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Abstract
Sonic well logs provide a cost-effective and efficient non-destructive tool for continuous dynamic evaluation of reservoir 
formations. In the exploration and production of oil and gas reservoirs, these sonic logs contain crucial information about 
the formation. However, shear sonic logs are not acquired in all oil and gas exploration wells. More so, many offset wells are 
not run with the most recent sonic logging tools capable of measuring both shear and compressional sonic transit times due 
to the relatively high costs of running such equipment. And in wells where they are deployed, they are run only over limited 
intervals of the formation. Such wells lack continuous shear wave transit time measurements along the formation. In this 
study, an exponential Gaussian process model is presented. The model accurately predicts the shear wave transit times in 
the formations which lack reliable shear wave transit time measurements. The proposed model is developed using an array 
of well logs, namely depth, density, porosity, gamma ray, and compressional transit time. A Monte Carlo simulation is used 
to quantify the proposed model uncertainty. The shear sonic transit time predictions are used to estimate some formation 
deformation properties, namely Young’s modulus and Poisson’s ratio of a reservoir formation. The results suggest that shear 
transit time can be represented and predicted by Gaussian-based process model with RMSE, R2, and MSE of 11.147, 0.99, 
and 124.6, respectively. The proposed model provides a reliable and cost-effective tool for oil and gas dynamic formation 
evaluation. The findings from this study can help for better understanding of shear transit times in formations which do not 
have multipole sonic logs or where data have been corrupted while logging in the Niger Delta.
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�N,ma  Neutron response of the matrix
�  Poisson’s Ratio
�  Rock porosity
Vsh  Shale volume
DTSM  Shear wave travel time (µs/ft)
Δts  Shear wave travel time (µs/ft)
�s  Sonic porosity
PHIT  Total porosity log  (m3/m3)
E  Young’s modulus (MPa)

Introduction

Sonic well logs have been around since the 1900s in the 
petroleum industry (Alford et  al. 2012; Doh and Alger 
1958). Over the years, geologists, petrophysicists, and petro-
leum engineers have come to see the reliability and useful-
ness of sonic well logs in the exploration and production of 
hydrocarbon reservoirs. Onalo et al. (2018a) developed an 
artificial neural network to predict the compressional and 
shear wave sonic logs along a wellbore from a producing 
well. Drilling engineers use sonic data to improve drilling 
efficiency and reduce target offset margins (Alford et al. 
2012). The transmission of sonic waves through the forma-
tion, “sonic well logging”, provides valuable data such as 
compressional transit time and shear transit time that is used 
in formation evaluation (Minear and Fletcher 1983). Sonic 
logging was the first tool that provided the industry with a 
means to estimate formation porosity without knowledge 
of the fluid saturation (Raymer et al. 1980). As far back 
as 1958, researchers like Doh and Alger (1958) perceived 
formation porosity estimation to be the major advantage of 
sonic logs. The transit arrival times of the sonic waves have 
evolved and now being used for formation, porosity deter-
mination, lithology identification, fluid saturation indication, 
formation strength characterization, hydrocarbon indication, 
and much more (Khazanehdari and Mccann 2005; Williams 
1990). This is due to the fact that the sonic transit times are 
affected by reservoir properties that include compaction, 
porosity, anisotropy, density, lithology, cementation, con-
solidation, overburden stress and pore pressure (Khazane-
hdari and Mccann 2005; Krief et al. 1990; Thomsen 1986; 
Toksöz et al. 1976; Williams 1990). A good understanding 
of how these properties change over the life of the reservoir 
is essential for proper reservoir planning, development and 
management (Dakhelpour-Ghoveifel et al. 2019; Khazane-
hdari and Mccann 2005; Saboorian-Jooybari et al. 2015).

Well-calibrated and reliable sonic logging tools are nec-
essary to acquire accurate measurements of compressional 
and shear wave transit time, otherwise, the formation evalu-
ations and estimation become false and misleading (Onalo 
et al. 2018a, 2019). Typical anomalies observed in well logs 
have been presented in the literature (Saboorian-Jooybari 

et al. 2016, 2015). This may result in the development of 
non-potential reservoirs and the abandonment of potential 
reservoir formations. Sonic logging tools have also evolved 
over the years, from single transmitters and receivers to two 
receivers to compensate for discrepancies from the transmis-
sion source due to borehole and mud. This is known as the 
borehole effect (Doh and Alger 1958). The spacing between 
the receivers is usually about one feet to ensure a proper 
description of the medium. To correct the errors generated 
as a result of the irregularities of the borehole, borehole-
compensated sonic tools were developed (Kokesh et al. 
1965). To further improve the quality of the sonic measure-
ments, array sonic logging tools were adopted that contains 
an array of transmitters and receivers (Hsu et al. 1987). The 
above-mentioned sonic logging tools are mainly monopole 
sonic logging as they do not provide measurements of the 
shear wave, especially in fast formations (Alford et al. 2012; 
Harrison et al. 1990). Fast formations are formations in 
which the shear wave response of the formation arrives at 
the receivers before the compressional wave response of the 
wellbore fluid. In situations where the compressional wave 
response of the borehole fluid arrives before the shear wave 
response of the formation, the formation is known as a slow 
formation. More modern sonic logging tools include dipole 
sonic and multipole sonic logging tools which are capable 
of measuring both compressional and shear wave properties 
directly or indirectly by generating flexural waves (Alford 
et al. 2012; Market and Canady 2006).

Shear wave transit time is vital for many geophysical and 
engineering analyses including seismic interpretations and 
bright spot analysis (Greenberg and Castagna 1992a; Onalo 
et al. 2018b). The lack of shear wave transit time data limits 
the number of valuable relationships and correlations that 
can be derived from sonic logging, especially for lithology 
identification, fluid saturation identification and porosity 
estimation (Domenico 1984; Onalo et al. 2018a, b). Shear 
wave transit time alone is not sufficient to provide a full 
description of the diversity across the reservoir formation 
(Greenberg and Castagna 1992a).

Empirical relationships have been developed to estimate 
the shear wave velocity from compressional wave velocity 
in situations where the shear wave data were missing (Bai-
ley 2012; Castagna et al. 1985; Domenico 1984; Eberhart-
Phillips et al. 1989; Esene et al. 2018; Gardner et al. 1974; 
Greenberg and Castagna 1992b; Hamada 2004; Han et al. 
1986; Jorstad et al. 1999; Krief et al. 1990; Lee 2006; Miller 
and Stewart 1974, 1990; Oloruntobi et al. 2019; Oloruntobi 
and Butt 2019; Ramcharitar and Hosein 2016; Raymer et al. 
1980; Takahashi et al. 2000; Vernik et al. 2002). Though 
these estimations provide simple correlation for quick esti-
mations, they are not as robust as modern-day machine 
learning techniques that have been applied in several engi-
neering applications (Kumar et al. 2014; Nourafkan and 
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Kadkhodaie-Ilkhchi 2015; Onalo et al. 2018a, 2019; Ram-
charitar and Hosein 2016; Reichel et al. 2012).

Gaussian process (GP) is a powerful technique for pre-
dicting and modeling complex mathematical and engineer-
ing data-driven problems. GP involves defining a finite 
vector space function of infinite dimension over a Gaussian 
distribution. The GP has been used in many engineering 
applications due to its flexibility to model nonlinear complex 
patterns between dataset variables (MacKay 2005). The GP 
has been adopted in solving many engineering and real-life 
problems because of its ability to handle data in various 
forms and sizes (Akin et al. 2008; Ali Ahmadi and Golshadi 
2012; Asadisaghandi and Tahmasebi 2011; Ashoori et al. 
2010; Babakhani et al. 2015; Derakhshanfard and Meh-
ralizadeh 2018; Ebden 2008; Huang et al. 2003; Iturrarán-
Viveros and Molero 2013; Kelechukwu et al. 2013; Riazi 
et al. 2014; Sheremetov et al. 2014; Vaferi et al. 2014). A 
general sketch of the problem is presented in Fig. 1 after Yu 
et al. (2016).

Some examples of Gaussian-based processes that have 
been developed to solve problems in the industry are pre-
sented in Table 1.

Considering the success that Gaussian-based processes 
have had in several petroleum engineering applications, 
the objective of the paper is to develop a reliable model 
that can reproduce shear wave sonic logs using a Gaussian-
based process from the available array of well log data. The 
importance of such a model to the industry is invaluable for 
offset wells that have been drilled and logged without dipole 
or multipole sonic logging tools and therefore do not have 
the corresponding shear wave sonic logs. Also, in forma-
tions where the inaccurate log data have been obtained due 
to damaged equipment or calibration (human) error. Sonic 
logs are essential components for drilling, exploration and 
reservoir management. The shear wave sonic logs provide 
accurate continuous predictions of the reservoir properties 
for better reservoir planning and management.

To the best of the authors’ knowledge, the current work 
presents the first Gaussian distribution of shear transit 

time from other well logs located in West Africa. The 
current work will help push for the development of simi-
lar models in the region without the need for costly well 
interventions.

Gaussian process (GP)

Modeling complex engineering problems present a real 
challenge in the petroleum industry. The GP is a probabil-
istic modeling technique that is nonparametric, meaning 
that the prior is placed in space and the actual distribution 
that fits the data is not known before the initialization 
(Huang et al. 2017; Kuss and Rasmussen 2006). GP has 
been recognized as a promising data mining technique 
in machine learning due to its ability to handle large 
amounts of data (Han and Kamber 2010). GP is generally 
classified into supervised and unsupervised. Simply put, 
supervised GP involves establishing functions of input 
datasets used for the training to predict the correspond-
ing output dataset (Rostami et al. 2013). In unsupervised, 
there is no prediction as there is no target output dataset 
or prior history from which to establish functions. None-
theless, this is very useful functionality for classifying 
large datasets. When the GP is used for prediction, it is 
referred to as a GP. On the other hand, if the GP is used 
for classification, it is referred to as GP classification 
(Rostami et al. 2013). GP captures set finite random vari-
ables and attempts to represent them by a joint Gaussian 
distribution (Rasmussen 2004). GP is defined fully by its 
mean and covariance functions (Seeger 2004). Gaussian 
process-based models are highly capable of establish-
ing nonlinear relationships from nonparametric data and 
deriving algorithms for future predictions (Abdollahzadeh 
et al. 2012). GP is highly universal and can be adapted to 
various problems presented; however, care must be taken 
to select the best covariance, kernel, and hyperparameters 
describing the multidimensional distribution (Kuss and 
Rasmussen 2006).

Fig. 1  A general sketch of the 
problem

Dataset Select a�ribute Compute weight

Refine a�riubute 
based on weight Generate model Validate and test 

model
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Methodology

The framework of the proposed model development and 
testing is presented in Fig. 2.

Data collection and preparation

The data required for the proposed methodology are actual 
well logs. The data should contain the relevant logs required 
for the proposed model, namely depth (ft), density—RHOB 
(g/cc), total porosity—PHIT, gamma ray—GR (GAPI), 
DTCO (µs/ft), and DTSM (µs/ft). This methodology is appli-
cable to any combination of logs. Various combinations of 

log data have been used; however, the proposed combination 
gives a more accurate prediction. Reducing the set of well 
logs combination reduces the accuracy of the prediction. 
Accuracy was one of the objectives of the study; therefore, 
this work uses the combination of gamma ray, porosity, den-
sity, and compressional transit time logs along with their 
corresponding depth to predict the shear transit log.

Quality assurance and quality checks (QAQC)

Quality assurance and quality control (QAQC) were per-
formed on the suite of well logs to ensure the reliability 
of the data. Firstly, the logs were analyzed to identify null 

Fig. 2  Framework for the 
proposed model development of 
the Gaussian process
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readings where the logging tools failed to accurately record 
the corresponding measurements. Secondly, the sections 
where washout and key-seat (define) sections were observed 
were removed for the model development by referencing 
with the caliper logs for adjacent formation sections. Pois-
son’s ratio calculations were used to ensure only valid sec-
tions were represented in the dataset. These tests calculate 
Poisson’s ratio from the measured compressional and shear 
sonic transit times to ensure reasonable values, and are an 
industry standard logging quality check.

Gaussian process model development

A shaley sandstone formation located in West Africa was 
used in this study. For the model development, well log 
data from 2850 to 6000 ft and from 8000 to 12,500 ft of a 
sandstone reservoir were used to build and train the model. 
To test the model, the section from 6000 to 8000 ft was 
used. The prepared data were formatted to match the initial 
model set up with five predictors and one response (name). 
The actual target response is presented in Fig. 3. Shear 
transit time on the y-axis and record number represents the 
number of reference data points by the model on the x-axis.

The GP distribution is applied to the dataset; however, 
the kernel function that best represents the distribution 
function is not known. Therefore, a set of kernel functions 
were applied to the dataset to ascertain which kernel func-
tion was able to best smoothen the dataset and provide the 
least errors. The squared exponential kernel, exponential 
kernel, Matern 5/2 kernel, and the rational quadratic kernel 

were applied to the dataset. Each GP model and kernel func-
tion were trained by constantly updating the hyperparam-
eters until the best match describing the well log correlation 
was reached by the respective models. GP generally does 
not suffer from overfitting like other intelligent systems like 
neural networks (Adedigba et al. 2017; Onalo et al. 2018a). 
Nevertheless, overfitting can arise from the marginal likeli-
hood optimization, especially with many hyperparameters 
(Mohammed and Cawley 2017; Rasmussen and Williams 
2006). To solve this problem, cross-validation was used. 
First, the dataset is divided into five disjoint sets (folds). For 
each fold, the out-of-fold data points are used to train the 
model, and then the performance of the model is assessed 
using the in fold data points. The average error is then cal-
culated across all the folds (Matlab Documentation 2018).

Gaussian process selection

The test results of each model are presented in Table 2. 
In Fig. 4, the prediction response of each model is pre-
sented. All models performed well and were able to rep-
resent the data with a relatively high degree of accuracy; 
however, the exponential GP model seemed to better follow 
the actual plotted response (Fig. 3) more closely. The pre-
dicted responses of the models are plotted against the actual 
responses in a cross-plot in Fig. 5 to validate the model pre-
diction accuracy. All the tested models have coefficients of 
determination (R2) of 0.99. This proved that GP was highly 
capable of predicting the responses and would thus provide 
relatively sufficient models. Nonetheless, the coefficient of 

Fig. 3  Actual target response of 
the shear sonic log
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determination could not be used as a basis for the selec-
tion of the optimum GP model. The residuals of the model 
predictions are plotted in Fig. 6. The exponential GP model 
presented the least error through the dataset.

The exponential GP model had the least root mean square 
(RMSE) with a value of 11.147. This was followed by the 
Matern 5/2 GP model with an RMSE = 12.718, and then the 
rational quadratic Gaussian model with an RMSE = 12.786. 
The squared exponential Gaussian model, though popular, 
presented the highest error with an RMSE = 13.774. The 
mean square error (MSE) and mean average error (MAE) 
follow the same trend as the root mean square error. The 
squared exponential kernel is the most popular GP; however, 
the exponential GP outperformed the squared GP. It is dif-
ficult to say with utmost certainty why the exponential GP 
outperformed the other models. The margin of difference 
between the models is within 5%; however, this may be due 

to the exponential relationship between density, porosity and 
sonic logs along the depths of a formation as suggested by 
several researchers (Dey and Stewart 1997; Gardner et al. 
1974; Miller and Stewart 1974).

A summary of the results of the tested models is pre-
sented in Table 2. The exponential Gaussian process model 
was selected as the best of the four models tested.

The results of the models are compared with a multilin-
ear regression model with the same predictors (input well 
logs) and output to ensure that the proposed GP model is 
not redundant. The result of the multilinear regression is 
presented in Table 3. The result alludes to the improvement 
and accuracy of the new model prediction by the use of the 
GP model. The RMSE, R2, and MSE reduced to 37.486, 
0.93, and 24.692 in the multilinear model, respectively.

Uncertainty analysis

The authors acknowledge that even though the boundary 
limits of the input well logs and output shear transit time for 
a sandstone formation can be defined to a reasonable extent, 
tackling the presence of uncertainty in the development of 
the model presents a real challenge. To address the uncer-
tainty in the developed model, a Monte Carlo simulation 
based on a ∓ 10% uncertainty in the well log array used in 
the model development. The results of the simulated models 

Table 2  Summary of the results of the GP model selection

Model type RMSE R2 MSE MAE

Exponential GP 11.147 0.99 124.26 6.6046
Squared exponential GP 13.774 0.99 189.71 8.0162
Matern 5/2 GP 12.718 0.99 161.74 7.4618
Rational quadratic GP 12.786 0.99 163.48 7.5401

Fig. 4  The response of the tested GP models (actual in blue and predicted in yellow)
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are presented in Table 4. Table 4 suggests that the expo-
nential GP model outperforms all other GP models with an 
RMSE of 20.11 and MAE of 12.11. The squared exponential 
model has the least performance with an RMSE of 21.87 and 
MAE of 13.13. This is consistent with the previous results 
in the initial model development. However, unlike in the 
initial model set up, the rationale quadratic GP model out-
performed the Matern 5/2 GP with an RMSE of 20.92 and 
MAE of 12.52. The coefficient of determination, although 
lower than the initial model, was 0.98 for all Monte Carlo 
simulated models. The uncertainty simulation portrays a 
significant increase in the RSME from 11.18 to 20.92 and 
an increase in MAE from 6.6 to 12.11 for the exponential 
GP. Nevertheless, the model is robust as the coefficient of 
determination was only reduced from 0.99 to 0.98.

Generalization of the GP

GP machine learning is adaptive in nature and can be gen-
eralized for datasets in a similar format as the original train-
ing data. To validate and ensure that the proposed model is 

generalized, it is applied to the section of the well log data 
that were omitted in the development of the model in Sect. 3.

Application of the developed model

The proposed shear wave transit time model is validated 
by applying the proposed model to actual well logs. The 
geological setting of the formation used for calibrating 
and validating the model is a shaley sandstone formation 
located in West Africa. The formation is normally pres-
sured producing oil reservoir. The well log data presented 
in this study cover a 2000-ft section, from 6000 to 8000 ft 
of an actual oil and gas sandstone reservoir. This is an 
improvement to most studies conducted on a section of 
only several hundred feet. The location and details of the 
well log data have been withheld in this study to protect 
the privacy and confidentiality of the logging company. 
Nevertheless, the first 100 ft of the data is presented in 
Table 5 for interested users. A plot of the available well 
log data for the study is presented in Fig. 7.

Fig. 5  Cross-plot of the tested GP models
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Results and discussion

Shear Sonic transit time log estimation

The primary objective of developing a Gaussian-based pro-
cess model from well log data is to provide a tool adequate 
enough to furnish reliable shear sonic transit time logs in 
wells from offset wells run with monopole sonic logging 

tools. More so, in wells with corrupted datasets or erroneous 
readings from faulty equipment. In Fig. 8, the measured shear 
sonic transit log is plotted against the depth profile of the wells 
used for the case study from 6000 to 800 ft. This is followed 
by a plot of the shear sonic transit log along the same depth 
in Fig. 8. The predicted shear sonic log closely matches the 
measured shear sonic log values. The most disparity is seen 
from 6010 to 6050 ft with less than a 5% difference in value. 
What is very intriguing is that the proposed model is relatively 
conservative in the sense that it tries to follow the measured 
shear sonic log trend, without going out of the measured shear 
sonic log boundaries in the well. This ensures that analysis 
conducted using the models are reliable and safe as they do 
not venture away from or to the extreme boundary scenarios 
of the formation. To further depict the success of the model 
in predicting the shear sonic transit log from the well logs 
proposed in the previous section, a cross-validation plot of the 
predicted shear sonic transit time versus the measured shear 
sonic transit time log is presented in Fig. 9. The proposed 
model does a good job of almost matching the measured shear 
sonic logs with a coefficient of determination of 0.9923. The 
trend line in Fig. 9 also falls on the perfect unity slope line, 
the figure thereby portraying a non-bias in the predictions 
of the proposed model. The results show that the proposed 
model achieves the desired objective of the proposed model 
by accurately predicting the shear sonic transit log of the well.

Fig. 6  Residuals of the tested GP models

Table 3  Summary of the results of the multilinear regression model 
selection

Model type RMSE R2 MSE MAE

Multilinear regression 37.486 0.93 1405.2 24.692

Table 4  Summary of the results of the Monte Carlo simulated GP 
models

Model type RMSE R2 MSE MAE

Exponential GP 20.11 0.98 404.46 12.11
Squared exponential GP 21.87 0.98 478.35 13.13
Matern 5/2 GP 21.18 0.98 448.55 12.68
Rational quadratic GP 20.92 0.98 437.49 12.52
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Table 5  50 ft of available well 
log data for the study

Depth (ft) DTCO (µs/ft) DTSM (µs/ft) GR (gAPI) PHIT  (m3/m3) RHOB (g/cc)

6000.00 131.82 324.03 87.14 0.19 2.32
6000.50 133.00 349.97 87.44 0.20 2.31
6001.00 134.20 363.23 86.52 0.20 2.30
6001.50 133.26 342.61 86.24 0.20 2.31
6002.00 131.83 312.74 86.66 0.19 2.32
6002.50 130.86 304.08 85.50 0.18 2.33
6003.00 130.94 304.68 84.60 0.18 2.33
6003.50 129.35 315.31 85.13 0.18 2.34
6004.00 129.85 338.09 85.31 0.18 2.33
6004.50 131.38 363.53 87.60 0.19 2.32
6005.00 133.30 379.96 88.31 0.19 2.32
6005.50 133.26 379.00 91.86 0.19 2.32
6006.00 132.83 373.47 92.08 0.19 2.32
6006.50 132.59 361.99 89.04 0.19 2.32
6007.00 131.24 358.47 86.43 0.18 2.34
6007.50 131.50 361.11 88.95 0.17 2.35
6008.00 132.92 371.02 94.94 0.17 2.36
6008.50 132.07 374.90 97.52 0.17 2.36
6009.00 133.00 378.18 95.00 0.17 2.35
6009.50 133.95 379.63 89.53 0.18 2.34
6010.00 133.47 350.07 85.95 0.18 2.33
6010.50 133.49 332.87 84.92 0.19 2.32
6011.00 134.39 346.93 85.52 0.19 2.31
6011.50 133.68 367.18 84.63 0.19 2.32
6012.00 133.95 363.88 82.08 0.18 2.33
6012.50 132.86 356.71 86.91 0.18 2.34
6013.00 132.95 363.06 93.85 0.18 2.34
6013.50 131.60 342.72 94.98 0.19 2.32
6014.00 131.81 316.72 91.16 0.19 2.31
6014.50 131.79 311.10 85.44 0.20 2.31
6015.00 131.07 307.31 82.28 0.19 2.31
6015.50 132.31 310.24 77.20 0.19 2.31
6016.00 131.97 322.17 77.37 0.19 2.32
6016.50 130.74 364.35 83.84 0.19 2.31
6017.00 132.42 385.76 86.86 0.20 2.30
6017.50 133.16 387.82 86.94 0.21 2.29
6018.00 133.07 372.00 82.35 0.20 2.30
6018.50 132.27 335.59 81.35 0.20 2.30
6019.00 131.38 323.30 80.80 0.20 2.30
6019.50 131.01 318.53 80.37 0.20 2.31
6020.00 130.82 319.37 82.46 0.19 2.32
6020.50 130.81 330.04 80.39 0.19 2.32
6021.00 130.69 366.92 82.67 0.19 2.32
6021.50 131.93 373.65 81.17 0.19 2.31
6022.00 131.37 366.63 87.45 0.19 2.31
6022.50 130.85 326.51 88.73 0.19 2.31
6023.00 131.18 315.40 92.32 0.19 2.31
6023.50 128.95 315.07 91.10 0.19 2.31
6024.00 130.31 319.97 91.63 0.19 2.32
6024.50 130.17 323.64 89.42 0.19 2.32
6025.00 129.66 317.45 86.47 0.19 2.32
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Table 5  (continued) Depth (ft) DTCO (µs/ft) DTSM (µs/ft) GR (gAPI) PHIT  (m3/m3) RHOB (g/cc)

6025.50 129.85 321.53 82.90 0.19 2.31
6026.00 130.95 333.50 81.50 0.20 2.30
6026.50 130.85 341.21 82.07 0.20 2.31
6027.00 131.47 336.61 83.38 0.19 2.31
6027.50 132.42 332.92 85.78 0.19 2.32
6028.00 132.36 324.53 87.77 0.19 2.32
6028.50 132.19 320.65 91.52 0.19 2.32
6029.00 132.28 315.04 91.68 0.19 2.32
6029.50 132.71 313.44 87.51 0.19 2.32
6030.00 132.55 316.99 85.33 0.19 2.32
6030.50 132.35 324.50 87.06 0.19 2.32
6031.00 131.76 357.34 92.97 0.19 2.33
6031.50 132.15 396.80 95.18 0.19 2.33
6032.00 131.76 401.90 95.50 0.19 2.33
6032.50 132.21 402.31 95.32 0.19 2.32
6033.00 133.53 406.33 93.26 0.20 2.31
6033.50 134.37 413.76 89.90 0.20 2.29
6034.00 135.44 404.15 89.06 0.21 2.28
6034.50 135.84 398.00 91.33 0.21 2.28
6035.00 131.67 392.08 96.32 0.21 2.28
6035.50 130.85 387.02 97.00 0.20 2.29
6036.00 130.95 354.82 96.31 0.20 2.30
6036.50 129.68 339.62 88.86 0.20 2.31
6037.00 129.51 329.55 83.93 0.19 2.32
6037.50 125.87 307.18 77.83 0.19 2.32
6038.00 126.05 292.21 78.55 0.19 2.31
6038.50 122.92 284.44 79.17 0.19 2.31
6039.00 125.14 290.37 81.78 0.19 2.32
6039.50 128.86 307.30 84.62 0.19 2.33
6040.00 128.77 322.01 82.73 0.18 2.34
6040.50 129.55 365.22 83.52 0.18 2.34
6041.00 130.52 354.40 84.58 0.18 2.33
6041.50 130.84 315.02 89.45 0.19 2.32
6042.00 131.80 356.62 93.99 0.19 2.32
6042.50 132.12 322.97 92.13 0.19 2.31
6043.00 130.62 317.84 89.23 0.19 2.32
6043.50 128.64 310.26 84.82 0.18 2.33
6044.00 126.87 309.84 84.66 0.18 2.34
6044.50 126.66 305.22 82.88 0.18 2.34
6045.00 127.37 299.49 80.86 0.18 2.33
6045.50 128.29 305.08 81.14 0.19 2.32
6046.00 129.59 311.22 82.66 0.19 2.32
6046.50 129.64 320.78 85.12 0.19 2.33
6047.00 129.81 327.75 82.91 0.18 2.33
6047.50 129.74 352.66 82.84 0.18 2.34
6048.00 130.00 358.57 81.03 0.18 2.34
6048.50 130.38 324.24 81.19 0.18 2.33
6049.00 131.37 323.73 81.31 0.19 2.32
6049.50 132.51 377.43 84.68 0.20 2.31
6050.00 132.55 386.24 91.19 0.20 2.31
6050.50 132.55 393.98 90.16 0.19 2.31



1440 Journal of Petroleum Exploration and Production Technology (2020) 10:1429–1447

1 3

Although GP is not a new technique for predicting 
and representing data in the oil and gas industry, GP has 
not been applied to estimate or predict shear wave transit 
time with the array of well logs proposed in this study. 
The model proves that shear sonic travel time can be ade-
quately represented with a Gaussian distribution; thus, GP 
can serve as a reliable tool in the prediction and reproduc-
tion of shear transit time from offset wells with no shear 
sonic logs for formation evaluation.

The model was developed using a reservoir located in 
the sand and shale sequence. Nonetheless, the methods 
could be used for any reservoir type, but the response 
would not be the same. This eludes to the limitations of 
any correlation, linear or multidimensional, where its 
applicability is useful within the range of physical data 
used to derive it.

Predicting dynamic geomechanical properties

This section illustrates the common uses of sonic logs in the 
evaluation of formation mechanical properties. To illustrate 

these uses, the dynamic Young’s modulus and Poisson’s 
ratio are estimated from the measured sonic logs and com-
pared the dynamic Young’s modulus and Poisson’s ratio 
estimated from the proposed model sonic log predictions. 
Rock elastic properties, particularly Young’s modulus and 
Poisson’s ratio, tell a lot about the formation because they 
are deformation properties (Ma et al. 2013). Poisson’s ratio 
is used as a calibration tool in the industry to determine the 
accuracy of well logs (Oloruntobi et al. 2018; Onalo et al. 
2018a, 2019). In most cases, if a sonic log model is able to 
predict Poisson’s ratio accurately, then, it can be said that the 
model is robust and reliable (Onalo et al. 2018a).

Dynamic Young’s modulus

Young’s modulus is commonly known as the modulus of 
elasticity because it is a measure of the stiffness of the for-
mation and can be estimated using Eq. (1) (Mullen et al. 
2007).

Table 5  (continued) Depth (ft) DTCO (µs/ft) DTSM (µs/ft) GR (gAPI) PHIT  (m3/m3) RHOB (g/cc)

6051.00 132.75 399.55 88.44 0.19 2.32

Fig. 7  Available well log data 
array
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The results of the estimation of dynamic Young’s modulus 
from the measured sonic logs and proposed model predicted 
sonic logs are presented and compared in Fig. 10. The cross-
validation of the Young’s modulus from the predicted and 
measured sonic logs presented in Fig. 10 shows very good 
agreement with a coefficient of determination of 0.9953. As 
the dynamic Young’s modulus increases, the deviation from 
the perfect slop increases. The estimation from the proposed 
model sonic logs slightly underpredicts Young’s modulus from 
approximately 40–70 GPa. The highest deviation is observed 
at a depth of 7480–7490 ft with the average dynamics Young’s 

(1)E =
�

Δt2
s

×

(
3Δt2

s
− 4Δt2

c

Δt2
s
− Δt2

c

)
× 1.34 × 1010

modulus of 55 GPa and 50 GPa which both signify a good 
consolidation at such depths for measured and predicted, 
respectively.

Poisson’s ratio (PR)

Poisson’s ratio is another rock mechanical property that is esti-
mated during formation evaluation. It is literally the ratio of 
the lateral to the vertical strain of a specimen and is estimated 
from sonic logs as follows (Mullen et al. 2007).

The results of the estimation of Poisson’s ratio from the 
measured sonic logs and proposed model predicted sonic 
logs are presented and compared in Fig. 11. The cross-
validation of the Poisson’s ratio from the predicted and 
measured sonic logs presented in Fig. 11 portrays a good 
match with a coefficient of determination of 0.9413. As 
the Poisson’s ratio increases, the deviation from the perfect 
slope decreases. The estimations from the proposed model 
overpredict points of Poisson’s ratio values below 0.25. The 
accuracy of the estimations from the predicted model is 
increased as the formation weakens.

The main reason why the Young’s modulus and Poisson’s 
ratio predictions are reasonably accurate is because of the 
accuracy of the Shear transit time predictions which are then 
used in the theoretical and empirical relationships given in 
Eqs. 15 and 16. A major disadvantage of such model would 
be that poor predictions of the shear transit time would 
result in poor estimations of the geomechanical properties 
of the formation. Sample data of the measured and pre-
dicted geomechanical models are presented in Table 6. In 
general, both estimation of Young’s modulus and Poisson’s 
ratio from the measured and predicted sonic logs allude to a 
good agreement. Therefore, the model can be used in place 
of actual sonic logs with a high confidence level. Access to 
real-life data was one of the limiting factors in this research. 
To further improve this work, the authors recommend that 
well log data from different regions of the world in differ-
ent formations can be used to develop a more robust model. 
Another advancement to this work would be to compare 
GP model to other models like artificial neural networks, 
recurrent neural networks and support vector machines with 
similar data from the same formation.

Summary and conclusions

The present study has demonstrated that in the absence of 
shear sonic transit logs, a GP model can be used to model 
the shear sonic logs from the depth, density, gamma ray, 

(2)� = 0.5 ×
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− Δt2
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)

Fig. 8  Shear wave transit time versus depth
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Fig. 10  Cross-validation plot 
of predicted and measured 
dynamic Young’s modulus

Fig. 11  Cross-validation plot of 
predicted and measured Pois-
son’s ratio

Fig. 9  Predicted shear wave 
transit time versus measured 
shear wave transit time
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porosity, and compressional transit time logs. The new 
model can be particularly useful in wells where accurate or 
continuous shear wave transit times are missing or where 
borehole-compensated sonic tool has not been used.

The proposed GP model development offers the following 
benefits to the oil and gas industry:

• The GP model offers operators with offset wells that only 
contain compressional sonic wells a reliable tool to pre-
dict the shear sonic log for better formation evaluation 
analysis.

• The GP model provides a cost-effective and safe tool to 
operators by offering a reliable means of predicting shear 
transit time in a field instead of carrying out more expen-
sive dipole and multipole sonic logging on several wells 
in the field. This leads to cost savings and human (work 
hours) reduction leading to higher days without accidents 
(days since last accident or hazard exposure) on projects.

• The Gaussian model provides a cheap method of estab-
lishing mechanical rock formation property tables for 
several geographical regions and geological settings.

• The GP model provides a calibration and validation tool 
for cross-checking already measured or acquired sonic 
shear logs from sonic loggers that may be faulty or run 
in complicated hole sections.

The GP model accurately predicts shear sonic time log 
for the case study with an  R2 of 0.99. The model is also 
used to estimate some mechanical formation properties, 
namely Young’s modulus and Poisson’s ratio. The results 
are compared to the same mechanical rock properties using 
the measured sonic logs. The coefficients of determination 
between the measured and predicted sonic logs used for the 
estimations of Young’s modulus and Poisson’s ratio are 0.99 
and 0.94, respectively.

Generally, the GP models are highly efficient in recog-
nizing nonlinear patterns with the complex dataset includ-
ing well logs used in the oil and gas industry as is evident 
in this study. GP models are recommended for developing 
nonparametric correlations between other well log dataset 
of interest.

The present study provides the oil and gas industry with 
a roadmap for estimating shear sonic well logs and also vali-
dating measured shear sonic transit time logs. Future work 
can be done to estimate both compressional and shear sonic 
transit logs from a Gaussian model, thereby eliminating 
the need to run countless expensive sonic logging tools in 
the formation. The significance of such a future model will 
be highly valuable in terms of cost savings and man-hours 
resources that could potentially be saved.
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Appendix

Gaussian process theory

A description of the GP is presented below; however, a more 
detailed explanation can be found in Rasmussen (2004) and 
Williams and Rasmussen (2006).

Assume a set of data is provided in the following format 
(Kumar et al. 2014):

xi = input data, yi = output data, n = number of data points, 
R = 1-dimensional vector space, Rd = d-dimensional vector 
space. In this study, the input data are depth (ft), RHOB (g/
cc), PHIT, GR (GAPI), and DTCO (µs/ft). The output is 
DTSM (µs/ft). Mathematically: x = [depth, RHOB, PHIT, 
GR, and DTCO] and y = [DSTM].

The GP can be defined by the mean (m(x)) and the covari-
ance function (k(x, x′)) for the function (f(x)) (Rostami and 
Khaksar Manshad 2013).

Thus, the GP is written as follows (Rostami et al. 2013)

The GP regression is then expressed similarly to linear 
regression with the main function and Gaussian noise ( � ) 
function as follows (Yu et al. 2016):

(3)D =
{
xi, yi

}n

i=1
, xi ∈ Rd and yi ∈ R

(4)m(x) = E
[
f (x)

]

(5)
k
(
x, x�

)
= E

[
(f (x)

]
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(
f
(
x�
)
− m

(
x�
))
], x and x� ∈ Rd

(6)f (x) = GP
(
m(x), k

(
x, x�

))

(7)y = f (x) + �
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Table 6  Sensitivity analysis data (dynamic Young’s modulus and 
Poisson’s ratio)

Depth (ft) Measured 
Ed (Gpa)

Predicted 
Ed (Gpa)

Measured PR Measured PR

6000.00 5.71 5.55 0.40 0.40
6000.50 4.92 4.91 0.42 0.42
6001.00 4.58 4.76 0.42 0.42
6001.50 5.13 5.06 0.41 0.41
6002.00 6.10 5.69 0.39 0.40
6002.50 6.45 5.87 0.39 0.40
6003.00 6.44 5.54 0.39 0.41
6003.50 6.08 5.67 0.40 0.41
6004.00 5.33 5.62 0.41 0.41
6004.50 4.63 5.37 0.42 0.41
6005.00 4.24 4.94 0.43 0.42
6005.50 4.26 4.59 0.43 0.42
6006.00 4.38 4.70 0.43 0.42
6006.50 4.66 4.87 0.42 0.42
6007.00 4.78 5.16 0.42 0.41
6007.50 4.74 4.93 0.42 0.42
6008.00 4.52 4.62 0.43 0.42
6008.50 4.43 4.74 0.43 0.42
6009.00 4.33 4.52 0.43 0.43
6009.50 4.28 4.45 0.43 0.43
6010.00 4.97 5.01 0.41 0.41
6010.50 5.44 5.24 0.40 0.41
6011.00 5.01 4.91 0.41 0.41
6011.50 4.52 4.94 0.42 0.41
6012.00 4.63 4.99 0.42 0.41
6012.50 4.83 4.81 0.42 0.42
6013.00 4.66 4.54 0.42 0.43
6013.50 5.16 4.65 0.41 0.42
6014.00 5.94 5.30 0.40 0.41
6014.50 6.12 5.16 0.39 0.41
6015.00 6.28 5.46 0.39 0.41
6015.50 6.17 5.57 0.39 0.40
6016.00 5.78 5.66 0.40 0.40
6016.50 4.58 5.07 0.43 0.42
6017.00 4.09 4.67 0.43 0.42
6017.50 4.03 4.66 0.43 0.42
6018.00 4.37 4.96 0.43 0.41
6018.50 5.32 5.19 0.41 0.41
6019.00 5.70 5.42 0.40 0.41
6019.50 5.88 5.60 0.40 0.40
6020.00 5.87 5.56 0.40 0.41
6020.50 5.54 5.86 0.41 0.40
6021.00 4.54 5.41 0.43 0.41
6021.50 4.37 5.14 0.43 0.41
6022.00 4.53 5.16 0.43 0.41
6022.50 5.63 5.48 0.40 0.41
6023.00 5.99 5.44 0.40 0.41
6023.50 6.02 5.88 0.40 0.40

Table 6  (continued)

Depth (ft) Measured 
Ed (Gpa)

Predicted 
Ed (Gpa)

Measured PR Measured PR

6024.00 5.86 5.70 0.40 0.40
6024.50 5.75 5.78 0.40 0.40
6025.00 5.95 5.92 0.40 0.40
6025.50 5.79 5.56 0.40 0.41
6026.00 5.39 5.39 0.41 0.41
6026.50 5.17 5.32 0.41 0.41
6027.00 5.32 5.22 0.41 0.41
6027.50 5.43 5.43 0.41 0.41
6028.00 5.71 5.17 0.40 0.41
6028.50 5.83 5.12 0.40 0.41
6029.00 6.01 5.16 0.39 0.41
6029.50 6.06 5.27 0.39 0.41
6030.00 5.95 5.44 0.39 0.41
6030.50 5.71 5.37 0.40 0.41
6031.00 4.78 4.75 0.42 0.42
6031.50 3.92 4.25 0.44 0.43
6032.00 3.83 4.34 0.44 0.43
6032.50 3.81 4.30 0.44 0.43
6033.00 3.72 4.24 0.44 0.43
6033.50 3.57 4.22 0.44 0.43
6034.00 3.70 4.19 0.44 0.43
6034.50 3.81 4.08 0.43 0.43
6035.00 3.94 4.32 0.44 0.43
6035.50 4.06 4.52 0.44 0.43
6036.00 4.80 4.76 0.42 0.42
6036.50 5.23 5.43 0.41 0.41
6037.00 5.55 5.76 0.41 0.40
6037.50 6.36 6.56 0.40 0.39
6038.00 6.94 6.65 0.39 0.39
6038.50 7.31 7.25 0.39 0.39
6039.00 7.04 6.93 0.39 0.39
6039.50 6.34 6.15 0.39 0.40
6040.00 5.85 5.67 0.40 0.41
6040.50 4.63 5.22 0.43 0.42
6041.00 4.88 5.41 0.42 0.41
6041.50 6.04 5.56 0.40 0.41
6042.00 4.78 4.75 0.42 0.42
6042.50 5.74 5.14 0.40 0.41
6043.00 5.93 5.66 0.40 0.40
6043.50 6.25 6.02 0.40 0.40
6044.00 6.30 6.28 0.40 0.40
6044.50 6.48 6.31 0.40 0.40
6045.00 6.66 6.48 0.39 0.39
6045.50 6.42 6.35 0.39 0.39
6046.00 6.17 5.94 0.40 0.40
6046.50 5.86 5.95 0.40 0.40
6047.00 5.64 5.77 0.41 0.40
6047.50 4.94 5.25 0.42 0.42
6048.00 4.79 5.25 0.42 0.42
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The Gaussian noise has a mean of 0 and a variance of �.

For a new input dataset ( x∗ ) and output dataset ( y∗ ), 
the GP prior distribution is given as follows (Kumar et al. 
2014):

k(x, x∗) = the covariance between the training input data 
and test input data; k(x, x∗)T  = the transpose of k(x, x∗) ; 
k(x∗, x∗) = the covariance of the test data.

Thus, the mean and variance of the posterior Gaussian 
distribution of (y∗ ) can be written as follows, respectively 
(Yu et al. 2016):

Covariance and kernel Function

The covariance function can be defined by the kernel func-
tions in order to provide better response across the dataset 
to which they are similar (Ebden 2008). A set of kernel 
functions or hyperparameters ( � =

{
�f , �l

}
 ) parameterizes 

the covariance function. The kernel functions are needed 
to reduce the error and improve the accuracy by smooth-
ing the dataset predictions. The dependency of the covari-
ance function is written as k

(
x, x′|�) . Most problems can 

be presented as GP distribution; however, accuracy and 
efficiency are improved by the kernel and hyperparam-
eter functions. Therefore, to ensure an adequate model is 
attributed to a problem, the most suitable kernel function 
that describes the nonlinear relationship should be chosen. 
Although Ebden (2008) suggests that squared exponential 
kernel is the popular choice, in this study the following set 

(8)� ∼ N(0, �)

(9)
(

y

y∗

)
∼ N(0, k∗)

(10)k∗ =

[
k k(x, x∗)

k(x, x∗)T k(x∗, x∗)

]

(11)m∗ = k(x, x∗)
T
k−1y

(12)�∗ = k(x∗, x∗) − k(x, x∗)
T
k−1yk(x, x∗)

of kernel functions are explored to provide a justification 
for the model selection (Matlab Documentation 2018).

Exponential kernel:

�f  = the standard deviation, �l = the characteristic length 
and a = positive scale mixture parameter

Squared exponential kernel:

Matern 5/2 kernel:

Rational quadratic kernel:

The process of finding the most suitable values of the 
hyperparameters is called the GP learning that illustrates 
how the GP trains the model to define the problem with the 
least errors (Huang et al. 2017). The GP is developed using 
MATLAB simulation software which initializes and finds 
the hyperparameters that minimize cross-validation loss 
by using automatic hyperparameter optimization (Matlab 
Documentation 2018). 
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