and permeability heterogeneity might influ-
ence microbe growth, its transport and metabolism, which 
will in turn influence oil recovery.

Recently, artificial intelligence (AI), such as artificial 
neural networks (ANNs), has been adopted to tackle the 
issues of reservoir heterogeneity and many other applica-
tions in the oil industry. For instance, Ahmadi et al. (2014a) 
and Ahmadi and Chen (2018) demonstrated the accuracy of 
an ANN model in predicting reservoir heterogeneity com-
paring real petrophysical data (porosity and permeability 
data). Also, Ahmadi (2012) developed an ANN model to 
predict asphaltene precipitation—indicating a high accuracy 
between ANN model and the experimental precipitation 
data. Also, ANN was utilized to generate a predictive model 
to define condensate-to-gas ratio and dew point pressure in 
retrograded condensate gas reservoirs (Ahmadi et al. 2014b; 
Ahmadi and Ebadi 2014). Other diverse applications in pro-
duction technology are: (1) machine learning-based ANN 
to predict the bottom hole pressure in multiphase flow in 

vertical oil production (Ahmadi and Chen 2019); (2) a robust 
intelligent model to monitor the performance of chemical 
flooding in oil reservoirs (Ahmadi 2015); (3) performance 
monitoring of  CO2-foam flooding for EOR and  CO2 storage 
(Moosavi et al. 2019); and (4) improving  CO2 water-alternat-
ing-gas (WAG) combining sequential Gaussian simulation 
(SGS), co-kriging and ANN to optimize both  CO2 storage 
and enhance oil recovery (Vo Thanh et al. 2020).

In this study, we show that a compositional model is nec-
essary for MEOR full-field modelling through complicated 
geological heterogeneity and biogeochemical process. The 
basic objective was to maintain hydrocarbon component 
balance so that the recoverable hydrocarbon (both light/
heavy) could be determined as a function of the injected 
microbe and their bioproduct effect. Hence, we modelled 
microbe-induced fluid viscosity variations by a thermophile, 
Petrotoga japonica sp. (Purwasena et al. 2014a, b). Objec-
tively, we developed a model that incorporates: (1) reservoir 
simulation of microbe-induced oil viscosity reduction and 
(2) field-scale simulation and robust geological uncertainty 
workflow considering the influence of well placement. 
Adopting the same methodology as Vo Thanh et al. (2020), 
a robust workflow is presented herein to capture the critical 
effects of uncertain geological distribution on MEOR per-
formance. In this light, this study is intended to expand the 
scope of MEOR simulation studies from 1D to field scale 
focussing on fluid viscosity variation and heterogeneity 
which lacks in most MEOR studies.

Microbial enhanced oil recovery simulation

We conducted reservoir simulations using both CMG 
STARS and CMOST. An 8-component model: water, 
microbe, reproduced microbe, yeast extract,  CH4,  CO2, 
dead/heavy oil fractions (C17–C20) and light oil fractions 
(C10–C15) were used to model the dynamic flood data 
(Table 2).

Table 2  Component 
composition and fluid properties 
for simulation

a Symbol ‘x’ represents the presence of a component in a specified phase

Component Phase Molecular 
mass (gm/
gmol)

Property

Aqueous Oleic Viscosity (cP) Fraction of 
reservoir fluid

Water (with 10 g/L NaCl) xa 18.02 0.60 0.993775
Yeast extract X 18.02 0.60 0.005929
Microbe X 18.02 0.80 0.000148
Reproduced microbe  (microbe1) X 18.02 5.00 0.000148
CO2 X x 44.01 0.001 0.000148
CH4 X x 16.04 0.010 0.000148
Light oil (C10–15) x 142–212 3.10 0.005929
Dead/heavy oil (C17–20) x 240–282 7.10 0.993775
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Governing equations

The multiphase multidimensional flow through the porous 
media is represented by the following equations for oil, 
water, microbe, nutrient and bioproduct, respectively. Rc , 
Rm and Rp describe the various rates associated with microbe 
growth, nutrient consumption and bioproduct production 
(Sugai et al. 2007):

Reaction engineering

Normally, microbe cell grows as an attachmemt to the 
alkane, even though growth with n-alkanes is slower (Wid-
del and Grundmann 2010). All n-alkanes per literature 
are degraded anaerobically to oxidized  CO2 or completely 
converted to  CO2 and  CH4 as per the following reactions 
(Eqs. 6–7), in the presence of sulphate or nitrate source 
(Widdel and Grundmann 2010).

In CMG STARS, the related reaction of a process in a 
general form is defined as:

To this effect, the validation of the reaction and the reac-
tion stoichiometry is done by mass balance, so that moles of 
each component and energy will be conserved:
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(6)

5C
n
H2n+2 + (6n + 2)NO−

3
+ (6n + 2)H+

yields
⟶ 5nCO2

+ (3n + 1)N2 + (8n + 6)H2

(7)
4CnH2n+2 + (2n − 2)H2O

yields
⟶ (n − 1)CO2 + (3n + 1)CH4

(8)nA ⋅MA + nB ⋅MB +⋯ = nC ⋅MC + nDMD +⋯

According to Alkan et  al. (2016); Bultemeier et  al. 
(2014), Monod’s kinetics can be replaced by the following 
reaction rate for microbe growth as per the CMG STARS 
equation for chemical reactions:

The exponential factor is responsible for the temperature 
dependency, and the model calculates a nonzero reaction 
rate at the initial reservoir temperature (60 °C).

Then, the rate of increase in biomass concentration, x 
(cells/ml) of AR80 at a time, t (h), and a specific maximum 
growth rate, rmax (1/h), are given as:

Integrating Eq. (11) solves the bacteria cell number at a 
time (Sugai et al. 2014):

In this study, a simplistic model in which the effect of 
temperature on microbe growth rates was ascertained using 
the Arrhenius expression. However, the decay rate was not 
considered primarily because the growth of microbe was 
assumed to proceed at a maximal rate, which is influenced 
positively by temperature until impairment (Goldman and 
Carpenter 1974). With the knowledge that the change of 
growth with temperature is expressed as activation energy, 
the maximum growth as a single rate-limiting step was com-
puted as:

where rmax is the maximum microbe growth rate  (day−1), 
A is the frequency factor (−), Ea is the activation energy 
(kJ mol−1), R is a molar gas constant (kJ mol−1K−1) and T  is 
the reaction temperature (K).

Then, the concentration factors are calculated based on 
their concentration in the respective reference phases as 
(wherein j is the phase in which component i is reacting, 
and Xi,j represents water, oil or gas mole fractions):

Also, per CMG STARS, component (say nutrient) con-
sumption is correlated to bacteria growth by a division fac-
tor, Fdiv:

(9)
∑

nreaci ⋅Mreaci =
∑

nprodi ⋅Mprodi

(10)r = FFreq ⋅ e
(−Eact|R⋅T)

nc∏

i=1

Ci

(11)
dx

dt
= rmax ⋅ x

(12)xt = Xt−Δt.e
rmax.Δt

(13)rmax = Ae
−
[
Ea

RT

]

(14)Ci =
(
�f Sj�jXi,j

)Expi

(15)rdiv =
r

Fdiv

; Fdiv = (1 + Axi,j)
B
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Heretofore, Fdiv is defined per the bacteria mole fraction 
to model a plateau to which the bacteria amount does not 
exceed.

The phase viscosity ( � ) depends on its respective compo-
nent viscosity and a weighting factor, f:

where fi,j = Xj (specific phase mole fraction) for linear mix-
ing; i = water or oil phase; j = specific component in either 
water or oil.

Also, the liquid viscosity ( �Li
 ) in relation to absolute tem-

perature ( Tabs ) follows the equation:

wherein avisci—viscosity (cP) and bvisci—temperature 
difference. Specifying the brine concentration (% NaCl) 
accounts for the water viscosity ( �p,T ) at specific tempera-
tures and pressures as:

Assuming the incompressible fluid condition, the liquid 
component (oil or water) viscosity, �Li

 , in the reservoir can 
be said to be a function of the microbe growth rate, rmax 
(n-alkane biodegradation rate) and mobility, �.

where mobility defines the relative permeability with respect 
to a phase ( kr ) over its viscosity ( �):

Generation of produced biogas (say  CO2) to reduce oil 
viscosity is modelled as the partitioning of gas between two 
phases (oil and water) at different pressures and tempera-
tures via K-value as:

The influence of pressure was considered during the 
simulation even though it was not observed experimentally. 
At high biodegradation rate, low oil viscosity and high oil 
velocity flow, the influence of pressure diffuses.

Various models were considered based on the microbe 
and substrate reaction and its accompanying metabolite(s) 
responsible for enhanced oil recovery:

• Model 1 Microbe growth for biomass increase and pos-
sible selective plugging

  No geochemical effect and gas production were con-
sidered

(16)ln
(
�i,j

)
=
∑

j

[
fi,j ⋅ ln

(
�i,j

)]

(17)�Li
= avisci ∗ e

[
bvisci

Tabs

]

(18)�p,T = � ⋅ T ∗ fp,T

(19)�Li
= rmax ⋅ �

(20)� = kr∕�

(21)K
g

CO2
=

xCO2(f)

xCO2(l)

=
xCO2(l)+xCO2(g)

xCO2(l)

= 1 +
xCO2(g)

xCO2(l)

• Model 2 Microbe growth for biomass increase and oil 
degradation by the microbe

  No geochemical effect and gas production were con-
sidered

• Model 3 Microbe growth for biomass increase and oil 
degradation by microbe and biogas production. Geo-
chemical knowledge was incorporated. 

Furthermore, these assumptions regarding the injected 
microbe and nutrient into the oil reservoir contended: (1) 
the reservoir is not unfriendly to the injected microbe; (2) 
there is no indigenous microbe presence in the reservoir 
competing for the injected nutrient; (3) limiting the nutri-
ent, yeast extract mostly influences growth and is influenced 
by temperature, salinity and its quantity injected; (4) both 
microbe and nutrient adsorption were negligible; (5) all 
nutrients, metabolites and microbe components are micro-
scopic; hence, transportation is only in the aqueous phase; 
(6) the only time the system is in equilibrium is when all the 
nutrients have been consumed. So long as there is nutrient 
availability, bacteria growth is bound to happen infinitely.

Implementation of reservoir wettability

Considering special conditions (as microbe and nutrient con-
centration changes, large increases in applied flow velocities, 
etc.), the assumption is that rock–fluid properties are func-
tioned only of fluid saturation and saturation histories were 
not enough to accurately describe the observed flow behav-
iour. In these cases, the relative permeability and capillary 
pressure were interpolated as functions of phase saturation 
and/or capillary number. To this effect, two base sets of real 
permeability and a log of capillary number interpolant were 
used to history match water flooding and MEOR flooding 
laboratory experimental data (Fig. 1). Corey’s expression 
was used to attain the endpoints for the relative permeability.

Interfacial tension can change the relative permeability 
curve. Reduction in the IFT caused the relative permeability 

(22)
49H2O + 1.001microbe + 1.1yeast extract

+ 1CO2 → 3.299microbe1

(23)
49H2O + 1.001microbe + 1.1yeast extract

+ 1CO2 → 3.299microbe1

(24)2.15microbe1 + 1dead oil → 2.34light oil

(25)

49H2O + 1.001microbe + 1.1yeast extract

+ 1CO2 → 4.299microbe1 + 4CH4

(26)
2.15microbe1 + 1dead oil + 1CO2

+ 1.45CH4 → 3.34light oil
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curves to approach linearity (Fig. 1), thereby causing more 
oil to be displaced during the microbe flooding due to the 
less frictional force between the oil/water phases. As shown 
in Fig. 1, the straightening of the curves can also be due to 
an increase in viscosity of the hydrophilic phase and the 
decrease in viscosity of the oil phase as bacteria metabolism 
proceeds. As observed, the intersection points of the two 
curves (the water saturation equilibrium point between the 
oil and water relative permeability) decreased from about 
63% at the water flooding stage to below 45% during the 
microbe flooding. Also, the relative permeability to water 
at maximum water saturation was less than 30% during the 
water flooding stage but increased sharply beyond 80% for 
the microbe flooding. Lastly, a gradual decrease in the irre-
ducible water saturation from beyond 56% to less than 20% 
strongly indicates a shift from an initial water-wet state to a 
mixed wet state.

The shift in wettability to a mixed wettability state as 
represented in Fig. 2 can be attributed to the adhesion of 
the microbe to the oil/rock interface phase, formation of a 
stable emulsion by the biomass/biofilm of the microbe and 
the presence of heavier chain n-alkanes residual after the 
biodegradation. Figure 2 highlights three stages respon-
sible for the possible wettability variations. Initially, at 
point (1) the microbes are in a suspension of biofilm 
(having the injected nutrient and hydrocarbon substrate) 
with little adherence to the rock mineral. Assuming the 
presence of fewer organics (solutes, solvents and acids) 
in contact with the rock surface, the rock is in a water-wet 
state, putatively. At point (2), the microbes start settling 
at the rock–fluid interphase with possible consolidation 
and reversible adhesion. Finally, at point (3), the microbes 

colonize the rock surface, forming a patch of microcolo-
nies and confluent of biofilm on it. Hence, the presence 
of higher organics amount changes the wettability to a 
mixed wet state.

The uptake of alkane, liquid plus solid alkanes (above 
C5), is poorly soluble in water, forming droplets (Eastcott 
et al. 1988; Wilhelm et al. 1977). In anaerobic alkane deg-
radation, accessing alkanes—the attachment of microbe by 
hydrophobic cell surface to the alkane phase is concurrent 
with the production of amphiphilic emulsifying compounds 
that form micelles (Widdel and Grundmann 2010). Further-
more, attachment of the microbes to the oil surface prevents 
retrapping, hence increasing mobility and enhanced oil 
recovery. With this said, MEOR can be more effective in 
the mixed wet core than on the water wet core, because the 
residual oil is mostly in interconnected films in mixed wet 
cores against dislodged drops, which might be in the water-
wet cores (Kaster et al. 2012).

Homogeneous 1D simulation

A representative model, as well as input data used in this 
study, is elaborated in Table 3. The model had one injec-
tion well and production well, which were in the first 
and last blocks, respectively. The injector fluid rate was 
2.00746 × 10−06 m3/day for the water flooding stage and then 
switched to 2.0597 × 10−06 m3/day for both the MEOR stage 
and post-flush stage. The porosity, permeability, injection 
scenario and other reservoir and production properties used 
in this model were as from dynamic flooding experiments 
(Purwasena et al. 2009, 2014b).

Fig. 1  Oil and water relative permeability curves a during waterflooding and b during microbe flooding
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Experimental data for model validation

A thermophilic (Petrotoga Japonica sp.) type of microbe, 
hereby coded as AR80, was isolated using brine-based 
and substrate-poor solid culture medium supplemented 
by  CO2 (Purwasena et al. 2014a). Table 4 highlights the 
composition of the culture medium and brine used in this 
study. From experimental studies, AR80 degraded n-alkanes 
under anaerobic conditions at 60 °C as highlighted. They 
observed the original oil viscosity reduces by almost 70% 
after 14 days of bacteria incubation with the crude oil (Pur-
wasena et al. 2014b).

A detailed description for optimum controllable con-
ditions (salinity/temperature/pressure/type of crude oil 
and  CO2 analysis) is reported elsewhere (Purwasena et al. 
2014b). AR80 could grow under 3% salinity, 60 °C and 
6 MPa. Furthermore, both abiotic and biotic core flood-
ing experiments were carried using AR80 to estimate its 
injectivity, AR80 growability in a porous medium, and EOR 
potential of AR80. Crude oil with API of 33°, a viscosity of 
7 cP (measured at 60 °C) and a density of 0.958 (measured 
at 15 °C) were used. Detailed core flooding methodology 
and results are elaborated elsewhere (Purwasena et al. 2009, 
2014b). Experimentally, main oil recovery mechanism was 
due to oil viscosity reduction, resulting from alkane biodeg-
radation (Purwasena et al. 2009, 2014b). Also, they assumed 

a decrease in mobility ratio from 10 to 6 and increase in 
sweep efficiency from 0.830 to 0.90 in the core (Purwasena 
et al. 2009, 2014b).

Fig. 2  Schematic diagram for relative permeability changes highlighting three stages of adsorption: suspension of microbes right after injection, 
reversible adsorption stage at the onset of microbe growth and irreversible adsorption and microbe colonization stage

Table 3  Simulation input data

Treatment Treated with microbe

Injection data
PV injected during pre-flush with brine and 

yeast extract
3.0

PV injected during culture medium with the 
microbe

3.0

Shut-in period (days) 14
PV injected during the post-flush with brine 2.5
Core flood data
Reservoir size (cm) 8 × 1 × 1
Number of grid blocks 40 × 1 × 1
Grid block size (cm) 0.2 × 1 × 1
Initial reservoir temperature (°C) 60
Initial reservoir pressure (MPa) 6
Pore volume (mL) 16.48
Porosity (%) 20.65
Absolute permeability (mD) 300
Oil viscosity at 60 °C (cP) 7
Initial water saturation (%) 61.3
Residual oil saturation (%) 38.7
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Microbial growth rate modelling

Figure 3 highlights the bacteria growth rate and its relation 
to oil viscosity reduction. As per the Arrhenius expression 
elaborated in Fig. 3a, the exponential microbe growth phase 
was modelled—a satisfactory agreement between the model 
and data set is reported. Figure 3b shows the microbe growth 
against viscosity reduction. The experimental data are as per 
static bottle test (contacting the microbe with the hydrocar-
bon—oil), whereas dynamic simulations were conducted to 
model the experimental data under the same conditions. As 
the microbe growth proceeds, oil viscosity reduces radically 
from initial 26.6 to 17.6 cP (for the model) and 16.6 cP (per 
experiment). The model was run for only 15 days to ascer-
tain this effect at a higher fraction of light oil,  CO2 and  CH4 
by increasing their stoichiometry coefficients (Fig. 3b).

Reservoir simulation: assessment of model types

Figure 4a shows the oil recovery (%) investigated for each 
model scenario. The increase in oil recovery for all the 
investigated cases can be related to oil displacement as 
a function of oil viscosity. As indicated, the oil viscosity 
decreases from the upstream (injector) to the downstream 
(producer), accompanied by a mobility increase for height-
ened oil recovery (Fig. 4b). Fluid acceleration is transferred 
from one fluid layer to another. It is inferred that the total 

oil recovered after brine and microbe flood for model type 
3 was the highest comparing the two other cases. In the first 
(1st) case, the biomass cells of the microbe can be said to 
have played the main role of oil viscosity reduction (Fig. 4b).

However, in models 2 and 3, contributions by the biomass 
cells plus biogenic  CO2 and  CH4 induced the oil viscosity 
reduction. As per this, it can be concluded that incorporat-
ing the idea of nutrient speciation and rock–fluid/fluid–fluid 
interaction to produce  CH4 and  CO2 leads to heightened oil 
recovery for both the brine and microbe flood stages. Of the 
three model types, model type 1 had more viscous oil left 
behind after 90 days (end of the microbe flooding process) 
(Fig. 4b). An increase in oil viscosity reduction ensured 
more oil recovery resulting from increased mobility to the 
production well. Therefore, model type 3 was adopted for 
history matching of the experimental data.

Figure 5 highlights the history match results for the labo-
ratory experimental data. Due to the intuitive and qualitative 
nature of manual history match, automatic history match 
with a quantitative approach was conducted (Fig. 5). Auto-
matic history match (HM) was performed to have a range of 
plausible HM solution other than one precise HM results. 
The automatic history match shows improvement in the 
matching quality and an average history match error of less 
than 3%.

Table 4  Ionic composition of 
brine used for enrichment (of 
AR80) culture medium a [6] 

Composition is given in ppm

Na+: 3075 K+: 30 Ca2+: 5 Mg2+: 3 NH4
+: 15

Cl−: 2500 I−: 1.5 HBO2
2−: 250 HCO3−: 4000

T-Fe: 2 Acetic acid: 4.3 Formic acid: 2.2 Lactic acid: < 0.1 Propionic acid: < 0.1
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Component concentration effect on oil viscosity 
reduction

Throughout this whole study, it has been established that 
oil viscosity reduces per alkane biodegradation to improve 
oil recovery. In this section, elucidation on the phenomenon 
behind component concentration effect on fluid viscosity 
variation depicted by the sensitivity assessment is discussed.

We investigated the effect of the various component com-
positions and reaction frequencies on the oil viscosity and 
possibly oil recovery (Fig. 6a, b). For instance, the fraction 
of the initial  CO2 in the oil phase (originally in the reservoir) 
was varied from 0.000148 to 0.005 to promote the reactions 

in case study 3, and more light components were produced 
(Fig. 6b). We realized this could also be achieved by chang-
ing the stoichiometric coefficient of the components. It can 
be observed that the viscosity of oil reduced considerably 
after 90 days of MEOR operation from an initial 7.1–7.07 cP 
and 6.40 cP, respectively (Fig. 6b).

Also, the higher amount of lower weight n-alkane origi-
nally present in the reservoirs (C10–15) ensured high bio-
degradation rate and less residual viscous oil. This is so 
because microbes are known to be able to degrade easily 
aliphatic chains compared to aromatic or heavier n-alkane 
chains.
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Biomass influence on water viscosity variation

The water viscosity increased from 0.5 to 1.72 cP after 
the microbe growth and increased biomass/biofilm. It was 
observed that as the biomass population increased with 
increasing biomass viscosity (from 5 to 10 cP), there was 
a correlated increase in the water viscosity (Fig. 7). Incre-
ments in the water viscosity can be said to have improved 
sweep efficiency of the reservoir to recover residual oil. 
Figure 7 shows the frontal advancement of the reproduced 
microbe (mass fraction of aqueous phase) in the homogene-
ous core model. Increasing the biomass population and sub-
sequent biomass viscosity led to selective plugging of pref-
erential areas of the reservoir, ensuring fewer thief zones in 
the reservoir, because microbes are known to exist in water 
droplets in the oil phase or even in water film surrounding 
rock mineral grains (Meckenstock et al. 2014).

Artificial Neural Network for geological 
modelling

First, a realistic geological model was created by consid-
ering all the crucial factors, including facies, distribution 
porosity and permeability. The model is a fluvial sandstone 
reservoir that has two different facies: fluvial channel sand 
and floodplain shale. The facies model was distributed using 

a geological package based on object-based modelling using 
the parameters as shown in Table 5. The distribution of 
the two facies modelled is presented in Fig. 8. The reac-
tion engineering of the 1D simulation as presented above 
was upscaled assuming an isothermal condition by fixing 
the enthalpy of reaction at zero. All other conditions unless 
otherwise mentioned were kept unchanged.

Sequential Gaussian simulation (SGS), co-kriging and 
artificial neural network (ANN) were used for the petrophys-
ical modelling. The ANN was employed to train the seismic 
attributes and well log to predict porosity and permeabil-
ity models. SGS and co-kriging were adapted to combine 
the facies model and ANN prediction cube into one single 
model. Next, the drill stem test matching was performed to 
validate the accuracy of the model for further investigation 
(Vo Thanh et al. 2019a, b). Figure 9 depicts the reasonable 
porosity and horizontal permeability models for this work.

Performance of the ANN model

This section highlights the performance of the ANN model. 
The seismic data and well-log data were represented as input 
layers in the ANN model, whilst porosity and permeability 
were the output layers in the training framework. The seis-
mic data were created using four different seismic attrib-
utes: signal-processed attributes, complex trace attributes, 
structural attributes and stratigraphic attributes. Then, the 

Fig. 6  Oil viscosity variation per component content: a light oil fraction and b  CO2 fraction. Start of simulation (left); End of simulation (right)
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ranking of the seismic attributes was performed using ANN 
MATLAB toolbox. The performance of the developed ANN 
model was based on training, validation and blind testing 
data set. The correlation factor and mean square error (MSE) 
were then utilized to evaluate the quality and accuracy of the 
developed ANN model.

After repeated trails training, it was indicated that the 
neural network model with eight hidden neurons in the 

Fig. 7  Water viscosity variation per biomass increase. Start of simulation (left); End of simulation (right)

Table 5  Input parameters used in lithofacies modelling

Min Mean Max

Orientation 45
Channel amplitude (m) 600 700 800
Channel wavelength (m) 1600 2000 2400
Channel width (m) 350 500 650
Channel thickness (m) 35 50 65

Fig. 8  Facies model in this study
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hidden layer obtained the excellent performance for the 
porosity and permeability with a validation MSE value of 
3.96 × 10−5 and 2.78 × 10−4, respectively.

The illustration of the ANN network is depicted in 
Fig. 10. For porosity-type ANN model, the training pro-
cess was achieved at 35 epochs with a validation MSE of 
3.96 × 10−5 (Fig. 11a). Figure 11b depicts the best valida-
tion performance and the regression plots of ANN poros-
ity model for training, validation and blind testing groups, 
respectively. The predictive porosity model matches so well 
to the well-log porosity values for all training, validation and 
blind testing groups as can be observed in their correlation 
factor (R) of 0.946, 0.988 and 0.994 for training, validation 
and blind testing, respectively.

Similarly, the performance and regression plot of ANN 
permeability model are highlighted in Fig. 12. For perme-
ability ANN model, the training process was successfully 
truncated at 86 epochs with a validation MSE of 2.78 × 10−4. 
Also, the ANN permeability model fits so well to the well-
log permeability values for all training, validation and blind 
testing groups as can be investigated in their correlation fac-
tor (R) of 0.989, 0.983 and 0.978 for training, validation and 
blind testing, respectively.

Comparison between the developed ANN model 
and existing artificial intelligence studies

There are many previous studies focussing on the predic-
tion of porosity and permeability using artificial intelligence 
(AI). Table 6 points out some of these related studies, and 
the comparison between those AI models and this study. 
According to Table 6, it can be observed that the prediction 

accuracy of this study significantly differs from several exist-
ing works. In that, the developed ANN model of this study 
outperforms other AI models. The main reason is because 
the current ANN model uses less number of neurons in the 
hidden layer as compared to the previous AI model. Regard-
ing the results in terms of error and efficiency, the ANN 
models in this study are demonstrated to be more suitable 
for prediction of porosity and permeability due to higher  R2 
and low MSE compared to previous AI models.

Field‑scale simulation and optimization

In this section, full-field simulation and optimization are 
conducted to give insight into recovery efficiency under 
various drive mechanisms (comparing MEOR and water 
flooding) and also to show variations through complex res-
ervoir heterogeneity and better tracking of injected microbe 
(Fig. 13). For field-scale implementation, we set the acti-
vation energy to zero to assume isothermal reactions and 
quicken the MEOR growth and metabolism reaction. When 
the reaction front sweeps through the reservoir, a certain 
amount of oil serves as a carbon source for microbe growth. 
The rest of the mobile oil gets pushed further downstream 
through viscosity reduction.

Afterwards, multiple geological realizations were gener-
ated and ranked to select nine representative realizations to 
capture geological uncertainties. The geological uncertainty 
assessment was performed by including the nine quantiles of 
ranked geostatistical realizations (P10, P20, P30… and P90) 
for porosity, permeability and anisotropy ratio. To capture 
the geological uncertainties, 200 porosity and permeability 

Fig. 9  The reasonable porosity and horizontal permeability models for this study
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realizations were generated honouring geological constraints 
using sequential Gaussian simulation. Since it was difficult 
to simulate all these geological realizations in the optimiza-
tion process due to limited computational resources, rank-
ing, based on the oil recovery factor, was considered for 
permeability and pore volume for porosity to select the P10, 
P20, P30, …, and P90 that represent the overall geological 

uncertainties. All these permeability models were evaluated 
in the MEOR reservoir model for the ranking process within 
25 years of production.

Figure 14a shows the histogram of the generated 200 
porosity realizations based on the pore volume. Also, this 
figure illustrates the selected nine quantiles (P10, P20, P30, 
…, and P90) that were obtained based on the cumulative 

Fig. 10  The architecture of 
neural network for this work
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Fig. 11  Performance and regression plot of porosity ANN model
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probability curve. Moreover, the 3D model’s distribution 
of porosity ranking is shown in Fig. 14b. In this illustration, 
the porosity models show significant difference distribution 
that covers over all the geological uncertainties. The plot 
of ranked nine representative permeability models is high-
lighted in Fig. 14c.

Furthermore, Fig. 14d shows the oil recovery factor for 
the nine different realizations simulated over a 25-year 
period. This highlights the geological uncertainty effect on 
oil recovery.

Afterwards, the nine quantiles (P10, P20, P30, …, and 
P90) were adapted in the robust design for the MEOR pro-
cess optimization. This high-resolution model consists of 2 
million grid blocks. Therefore, it was upscaled to a simula-
tion model with 15,000 grid cells to satisfy the CPU demand 
in the reservoir simulation. These geological models were 
later coupled with dynamic flow and physics mechanism of 
the microbe and substrate reaction in the reservoir simulator 
as described in the 1D simulation case. Figure 15 depicts the 
reservoir model with a five-spot line for well placement opti-
mization purpose. The well pattern is the following specifi-
cation conditions (Table 7).

The goal was to optimize the average oil recovery of the 
total 25 years of MEOR operation by determining the best 
well location and operating conditions for the four producers 
from 2018 to 2043. The well placement was considered to 
evaluate the effectiveness of the most suitable well location 
to enhance the microbial enhanced oil recovery under geo-
logical uncertainties.

Base case simulation results

This study focuses on EOR based upon the promotion of 
microbial activity that in turn generates appropriate chemi-
cals within the reservoir. Our analysis treats only reservoir 
inoculation with function-specific microbes, thereby incor-
porating reaction engineering into reservoir engineering.

Our base case is an exogenous microbe injected and 
making use of in situ carbon source. As indicated by well 
bottom hole pressure (Fig. 16), there was improved flow 

Fig. 12  Performance and regression plot of permeability ANN model

Table 6  Comparison between the developed ANN model and previ-
ous AI models

References Method R2 MSE

Aminian and Ameri (2005) ANN 0.976 Not stated
Kumar (2012) ANN 0.87 0.0024
Yeganeh et al. (2012) ANN 0.974 0.003
Esmaeilzadeh et al. (2013) ANN 0.978 Not stated
Fegh et al. (2013) ANN 0.84 Not stated
Iturrarán-Viveros and Parra (2014) ANN 0.9063 0.1876
Esmaeilzadeh et al. (2013) ANN 0.978 Not stated
Nguyen et al. (2014) ANN 0.871 Not stated
Konaté et al. (2015) GRNN 0.97 0.278
Al-Mudhafar (2017) MLR 0.955 Not stated
Jamalian et al. (2018) LSSVM 0.984 1.42
Zolotukhin and Gayubov (2019) ANN 0.92 Not stated
This study ANN 0.988 2.78 × 10−4
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Fig. 13  Schematic of full-field model simulation and optimization

Fig. 14  a Histogram of the 200 porosity realization. b 3D models’ distribution of the porosity realizations. c The nine ranked permeability mod-
els selected for optimization studies. d Oil recovery factor for the different geological realizations
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conformance and increased sweep efficiency by preferential 
plugging of high permeable zones, thereby forcing water to 
produce oil from previously unswept part of the reservoir. 
This is highlighted by the increase in pressure at the start of 
the microbe injection after the pressure flattens at the end 
of the water flooding regime. Also, assessing the pre- and 
post-MEOR oil production rate (Fig. 16), we witness two 
main typical MEOR field responses (Segovia et al. 2009):

1. Sweeping effect This happens within a relatively short 
period of time and is characterized by a peak oil rate 
just after injecting microbes. This further resulted in an 
increase in oil production due to starting production in 
originally by-passed oil zones.

2. Radial colonization This happened at the tail end of the 
microbe treatment at a low oil flow rate. This prolonged 
MEOR effect causes a continuous oil decline rate due 
to metabolism  (CH4 and  CO2) as well as biodegradation 
of oil n-alkanes specifically at zones further away from 
colonization radius.

Figures 17 and 18 show the oil saturation map,  CO2 and 
 CH4 from the injection wells to the production wells, respec-
tively. This is indicative that the microbe at the onset of 
injection can grow and be transported from the injection 
point to the production well whilst producing the needed 
metabolites for oil recovery. As the microbe grows, the 
oil saturation decreases from about 0.7 to 0.2 with time 
(Fig. 17), while the production of biogas increases (Fig. 18).

Role of geology in the MEOR process

Using the already generated 200 porosity and permeabil-
ity realizations, we ranked these to emphasize the critical 
influence of geology on the MEOR process. As indicated in 
Fig. 19, the porosity and permeability model variations had 
a strong influence on the performance of the MEOR process. 
This plot depicts a wide range of MEOR oil recovery factors, 
from 28.2 to 44.9% OOIP for the various 200 realizations.

Figure 20 highlights three representative geological reali-
zations with significant dissimilarity in the oil recovery fac-
tor. Since the well placement is the same for all realizations, 
the difference in the permeability distribution amongst the 
realizations affected the microbes’ transport and subse-
quent interaction with nutrient during injection and trans-
port. Also, the difference in permeability led to a change in 
sweep efficiency which influenced the oil recovery factor. 
These three realizations represent three different classes of 
MEOR performance, judging from their different geologi-
cal makeup. The ultimate oil recovery significantly changed 
from realization 195 (41.6% OOIP) to realization 70 (35.1% 
OOIP) and to realization 32 (29.2% OOIP), respectively.

The realization number 32 had the lowest the final oil 
recovery factor compared with the other realizations, as 
per its oil saturation map (Fig. 21). The main reason is that 

Fig. 15  Five-spot quarter model 
designed for well optimization

Table 7  Well conditions for the simulation

Pattern area 1500 m × 1000 m

Water injection rate 9000–12,000 m3/day
Minimum bottom hole pressure for producers 20 MPa
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the five-spot injection pattern was in a region of floodplain 
shale facies. Hence, resulting inflow severe associated with 
the injected aqueous phase through this low-porosity and 
low-permeability regions. This resulted in less oil displace-
ment compared with realizations 70 and 195, as illustrated 
in Fig. 21. This case demonstrates that considering only the 
influence of injected nutrient-brine composition on MEOR 
without geological uncertainties is not adequate. Basically, 
salinity brine contact with mineral compositions should 
influence the microbe growth, transportation and its sub-
sequent production of metabolites to enhance oil recovery. 

However, placing an injection well in an extreme environ-
ment such as a high shale, low-porosity and low-permeabil-
ity area can be detrimental to oil production and the overall 
success of MEOR. Therefore, well placement optimization 
is noted to be very necessary for any MEOR approach and 
should be considered during the initial field development 
plan for MEOR implementation.

Fig. 16  Oil rate and well bot-
tom hole pressure for MEOR 
flooding

Fig. 17  Oil saturation map
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Conclusion

This study has demonstrated that through systematic simula-
tion considering both physical and biochemical parameters, 
the uncertainties in predicting MEOR can be enlightened. 

Simultaneous consideration for both geochemical and res-
ervoir simulation reveals these key findings:

• This study predicted the possibility of modelling fluid 
viscosity variation that is induced by microbes incorpo-
rating the influence of reservoir heterogeneity.

Fig. 18  CO2 (top) and  CH4 (bottom) saturation maps

Fig. 19  Oil recovery in relation to different geological realizations



2001Journal of Petroleum Exploration and Production Technology (2020) 10:1983–2003 

1 3

• Per the core scale model: (1) MEOR can be more effec-
tive in the mixed wet core than on the water wet core; (2) 
water viscosity increased from 0.5 to 1.72 cP after the 
microbe growth and increased biomass/biofilm; and (3) 
by changing the stoichiometric coefficient of the compo-
nents (e.g.  CO2), the viscosity of oil reduced consider-
ably after 90 days of MEOR operation from an initial 
7.1–7.07 cP and 6.40 cP, respectively.

• The challenge of upscale from laboratory- to field-
scale arises from upscaling the reaction and adjusting 
well placement to ensure efficient transportation of the 
microbe from the injection to the targeted zone of recov-
ery.

• The innovative field-scale workflow by considering mul-
tiple plausible geological models simultaneously showed 
that placing an injection well in an extreme environment 
such as a high shale, low-porosity and low-permeability 
area can be detrimental to oil production and the overall 
success of MEOR.
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