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Abstract
Accurate determination of the in situ stress domain in oil fields is of paramount importance in drilling, completion, and 
maintenance of wells and in petroleum geomechanics. Determination of the magnitude and direction of stresses induced 
by drilling around the wellbores is the first step in geomechanical studies and wellbore stability analyses. Regarding the 
importance of casing collapse problems in Marun Oil Field, as the first step of this investigation, geomechanical studies were 
conducted to determine the in situ stress domain in the failed wellbores. Using density measurements, the vertical stress 
(SV) was estimated to be within the range of 85–90 MPa for all wellbores. To estimate maximum-horizontal-stress (SHmax) 
domain, Anderson’s faulting theory and stress polygon were employed, and a value close to SV was achieved. Also, minimum 
horizontal stress (Shmin) was estimated using different approaches and was found to have the minimum in situ stress. Finally, 
the faulting regime of the areas was found to be normal/strike slip, where the stress values are close to each other due to salt 
lithology and high pore pressures in the Gachsaran Formation and thereby could be assumed as hydrostatic stresses.
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Introduction

In situ stress consists of three main components of vertical 
(SV), minimum horizontal (Shmin), and maximum horizontal 
(SHmax) stresses that are applied perpendicularly to rock at 
a certain depth. Drilling operation changes the equilibrium 
condition of in situ stress and creates a disturbed in situ 
stress state around the wellbore (Jaeger and Cook 1979). 
Such a stress disturbance around the wellbore wall cre-
ates some problems such as wellbore instability, tight hole, 
drilling-induced tensile fractures, breakout in the wellbore, 
and creep of salt layers toward the wellbore. Among the 
advantages of determining the in situ stress before and after 
drilling are the estimation of the optimum mud weight, opti-
mum directional drilling trajectory to minimize risk level 

and lower maintenance costs, studying casing collapse and 
shear, wellbore stability analysis, designing a proper drilling 
bit for further drilling, selecting suitable casings, preventing 
sand production, selecting efficient strategies for well com-
pletion, and determining the optimum exploitation from the 
oil reservoir. Drilling-induced tensile fracture and breakouts 
are both the precursors of wellbore instability, which occur 
when the stress concentration on the wellbore wall is higher 
than the mechanical strength of the wellbore wall rock (Cao 
et al. 2016; Ju et al. 2018; Taherynia et al. 2016). Besides, 
drilling-induced tensile fracture and breakouts occur when 
the stress magnitude on the wellbore wall is larger than the 
tensile and compressive strengths of the rock, respectively 
(Bell and Gough 1979; Cao et al. 2016; Horn et al. 2016; 
Taherynia et al. 2016; Ju et al. 2018). Directions of drilling-
induced tensile fracture and breakouts show the minimum 
horizontal stress (Shmin) and maximum horizontal stress 
(SHmax), respectively (Bell and Gough 1979). Breakouts in 
wellbore wall can be detected and investigated using the 
image logs and caliper measurements while drilling-induced 
tensile fractures are only identified using the image logs 
(Peška and Zoback 1995; Brudy and Zoback 1993; Lund 
and Zoback 1999; Cao et al. 2016; Horn et al. 2016). Sedi-
mentary rocks, in which oil field drilling occurs, are porous 
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and contain some fluids. Pore pressure is generally referred 
to as the fluid content of the formations. Normal pore pres-
sure (Pfn) at a depth H is the weight of fluid column above 
that depth, which is defined as:

The fluid density for seawater is within the range of 
1.03–1.07 g/cm3. Thus, normal pore pressure indicates a 
~ 10 MPa increase with a 1-km increase in depth (10 MPa/
km or 0.45 psi/ft). In many important cases, the pore pres-
sure deviates from the normal value and results in abnormal 
pore pressures (Fjaer et al. 2008).

Tests such as leak-off test (LOT), extended leak-off test 
(ELOT), micro-fracture test, and hydraulic fracturing can 
be applied to determine Shmin. All these tests are carried out 
in situ at a certain depth. To perform these tests, the fluid 
pressure is increased at a certain depth until the fracture 
initiated and/or the pre-existing fracture reopened in the 
formation. The pressure recorded at the moment of fracture 
initiation presents the pressure needed to overcome rock 
strength, i.e., Shmin (Jandakaew 2007; Dehghan et al. 2015a, 
b, 2016, 2017, Dehghan and Khodaei 2017).

One of the most frequently used methods for determining 
the domain of SHmax is to apply the stress polygon method. 
To determine the lower and upper bounds of SHmax using 
this method, we should have Biot coefficient, Poisson’s ratio, 
wellbore azimuth, mud pressure difference, sliding fric-
tion, internal friction, pore pressure, uniaxial compressive 
strength (UCS), wellbore deviation, the azimuth of SHmax, 
and breakout width  (WBO). In this study, magnitude of in situ 
stress around the Marun Oil Field’s failed wells was deter-
mined based on the field data and using the empirical equa-
tions and different methods.

Stress distribution in salt formations

Salt is one of the evaporite rocks, which is highly deform-
able with temperature and applied stresses. Stress state is 
highly complicated and varying in salt formations. Under 
the effect of in situ stress, this rock can show long-term vis-
coplastic and time-dependent (creep) behaviors (Jandakaew 
2007). Allemandou and Dusseault (1996) conducted some 
triaxial creep tests on salt and identified the considerable 
role of octagonal shear stress and deviatoric stress on its 
creeping behavior. In this regard, creep tests were carried out 
under different temperature and pressure conditions on 10 
core samples extracted from salts of the Gachsaran Forma-
tion, and their viscoplastic behavior was proved. Because of 
the role of evaporite cap rocks in hydrocarbon reservoirs and 
preventing oil escape, salt formations are suitable places for 

(1)Pfn = ∫
H

0

�f(z)gdz.

disposal of atomic waste and hydrocarbon storage (Winterle 
et al. 2012).

Due to the very low porosity and permeability of salt, 
an increase in the stress value is accompanied by its low 
compressibility and thus it starts to have a plastic movement. 
This phenomenon is attributed to the high Poisson’s ratio 
of salts, according to which when a certain stress is applied 
to the salt, its stress state becomes almost hydrostatic due 
to its incapability to keep deviatoric stresses. Stress in salts 
reaches a relaxation state and finally turns into the hydro-
static state. However, by moving from the salt toward non-
salt formations, the hydrostatic stress condition and mag-
nitude are disturbed and the vertical and horizontal stress 
values are changed (Fredrich and Fossum 2002).

Since the salt rocks are viscous and flow slowly at all 
nonzero shear stress states, it can be assumed that SV = SHmax 
= Shmin = �̄� ⋅ z , where �̄� is the mean overburden bulk density. 
Isotropic stress state is seen only in viscous rocks and very 
soft mud. Assuming an isotropic stress state of salts, the 
horizontal stress would be almost equal to overburden. So, 
the term under-balance is commonly addressed in drilling 
of a salt formation, according to which mud pressure is less 
than the vertical stress (Dusseault et al. 2004).

Marun Oil Field and casing collapse 
phenomenon

Marun Oil Field was discovered in 1963 through the seismic 
exploration technique. This oil field neighbors Kupal field 
in the north, Aghajari in the east, and Ahvaz City in the 
northwest. This field is in the eastern part of huge Dezful 
subsidence. By now, about 400 oil wells have been drilled 
in this oil field. Marun Oil Field has a NW–SE direction 
from its western to central part and a NE–SW direction in 
its eastern part. The length and the width of this field are 
65 km and 7 km, respectively. The distance between the 
reservoir crest and the deepest level of water–oil contact 
is the Asmari Formation is about 2000 m. The field has a 
fault with a similar name (i.e., Marun Fault), which is in 
the northwest of Aghajari Fault in Faulted Zagros Belt. The 
length of this NE–SE fault is about 50 km. The thrust fault 
has been thrust on the sediments of neighboring plain due to 
the performance of Marun Anticline. The evaporitic Gach-
saran Formation consists of seven members with sequence 
of anhydrite, marl, and salt layers. The first member (the 
lowest one) which is made up of anhydrite is known as the 
cap rock of the Asmari carbonate reservoir, the most famous 
hydrocarbon reservoir in Iran.

According to the report of National Iranian South Oil Com-
pany (NISOC) and Schlumberger Oil Company in 2005 about 
the casing collapse problem in this field, 48 out of 267 wells 
(17.5%) drilled since the first oil production from this field 
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(1950) until 2005 had shown casing collapse problem (Rolf 
et al. 2006). Most of these failures have occurred in members 
4–2 of the Gachsaran Formation, which consists of salt and 
associated a small portion of interlayers of marl and anhy-
drite with a varying thickness. The reason for the difference 
in thickness of this formation is the effect of tectonic of plastic 
materials that make the Gachsaran Formation. Considering 
the lithology and creep behavior with time, when the stress 
generated by the creeping movement of the Gachsaran salts 
applied on casing exceeds the collapse resistance of casing, 
it would definitely collapse (Rolf et al. 2006). Accordingly, 
it is necessary to determine in situ stress for the analysis and 
study of creep movements in the Gachsaran Formation Salts 
in the Marun Oil Field’s failed wells. Marun Anticline has an 
NW–SE direction. As can be seen from the focal mechanism 
map of earthquakes in the southwestern part of Iran (Fig. 1), 
SHmax has an azimuth of 40–45°.

Determination of in situ stress in Marun 42, 
130, and 133 wells

Determination of vertical stress (SV)

Vertical stress (SV) component is calculated from surface for 
the given depth using the density log of the wells (Fjaer et al. 
2008):

where g is gravitational acceleration, �̄�(z) is density at 
depth z, and �̄� is the mean overburden density. The den-
sity of sedimentary rocks varies with a range of 2–3 g/cm3, 
with the mean density being 2.5 g/cm3. At higher depths 
(overburden) of the reservoir, for which density logs are 

(2)SV = ∫
z

0

𝜌(z)gdz ≅ �̄�gz

Fig. 1  Stress distribution map for Iran (general azimuth of SHmax based on earthquake focal data) (Rolf et al. 2006)
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not available, density of rocks can be estimated for each 
lithology using geological graphic well logs or daily drill-
ing reports. Since the reservoir is overlain by the Gachsaran 
Formation, density log was not available for estimating the 
SV. However, as mentioned earlier, SV can be estimated by 
averaging the densities of the existing lithologies (Zoback 
et al. 2003). Using the sonic logs and laboratory tests, the 
density of marl, anhydrite, and salt was estimated to be 2.55, 
2.96, and 2.29 g/cm3, respectively, which can be averaged 
to 2.6 g/cm3. Accordingly, gradient of vertical stress in the 
Gachsaran Formation is 0.026 MPa/m. According to Eq. (2), 
SV at failure depths in Marun 42, 130, and 133 wells was 
calculated as 85.3, 88.86, and 86.58 MPa, respectively. The 
failure depths for these three wells were 3281, 3418, and 
3330 m, respectively.

Determination of minimum horizontal stress (Shmin)

Due to a lack of hydraulic fracturing and leak-off test data in 
the Gachsaran Formation of the Marun Oil Field, to calcu-
late minimum horizontal stress, mud losses information of 
the formation was used. Thus, if the mud weight leads to the 
fracture initiation and/or reopening the pre-existing fractures 

in the formation, the total mud weight can be considered 
equivalent to the minimum horizontal stress (Zoback 2010; 
Ward and Andreassen 1997; Serdyukov et al. 2016; Wang 
and Mi 2016). Based on mud weight information in the daily 
drilling reports, pore pressure in member 4 of the Gachsaran 
Formation up to the cap rock (member 1) in the Marun Oil 
Field would be about 0.022 MPa/m. This value implies the 
presence of a large amount of saline water at this depth and 
thus overpressure of the Formation. In this way, pore pres-
sure at failure depths of Marun 42, 130, and 133 wells was 
estimated to be 66.8, 73.44, and 71.55 MPa, respectively. 
Drilling in members 4–2 of the Gachsaran Formation in 
Marun 133 well shows that mud weight has increased up to 
145 pcf, which was declined to 140 pcf by the mud loss of 
22 barrels. The mud column weight pressure (i.e., well pres-
sure at the depth of failure) was calculated to be 75.85 MPa. 
Since fracture gradient of the Gachsaran Formation was 
0.024 MPa/m, due to the pre-existing fractures, the 145 pcf 
mud weight can initiate or propagate fracturing at the failure 
depth. Since the fracturing induced by mud weight increase 
up to the formation strength must occur along the direction 
of horizontal stress, by converting mud weight unit (pcf) to 
pressure unit (MPa), it is seen that mud column weight at 

Fig. 2  Stress polygon based on the Mohr–Coulomb failure criterion for Marun 130 well
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failure depth is almost equivalent to Shmin. At failure depth 
of Marun 130 well, mud weight increased up to 150 pcf, by 
which the well pressure was increased to 80.54 MPa, while 
mud weight was declined to 146 pcf.

At failure depth of the Marun 42 well, mud weight was 
increased up to 145 pcf, which was reduced to 135 pcf. At 
this moment, well pressure at failure depth was 74.74 MPa.

Moreover, Eq. (3) proposed by Hubbert and Willis (1972) 
was also used in the present work. This relation was pre-
pared by conducting a set of hydraulic fracturing tests and 
analyses. Later on, Zoback and Healy (1984) showed that 
the constant 0.5 is associated with friction faulting theory 
in which sliding friction coefficient can be considered as 0.6 
(Zoback and Healy 1984). Thus, the Shmin in the Marun 42, 
130, and 133 wells was estimated to be 76.05, 81.15, and 
79.06 MPa, respectively.

Also, Breckels and van Eekelen (2008) used hydraulic 
fracturing results in several points and extracted a relation-
ship between horizontal stress and depth. They incorporated 
the effect of the existing abnormal pressures in this equation 

(3)Shmin = 0.5(SV − Pp) + Pp.

and proposed Eqs. (4) and (5) (Fjaer et al. 2008). Also, Eaton 
(1969) proposed Eq. (6) for this purpose (Eaton 1969):

where H is depth (m), PP is pore pressure (MPa), Pfn is nor-
mal pore pressure (with respect to a gradient of 10.5 MPa/
km), and � is a Poisson’s ratio. Equations (4), (5), and (6) 
and stress polygon were used to estimate Shmin.

Determination of maximum‑horizontal‑stress 
domain (SHmax)

Although in salt cross sections SV, Shmin, and SHmax are con-
sidered to be equal, stress polygon method was employed to 
prove this assumption. In the Marun Oil field, in none of the 
damaged wells, there are no image logs in order to observe 

(4)
Shmin = 0.0053H1.145 + 0.46(Pp − Pfn) For H < 3500

(5)
Shmin = 0.026H − 31.7 + 0.46(Pp − Pfn) For H > 3500

(6)Shmin =
�

1 − �
(SV − Pp) + Pp

Fig. 3  Stress polygon based on the Mohr–Coulomb failure criterion for Marun 133 well
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the drilling-induced tensile fractures, breakouts, or natural 
fractures in the wellbore.

Through the studies performed by petroleum geomechan-
ical engineers around the world, it has been reported that 
drilling-induced tensile fractures and breakouts in wellbores 
are not related to lithology. In other words, these discontinu-
ity planes can occur in any lithology in the well drilling path. 
In this regard, image well logs such as ultrasonic borehole 
imager (UBI) and fullbore formation microimager (FMI) 
can be used to identify and analyze the magnitude of Shmin 
and SHmax. To determine SHmax using the stress polygon, it is 
necessary to have an azimuth of SHmax and breakout width 
 (WBO). Due to not having these two parameters, even having 
SV, Shmin, UCS, pore pressure, and well pressure, it is not 
possible to accurately estimate SHmax in these wells. Fig-
ures 2, 3, and 4 illustrate stress polygons obtained from the 
Mohr–Coulomb failure criterion for the Marun 130, 133, 
and 42 wells, respectively. This criterion is one of the shear 
failure criteria in rock engineering studies that can consider 
the low permeability of Gachsaran Formation.

In Figs. 2, 3, and 4, the information required for plotting 
stress polygons is presented. As can be seen, parameters 
including  WBO and the azimuth of SHmax are not available, 

which can both be extracted from image well log analyses. 
Based on earthquake focal data (Fig. 1),  WBO and azimuth 
of SHmax were considered to be 0° and 45°, respectively. The 
red parallel lines in the figure demonstrate contours of UCS, 
which were determined to be 22 MPa for the Gachsaran For-
mation salts. Moreover, the Poisson’s ratio for this forma-
tion was estimated to be 0.45 (Farsimadan 2011). Steep blue 
parallel lines, on the other hand, illustrate contours of ten-
sile strength, which are within the range of − 1 to − 2 MPa 
(Farsimadan 2011). By applying these two values and their 
intersection on stress polygon, we acquire an area (green 
shade) to calculate Shmin as well as upper and lower bounds 
of SHmax. The red and blue shades also represent the range 
of compressive and tensile strengths for the Gachsaran For-
mation salts in the different wells, respectively (Figs. 2, 3, 
and 4).

Interpretation of obtained in situ stress

The in situ stress was determined for all depths of the Gach-
saran Formation in Marun 42, 130, and 133 wells, and their 
gradients along with gradients of normal pore pressure, pore 

Fig. 4  Stress polygon based on the Mohr–Coulomb failure criterion for Marun 42 well
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pressure, and well pressure are presented in Figs. 5, 6, and 
7. As can be seen in these figures, from a depth of 3000 m 
SHmax and SV values become very close to each other, but 
they are both greater than Shmin. One explanation for this 
observation is the high pore pressure that results in a con-
vergence of stress in the stress polygon. The failure depths 
in these figures are denoted by arrows.  

It is worth mentioning that the difference of Shmin, SHmax, 
and SV (for an assumed hydrostatic condition) for all three 
wells can be due to lack of complete information, the use of 
empirical equations, and more importantly the presence of 
marl and anhydrite layers at failure depths. Another notewor-
thy point in the failure zone is the increased Shmin compared 
to fracture pressure gradient of the Gachsaran Formation. 
Table 1 summarizes the in situ stress results for Marun 42, 
130, and 133 wells. The error values obtained for estimating 
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Shmin and SHmax relative to SV by the different methods are 
shown with a +/− sign in Table 1.

Conclusion

The main conclusions of the present study can be summa-
rized as follows:

1. At studied failure depths, due to the lithology of salt (and 
its viscoplasticity property) and high pore pressure, the 
values of estimated in situ stress are very close to each 
other, and the stress state can be considered as hydro-
static.

2. The Shmin in Marun 130 well at failure depth obtained 
using the stress polygon was estimated as 79.37 MPa, 
which is slightly different from the 80.54 MPa stress 
estimated using the mud loss information. In addition, 
in this well, SV is 88.86 MPa, while the lower and upper 
bounds of SHmax are, respectively, 88.56 and 90.64 MPa. 
Considering that SV is smaller than the upper bound of 
SHmax but greater than its lower bound, the faulting stress 
regime can be considered as a combination of normal 
and strike slip modes.

3. Shmin obtained using stress polygon for Marun 133 well 
at failure depth is 76.66 MPa, which is slightly differ-
ent from the 75.85 MPa stress, obtained from mud loss 
of the formation. The upper and lower bounds of SHmax 
were, respectively, 84.15 and 86.09 MPa, while the SV 
was 86.58 MPa. Since SV is slightly larger than the upper 
bound of SHmax, it can be stated that the faulting regime 
is normal.

4. Shmin obtained using stress polygon for Marun 42 well 
at failure depth is 73.09 MPa, which is slightly different 
from the 74.73 MPa stress, obtained from mud loss of 
the formation. Also, SV at failure depth is 85.3 MPa that 
is slightly higher than the 84.1 MPa SHmax stress. Hence, 
a normal faulting mechanism can be considered for this 
well.

5. Based on the determined in situ stress, the overall fault-
ing regime of the study area was determined to be nor-
mal/strike slip.

6. The SV and Shmin values at failure depth estimated 
using the relation proposed by Eaton (1969) are closer 
(because of the parameters used in this equation). There-
fore, it is recommended for the estimation of Shmin.
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