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Abstract
The most commonly used data for reservoir description are well and seismic data. Well data such as logs typically provide 
sufficient vertical resolution but leave a large space between the wells. Three-dimensional seismic data, on the other hand, 
can provide more detailed reservoir characterization between wells. However, the vertical resolution of seismic data is poor 
compared with that of well data. Conventionally, seismic data have been used to delineate reservoir structure; however, 
seismic data can be used for reservoir characterization such as porosity. Therefore, we can combine these two types of data 
to obtain reservoir parameters such as porosity and saturation. It is available the desired parameter (such as porosity) of the 
number of wells in the reservoir and seismic cube. And we are looking for the parameter estimation in the whole reservoir. To 
do this, there are several methods including multiple linear regression, neural networks, and geostatistical methods. Therefore, 
by determining the reservoir properties and correctly estimating these parameters, optimization can be performed with fewer 
wells, and the costs of exploration and production are reduced. In this paper, we apply these methods on the available data 
for an oil field in southwest Iran to obtain the porosity in a total reservoir cube, and these methods are then compared with 
one another. The results clearly show the superiority of neural networks compared with the other methods in estimating the 
reservoir parameter. The results also show that although estimation accuracy is increased significantly with the use of the 
geostatistical approach, this method requires that a sufficient number of well logs, representing all the fields under investi-
gation, be provided in order to improve the geological model obtained by the multi-attribute and neural network methods.

Keywords 3D seismic · Seismic attributes · Multiple linear regression · Neural networks · Geostatistical method

Introduction

Well logs and seismic exploration data are commonly used 
for the evaluation and exploration of hydrocarbon resources 
(Bahmaei and Hosseini 2019). One of the most important 
tools for reservoir evaluation and description of reservoir 
parameters is well log data (Hosseini et al. 2019). Informa-
tion such as porosity, p-wave velocity, shale volume, water 

saturation, permeability, lithology, and production zones can 
be obtained from the processing and interpretation of well 
logs (Gholami and Ansari 2017). Although this type of data 
has higher resolution than seismic data, it relates to a small 
part of the reservoir or the well environment, and consid-
ering the complexities of the geology, errors will occur in 
generalizing the data to the whole reservoir (Somasunda-
ram et al. 2017). On the other hand, seismic data contain 
extensive information about the rock and fluid conditions 
in the ground (Maity and Aminzadeh 2012). For example, 
3D seismic data reveal the acoustic properties of a reservoir 
covering a continuous and numerically large part of the field 
(Ogiesoba 2010; Van Riel 2000). The accuracy of seismic 
data is lower than that of well data, but the breadth and 
extent of this data set is very large—in other words, cover-
ing a greater area of the region—which is its key advantage 
(Russell et al. 2003). Integrating well and seismic data pro-
vides a better description of the reservoir (Oliveira et al. 
2005; Hampson et al. 2001). By combining this information, 
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lateral changes in reservoir properties can be more accu-
rately observed. The simultaneous use of both types of data 
can reduce errors and expand the results. Typically, a statis-
tical or intelligent prediction method is used for communi-
cation between seismic data and wells. When the commu-
nication involves an oil reservoir, the porosity and p-wave 
velocity are the first parameters that attract the researcher’s 
opinion (Pramanik et al. 2004; Brown 2001). The parameters 
of oil issues play a critical role in creating a permeable res-
ervoir environment (Chopra and Marfurt 2005). As a result, 
prediction accuracy is not only directly related to increased 
production, but is also critical for enabling more reliable 
decisions in the field. There are several ways to measure 
porosity, including well core analysis, microscopic and 
macroscopic studies, and analysis of geophysical well log 
data (Bahmaei and Hosseini 2019; Maity and Aminzadeh 
2015). In this project, we aim to estimate porosity using seis-
mic attributes. Estimation of porosity using seismic data has 
been carried out by various researchers and in various forms. 
For example, Duffaut et al. (2018), Landrø et al. (2019), 
Duffaut and Landrø (2007) and Holt Rune et al. (2018) used 
seismic studies to estimate porosity and p-wave velocity in 
different fields. Yan et al. (2018) studied the effect of a par-
ticular attribute on porosity and p-wave velocity estimation. 
What distinguishes the current project from similar studies is 
the method of assessment. An important issue that is not dis-
cussed in any of the other studies is taking into account the 
attributes that in addition to having a logical-mathematical 

relationship have a significant relationship with porosity 
and p-wave velocity, such that they can be used in the esti-
mation process. If this significant relationship is lacking, 
even if seemingly good results are obtained, the estimation 
accuracy may be unreliable. The importance of porosity as 
an effective reservoir parameter on the one hand, and the 
variety of seismic attributes having important information 
for identifying the lithology and petrophysical parameters 
on the other hand, has spurred the development of many 
types of software for studying porosity, given the strong 
support of the oil economy. The simultaneous evaluation of 
three-dimensional seismic and well log data in modeling, 
inversion, analysis, and estimation is an example of these 
improvements. In light of this, detailed studies were carried 
out on the porosity parameter and methods of measuring 
it, where attributes were found to be influenced by these 
parameters, and regression and neural networks analytical 
methods were employed. The 3D seismic studies for evalu-
ating porosity in an oil field in southern Iran began with a 
detailed investigation of well log trace and seismic attrib-
utes. After the interpretation of specific horizons, acoustic 
impedance forward modeling was performed using seismic 
attributes and quality control with well log data. Using this 
model and inversion, regression methods including single 
attribute, multi-attribute, and neural networks were applied 
to estimate the porosity in certain parts of this field. Among 
the attributes based on mathematical equations, porosity 
seemed appropriate to study, as the use of some of them 

Fig. 1  Location of the oil field under study in central Zagros in the Dezful Embayment area (NIOC report)
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reduces the accuracy of the estimations. Therefore, a study 
of existing attributes was carefully performed with regard 
to a logical relationship with porosity that was neglected 
in similar studies. The results obtained clearly showed that 
after removing nonphysical attributes and reanalysis, estima-
tion greatly improved, while the coherence of the porosity 
estimation also increased.

Geology of study area

The oil field under study is located in the western part of 
Iran in Ilam province along the boundary between Iran and 
Iraq (Fig. 1). The majority of research projects and inves-
tigations generally take place in this region. The length of 
this reservoir is about 12 km from northwest to southeast, 
with an overall area of 120 km2. The rocks in this field are 
composed of two distinct geological formations, Asmari 
carbonate rocks and the Kalhor formation, where consid-
erable research has been performed on the Asmari forma-
tion. Lithological characterization and classification of the 
Asmari Formation in the oil field under study was based 

Fig. 2  Map of the locations 
of wells drilled in the area of 
seismic acquisition (HRS)

Table 1  Specifications of wells 
drilled in the oil field

Well name Unit X location Y location Inline Xline Drilling depth

1 m 12.00 41.00 13 42 1723
2 m 65.00 40.00 66 41 1718
3 m 63.00 28.00 64 29 1717
4 m 80.00 29.00 81 30 1696
5 m 26.00 41.00 27 42 1698
6 m 38.00 41.00 39 46 1730
7 m 96.00 40.00 97 48 1712
8 m 38.00 59.00 39 60 1729
9 m 96.00 27.00 24 28 1695
10 m 150.00 17.00 120 18 1690
11 m 55.00 22.00 56 20 1696
12 m 51.00 39.00 52 40 1696
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solely on the study of core recovery. The carbonate section 
of the oil field is composed of alternating layers of limestone 
dolomite and detrital dolomites, with about 15% porosity. 
The Asmari formation in this area is heavily fractured, so 
the majority of the oil content is stored in these joints. As 
a result, there are two types of effective porosity, matrix 
and fracture porosity, hence making the production method 
binary. In the first section, the thickness of carbonates gradu-
ally decreases downward and the anhydrite concentration 
increases, as characterized by dendritic interference between 
anhydrite needle-shaped crystals into the carbonate matrix 
near the upper part of the Kalhor anhydrite. The Asmari car-
bonates in the southeastern part of this field in well 1 have 

a maximum thickness of 72 m, which decreases toward the 
east and terminates at a thickness of 23 m. The recovered 
cores obtained from drilling wells 2, 3, 5, 10, 11 and 12 
indicated that each consisted of 23 m of the Asmari Forma-
tion. The second section of this field is related to the Kalhor 
formation, which is the evaporite sediment, and covers the 
western and southwestern sectors. There is a clear transi-
tional zone between the Asmari carbonate rocks and anhy-
drite rocks, which can be characterized by variable intru-
sions of anhydrite into the carbonate. During the drilling of 
wells 1 to 10, the overall thickness of this sector revealed an 
increase toward the northeast of the oil field. The maximum 
thickness of anhydrite in the nearby well (well 10) is 175 m, 

Fig. 3  One of the seismic sections of the Asmari and Bangestan horizon data in the field of study over a range of 1800–2300 ms

Fig. 4  Interpretation of the Asmari zone (Petrel E&P software)
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which indicates the significant depth of the central evapo-
rite basin of the Kalhor area. The physical characteristics 
of these sectors include a series of loose anhydrite layers 
and dark cryptocrystalline, interbedded with thick brown 

salt and thin crystalline dolomite, as well as marl and lime-
stone. The contact area of th sector is concordant with the 
underlying Pabdeh formation. The intervening layer between 
the Kalhor and Pabdeh formations consists of compacted 

Analysis of Seismic Attributes to Estimate Reservoir Petrophysical Parameters

Interpretation of seismic horizons Study of Regression and Neural 
Network methods

Study of Seismic Attributes

Loading Interpretation Data of 
Seismic Horizons

Loading Interpretation Seismic 
Data

Loading Well logging Data
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Fig. 5  Process used to estimate the effective porosity in the field of study
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anhydrite with a thickness of 7 m. During the horizontal well 
design survey, 25 vertical wells were drilled in this field for 

production purposes, of which information from eight was 
acquired. These include wells 1, 2, 4, 5 6, 10, and 12, which 

Fig. 6  Porosity log of well 1

Fig. 7  Cross-section seismic 
data at inline 40 and in the loca-
tion of well 4
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are located in the eastern section of the field. To date, the 
17 remaining reservoirs remain undisturbed. This reservoir 
has several layers with water–oil and gas–oil contact zones, 
where their information was obtained via well logs. These 
layers are located at the upper levels of the reservoir, at a 
subsea depth of 635 to 703 m. This means that these layers 
take up 70 m of the reservoir, which is illustrated using 3D 
topography.

Study data

The data used to study this field include three-dimensional 
seismic data, well data and interpretation of their horizons. 
The well data are related to the 12 wells for which logging 
operations were carried out after the drilling in the area and 
penetration to Asmari depth,, an example of which is shown 
in Fig. 2. It should be noted that at all the above data sets, a 
check shot is available. Finally, all the data in HampsonRus-
sell software (HRS) were analyzed. A map of the location of 
the wells drilled in the area of seismic acquisition and well 
specification data are shown in Fig. 2 and Table 1, respec-
tively. The three-dimensional seismic data collected by the 
National Iranian Oil Company (NIOC) are in SEG-Y file 
format, in a range of 0–1500 ms and 16-bit resolution, which 
includes the Asmari horizons and Bangestan (Fig. 3), and 
better show the Asmari seismic reflection horizon (Fig. 4).

The interpretation of seismic horizons is the most impor-
tant constraint used. All existing horizons were examined, 
and Asmari zone selection and interpretation was performed 
in Petrel E&P software (Schlumberger) (Figs. 3, 4), and 
all data were then analyzed in HampsonRussell software 
(CGG).

Methodology

The purpose of seismic inversion is the conversion of seis-
mic data to the network of acoustic impedance logs in each 
trace. This process involves removing the effects of seis-
mic wavelets applied during the operation and processing 
of the data. The steps required to perform seismic inversion 

Fig. 8  Wavelet estimation from seismic and well log data

Fig. 9  Showing correlation of 
seismic and well log data by 
90% in the well 8 (HRS)
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are presented in Fig. 5. The view shows the process stud-
ies to estimate the effective porosity and p-wave velocity 
is shown in the field of study. In this study, performing a 
seismic inversion on the three-dimensional seismic data of 
the desired field in six steps has been followed.

Seismic inversion steps

Seismic inversion steps will be explained below.

Gathering the input data and importing to HampsonRussell 
software (HRS)

The input data include the data from wells, seismic data, 
and constraints. The most important logs for the seismic 
inversion process are the sonic and density logs. Constraints 
are all the non-seismic data that in addition to the imported 
wells the stage inversion and limit its performance, helping 
to obtain more results. The most important constraints are 
the results of seismic interpretation (interpreted horizons). 
Other results including the core, test production well and 
reservoir pressure can be used as constraints to control and 
limit the inversion operation. In this study, to estimate poros-
ity, we divided the data into three categories to examine 
the impact of geostatistics. Regression, neural networks, 
and geostatistical methods were used to estimate porosity, 
while for estimating the p-wave velocity and data not classi-
fied, only regression and neural networks methods are used. 
Categories of data for estimating porosity are as follows:

• The first category (dataset 1) includes the seismic data for 
three wells with the required diagrams (porosity, sonic 
and density). The required data are complete, but the 
main problem is in the very low number of wells, and 
cannot from that in the work of geostatistical methods to 
be used. In these data sets, in order to start work, seismic 
horizons must first be interpreted.

• The second category (dataset 2) includes the seismic data 
and 7 wells with the required diagrams (porosity, sonic 
and density).

Table 2  Rounded amounts of 
correlation between seismic and 
well log data in the drilled well 
locations

Number of well Correlation 
(%)

1 88
2 76
3 79
4 82
5 87
6 78
7 89
8 90
9 85
10 89
11 88
12 77

Fig. 10  Initial model of acoustic impedance based on the interpreted horizons and well log information (HRS)
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• The third category (dataset 3) of data includes the seis-
mic data, inversion results and 12 wells with porosity and 
sonic logs.

Before estimating the distribution of rock properties in 
the study area, existing well chart data must be loaded in 
the GeoView software database. The data set includes the 
following:

• A SEGY file, seismic.sgy, which is a 3D post-stack data 
set.

• 12 wells that tie the two SEGY files. Each of these wells 
contains a porosity log, a sonic log, and a check-shot file.

The porosity, sonic and density logs are shown in Fig. 6, 
and a cross-section from seismic data and well log data is 
shown in Fig. 7.  

Fig. 11  Result in display of seismic acoustic impedance inversion based on a model generated for the location of well 8 (HRS)

Fig. 12  Training data in well 
locations along with p-wave 
velocity
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After displaying the seismic cross-section, we investigate 
the seismic horizons again in peak horizon in HRS.

Correction of well log using the check shot

The first step should be correcting the log data and seismic 
sections. This is done using the check shot. A check shot is 
a log that is able to convert other logs from depth to time, 
which can be used to correlate the data between wells and 
seismic sections.

Extracting seismic wavelets

At this stage, the seismic wavelet in the zero phase or mini-
mum distance from the well is extracted from the seismic 
data. The sampling rate is from 2 to 1300 ms, the wavelet 
length is equal to 150 ms, and taper length is 20 ms (Fig. 8).

Correlation of seismic and well log data

As mentioned above, for the integration of seismic and well 
data, this data should be scaled together. Since seismic data 
are based on time and well log data on depth, this is done 
using information from the check shot. Using this informa-
tion, well log data will be converted from depth to time. In 
addition to the correlation of seismic and well data (seismic-
well tie), the wavelet must be estimated. This is done sta-
tistically at the beginning of this work using seismic data, 
and synthetic seismograms are then constructed, resulting 
in increased accuracy. For this purpose, and by performing 
stretch and squeeze operations, correlation of over 90% was 
obtained between the graph synthetic seismograms and real 
seismograms measured in the well (Fig. 9, Table 2). Now, 
by using the well and seismic data, a more accurate wavelet 
can be obtained for use in inversion, increasing the accuracy 
of the correlation.

Creating the initial model of acoustic impedance

For performing inversion operations, an acoustic imped-
ance model based on interpreted horizons and well log data 
must first be generated. This model for the analysis of lateral 
changes will help in creating synthetic seismograms for a 
layer sequence to investigate the effect of changes in model 
parameters on form seismograms will be done. The p-wave 
velocity and density data from the well are used to calculate 
the acoustic impedance, and then the reflection coefficient 
is used with grids to interpolate the acoustic impedance 
calculated in the interpreted horizons using simple kriging 
(Fig. 10).

Table 3  Variogram parameters in this study

Number of structures One

Variogram parameters
 Nugget 0.10
 Type Spherical
 Sill 26
 Range 39.07
 Anisotropy factor 1
 Principal direction 0
 Exponent 1

Ordinary Kriging parameters
 Minimum number of samples 1
 Maximum number of samples 12
 Maximum radius 93.9

Fig. 13  Data imported to the software in the EMERGE section include the chart of the desired parameters from the wells (red), trace around the 
well (black), and results from inversion around the wells (blue)
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Inversion

In the inversion phase, this operation is applied to the seis-
mic data in the well locations that help to better understand 
the variations in impedance in different sectors (EMERGE 
and ISMAP Documentation 2006). The operation is per-
formed based on the initial model from the previous stage, 

Table 4  Part of the seismic attributes is calculated to increase the estimation error for dataset 1

In this case, the time attribute is the best

Column 1 Column 2

Target Attribute Error (%) |Correlation| (%) Target Attribute Error (%) |Correlation| (%)

Sqrt(porosity) Inversion result 2.616 89.2 Sqrt(P-wave) Time 2.870 77.4
(Porosity)**2 (Inversion result)**2 2.618 91.1 P-wave Time 2.907 075.4
Log(porosity) Sqrt(inversion result) 2.623 88.1 (P-wave)**2 Time 2.027 70.3
1/(Porosity) Log(inversion result) 2.624 86.2 1/(P-wave) (Inversion result)**2 2.188 81.5
Porosity Inversion result 2.635 89.6 (P-wave)**2 1/(inversion result) 2.300 79.9
Log(porosity) Inversion result 2.641 88.5 (p-wave)**2 Integrated absolute ampli-

tude
2.428 61.1

Sqrt(porosity) Sqrt(inversion result) 2.659 88.7 P-wave Integrated absolute ampli-
tude

2.452 66.4

Porosity (Inversion result)**2 2.677 89.3 Sqrt(porosity) Integrated absolute ampli-
tude

2.474 68.4

Log(porosity) Log(inversion result) 2.701 87.6 Log(porosity) Integrated absolute ampli-
tude

2.502 69.9

Porosity Sqrt(inversion result) 2.727 88.9 1/(Porosity) Dominant frequency 2.549 69.6
1/(Porosity) Sqrt(inversion result) 2.734 86.1 Log(porosity) Dominant frequency 2.551 67.4
Sqrt(porosity) (Inversion result)**2 2.770 87.8 Sqrt(porosity) Dominant frequency 2.562 65.8
Sqrt(porosity) Log(inversion result) 2.778 87.7 1/(Porosity) Integrated absolute ampli-

tude
2.578 71.5

(Porosity)**2 Inversion result 2.810 89.6 Porosity Dominant frequency 2.584 63.8
Porosity Log(inversion result) 2.881 87.5 (Porosity)**2 Dominant frequency 2.679 59.7
1/(Porosity) 1/(inversion result) 2.885 85.5 Log(porosity) Average frequency 2.737 64.1
Log(porosity) (Inversion result)**2 2.942 86.2 1/(Porosity) Average frequency 2.739 66.7
(Porosity)**2 Sqrt(inversion result) 3.024 87.9 Sqrt(porosity) Average frequency 2.745 62.2
1/(Porosity) Inversion result 3.055 85.1 Porosity Average frequency 2.762 60.8
Log(porosity) 1/(inversion result) 3.066 84.8 (Porosity)**2 Average frequency 2.834 54.9
Sqrt(porosity) 1/(inversion result) 3.170 84.2 Porosity Instantaneous frequency 2.450 40.3
Porosity 1/(inversion result) 3.307 83.1 Sqrt(porosity) Instantaneous frequency 2.456 41.7
(Porosity)**2 Log(inversion result) 3.369 85.7 Log(porosity) Instantaneous frequency 2.470 42.8
1/(Porosity) Time 3.802 80.6 (Porosity)**2 Instantaneous frequency 2.477 36.9
Log(porosity) Time 3.842 78.9 1/(Porosity) Instantaneous frequency 2.523 44.5

Table 5  The results of applying single-attribute regression on the data

Single attribute 
analysis

Appropriate attribute Correlation Average 
error 
(%)

Dataset1 Time 0.53 5.44
Dataset2 1/(inversion result) 0.435 6.04
Dataset3 Sqrt(inversion result) 0.81 3.51 Fig. 14  Reason for creating additional error with increasing excessive 

attributes
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and after the importing of seismic data, wavelet and initial 
model, impedance cubes can be achieved. The initial model 
will be optimized by seismic inversion, the results of which 
results, for example, are displayed in Fig. 11.

Here, the p-wave velocity or sonic log and effective poros-
ity of the seismic attribute will be estimated. To estimate the 
rock properties, the desired parameter must be considered 
as a target log. In Fig. 12, the total input for estimating the 
p-wave velocity along the target window from Asmari to 
Bangestan is shown for wells 5 and 6.

Using regression techniques, neural networks, and geo-
statistical methods, the porosity of the reservoir is then esti-
mated, and the velocity is estimated using only the regres-
sion and neural network.

ANN model and parameter selection for this study

This study used a multi-layer feed-forward network (MLFN), 
radial basis function (RBF), and probabilistic neural network 
(PNN).

Geostatistical method steps

The geostatistical method used is from ISMap modules in 
HampsonRussell software. In variogram modeling (well to 
well), we must first calculate the variogram for the well data. 
By using the parameters shown below, we choose to calcu-
late an isotropic variogram with six offsets ranging from 0 to 
42 units. The default variogram model is a spherical model 
with a single structure. The parameters are automatically set 
by the program in such a way as to fit the measured points. 

Variogram parameters and ordinary kriging parameters are 
shown in Table 3. 

To variogram modeling (seismic to seismic), collected 
kriging, and external drift, the two-dimensional attribute that 
it is calculated in the previous step is checked, and the most 
highly correlated attribute is used for the single-attribute 
geostatistical estimation. In addition, multi-attribute analysis 
is performed.

Results and discussion

Estimation of porosity using the regression method

1. Import the well log and seismic data and calculation of 
various seismic attributes (Fig. 13). 

2. The list of various attributes prepared is given in 
Table 4:

3. Table 4 above shows the different attributes along with 
their error, arranged in order of increasing error. If only 
one attribute (best attribute) to be used in estimating, 
the results for the three datasets are as follows. For the 
porosity estimation in the area, among the three data set, 
the third set shows the least error. The reason for this 
high correlation is because of the heterogeneous data in 
this case,and as a result the error is reduced (Table 5).

4. Multi-attribute analysis: Evaluation of different attrib-
utes and attribute designations that will help to increase 
the accuracy of estimates. Taking 10 attributes and for 
convolution operator length of 5, the estimation error 
and validation for the second category data will be as 
follows:

  With an increasing number of attributes, the correla-
tion of well data with estimations increases, and their 
general error (black curve) is reduced, which means 
that by increasing the number of attributes, the existing 
relationship between the data in the location of the wells 
is better estimated. The greater number of attributes to 
mean is the fitness of a polynomial with more order 
on the data, but after some time, the validation error 
decreases. The estimation error for other parts of the 
well increases, and increasing the number of attributes 
leads to an error in the final result (cubic porosity). This 

Fig. 15  Result of multi-attribute analysis (10 attributes by length 
operator 5) for the second category of data. The black curve repre-
sents total failure, and the red curve represents validation error

Table 6  The results of applying 
multi-attribute regression on 
the data

Multi-attribute 
analysis

Number of appropriate 
attributes (for L = 5)

Correlation 
(training)

Average error 
(training)

Correlation 
(validation)

Average 
error (vali-
dation)

Dataset1 2 0.64 4.92 0.63 5.02
Dataset2 8 0.61 5.30 0.53 5.73
Dataset3 3 0.86 3.04 0.80 3.60
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Fig. 16  Porosity obtained by applying multi-attribute regression on the second category data at one section and the desired well parameters

Fig. 17  Diagram of estimated 
porosity versus actual porosity 
for the second category data 
using multi-attribute regression

Table 7  Results of evaluation of various networks for the first set of 
data

Dataset1 Type Train 
Corr

Train Err Valid. 
Corr

Valid. 
Err

Network_1.1 PNN 0.82 3.72 0.74 4.31
Network_1.2 MLFN 0.77 4.07 0.68 4.78
Network_1.4 RBF 0.76 4.18 0.70 4.63

Table 8  Results of evaluation of various networks for the second set 
of data

Dataset2 Type Train 
Corr

Train 
Err

Valid. 
Corr

Valid. 
Err

Network_2.1 PNN 0.83 4.04 0.48 5.86
Network_2.2 MLFN 0.62 5.24 0.26 8.67
Network_2.4 RBF 0.80 4.13 0.40 6.31
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issue can be better explained in Fig. 14. Suppose that 
the breakers chart is the overall structure of ruling on 
the entire data, but the dark line is related to more minor 
structures prevailing on the data in the location of the 
well. With increasing, excessive attribute to bold curve 
will be reached, which leads to an error in the estima-
tion.

  As shown in Fig. 15, for more accurate estimation of 
porosity in the second category of data, eight attributes 
are used. This will be done similarly in the other two sets 
of data.

Table 9  Results of evaluation of various networks for the third set of 
data

Dataset3 Type Train 
Corr

Train 
Err

Valid. 
Corr

Valid. 
Err

Network_3.1 PNN 0.84 3.26 0.81 3.53
Network_3.2 MLFN 0.82 3.85 0.78 3.97
Network_3.4 RBF 0.83 3.39 0.81 3.59

Fig. 18  Porosity obtained from applying multi-attribute regression on the third category data at one section, and the desired well parameter

Fig. 19  Diagram of estimated 
porosity versus actual porosity 
for the data third category by 
using multi-attribute regression
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5. Applying multiple linear regressions attributes and cal-
culates the desired parameters in the well location and 
verifies correlation.

Now the attributes selected in the previous step are 
entered into the calculations, and errors in correlation can 

be checked. The results of the application of multiple linear 
regression to the attributes are given in Table 6.

In this case, by changing the convolutional operator 
length, the number of suitable attributes changes, but the 
final correlation error does not change significantly. By 
increasing the length of the convolutional operator, the 

Fig. 20  Porosity obtained from the PNN network applied to the second category data at one section, and to the desired well parameters

Fig. 21  Diagram porosity esti-
mates versus actual porosity for 
the second category using the 
network PNN
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number of attributes is reduced. For the calculation inter-
val, the number of data in the third category is the lowest, 
and the number in the first category is the greatest. It can 
be concluded that whatever desired range be less, because 
of the reduced heterogeneity of the data, estimation can be 
performed more easily and accurately. The results obtained 
by applying this method using selected attributes on the seis-
mic data in the area of the well or the desired reservoir are 
given in Fig. 16.

As can be seen in Fig. 16, the porosity in the downhole 
diagram and section estimated with multi-attribute regres-
sion shows that this is not a good fit. This is because of the 
low correlation of this method (0.61) and the lack of suf-
ficient accuracy in the correlation of well and seismic data. 
The downhole diagram is not on the proper seismic section. 
This can also be seen in Fig. 17.

Fig. 22  Porosity obtained from the PNN network applied to the third category data at one section and the desired well parameter

Fig. 23  Diagram porosity 
estimates versus actual porosity 
for the third category using the 
network PNN
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Estimation of porosity using neural networks

Here, we are looking for a nonlinear relationship between 
the well and seismic data. As mentioned, this goal can be 
achieved using several algorithms to train the network. Here, 
three networks, i.e. PNN, MLFN, and RBF, are examined 
and compared. Eventually, the best network to compare with 
the other two methods (linear regression and geostatistical) 
is selected, and is used to estimate the parameters of inter-
est. Neural networks, such as linear regression, the desired 
parameter in the seismic cube and the form of three-dimen-
sional measures. In this method, in the following order we 
will act:

1. Learning network by using the selected attribute in the 
previous step and then validation of trained networks:

  Tables 7, 8, and 9 show the results for training and 
validation of different networks on three available data 
series (Tables 7, 8, 9).

According to these tables, the PNN network contains the 
highest correlation for training and validation, and the low-
est error. This mainly because of the internal structure of 
the data. Determining the most appropriate method for the 
estimation is dependent on the nature and quality of the data. 
On the other hand, this network requires less time for train-
ing and is faster than the other networks trained.

• Applying the trained network to the seismic data and 
obtaining the porosity cube

  As mentioned above, the PNN network showed the 
highest correlation for this series of data, and therefore 
this network was applied to the data, resulting in a sec-
tion as shown in Fig. 18. Here, even though the network 
has a high relation (0.83), the porosity in the downhole 
chart and section estimated was not a good fit. As already 
mentioned, the main reason for this phenomenon lack of 
correct matching well data on the seismic section. This 
phenomenon can also be seen in Fig. 19. If the data well 
properly and carefully was on the seismic section, trend 
data from the red line in the figure which has a 450 slope, 
will follow. But as can be seen, data trends follow from 
the line with a slope of less (Figs. 20, 21, 22, 23).

Fig. 24  Variogram obtained from well data for the third category of 
data

Fig. 25  Porosity obtained from 
ordinary kriging using structure 
obtained from well data in the 
second category
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Estimation of porosity using geostatistical methods

As discussed earlier, with the geostatistical methods we ini-
tially examined the spatial structure of the data, and then, 
using the available data and kriging equations, we estimated 

the size of the desired parameter in distant parts of the well. 
We applied these methods as follows:

• Reading the well log data into ISMAP from GeoView
• Variogram modeling (well to well)

Here we examine the spatial structure between well logs. 
The models fitted to variogram data for the second and third 
data sets are shown in Fig. 24. As previously mentioned, 
because the first category of well data is small, the spatial 
structure cannot be checked, and therefore geostatistical 
analysis is not applicable for this data category (Fig. 24).

Fig. 26  Porosity obtained from 
ordinary kriging using structure 
obtained from well data in the 
third category

Table 10  Evaluation of different attributes in the second category

Well log data Seismic data Correlation

1 Den-porosity Seismic freq rms average 0.862659
2 Den-porosity Seismic length 0.696151
3 Den-porosity Seismic amp rms average 0.542924
4 Den-porosity Seismic phase rms average − 0.534704
5 Den-porosity Seismic amp rms average 0.476309
6 Den-porosity Seismic envl rms average 0.463962
7 Den-porosity Seismic integrated rms average 0.406331

Table 11  Evaluation of different attributes in the third category

Well log data Seismic data Correlation

1 Porosity Inversion ismap 0.862659
2 Porosity Seismic ismap amp rms average 0.696151
3 Porosity Seismic ismap envl rms average 0.542924
4 Porosity Seismic ismap freq rms average − 0.534704
5 Porosity Seismic ismap phase rms average 0.476309
6 Porosity Seismic ismap length 0.463962
7 Porosity Seismic ismap integrated rms 

average
0.406331

Fig. 27  Spatial structure of the second seismic data
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• Applying the ordinary kriging on the well data and esti-
mation of the desired parameter in distant parts of the 
well (Fig. 25, 26)

At this stage, only data from the well are used for esti-
mation. In fact, we averaged the data from the well in the 
desired range, and then using the kriging geostatistical 
estimator, the desired parameter in the other location was 
obtained. The results for the above two categories of data in 
the one page are shown in the picture above.

• Reading the seismic data into ISMAP
• Creating data slices

At this stage, seismic indicators will be calculated in the 
range of data, and attributes in two-dimensional form in the 
target horizon are obtained, which are used for the following 
geostatistical analysis.

• Reading data slices into ISMAP, variogram modeling 
(seismic to seismic), collocated kriging, external drift

At this stage, the two-dimensional attribute calculated in 
the previous step is checked, and the attribute that is most 
highly correlated is used for the single-attribute geostatisti-
cal estimation (Tables 10, 11).

The variogram seismic data (seismic to seismic) are now 
calculated as follows (Figs. 27, 28):

Next, consolidated dependent kriging using the above 
structure will be calculated. Consolidated dependent krig-
ing is one of a variety of co-kriging methods. It is used when 
secondary data (seismic) exist in all parts of the grid, such as 
when three-dimensional seismic data are used (Figs. 29, 30).

• Multi-attribute analysis

Here, more than one attribute is used, and stepwise 
regression is employed to selecti the best attributes. The 
number of the appropriate attributes is selected according 
to the grid, and a two-dimensional map (EMERGE slice) is 
obtained (Figs. 31, 32).

Now attributes are added to the map obtained in the previ-
ous step, and the correlation is verified (Table 12):

Structural analysis is performed for this new seismic data, 
and the results are shown in Figs. 33 and 34.

Fig. 28  Spatial structure of the third seismic data

Fig. 29  Porosity obtained by 
dependent kriging using the 
dominant structure on seismic 
data in the second category
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Then, using the variogram above, conventional kriging is 
applied to obtain the results shown in Figs. 35 and 36:

As we know, the geostatistical method measures errors in 
all predicted points. As shown in Fig. 37, prediction error 
is lowest around the well, and increases with increasing 
distance from the well. This represents the impact of the 
spatial structure and the location of the data on the statisti-
cal method).

Analysis of results

Now, the three methods are compared with one another in 
each of the data categories. Estimation error and data cor-
relation for each data set are summarized in Tables 13, 14, 
and 15. In the first category, geostatistical analysis was found 
to be the best and most accurate method, and yielded higher 
correlation and lower estimation error than multi-attribute 

Fig. 30  Porosity obtained by 
dependent kriging using the 
dominant structure on seismic 
data in the third category

Fig. 31  Results of multi-attribute regression for the second category of data
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analysis. In the second data category, the opposite is the 
case. This may be explained by the small estimation range, 
and simply the nature of the data. When the relationship of 
the data is linear, multi-attribute analysis is the best method. 
Using other methods with this data category leads to the 
creation of additional errors. Indeed, whether one method 
is superior to the other dependent on the nature and quality 
of the data (Figs. 38, 39, 40).

As was observed, the neural networks and multi-attribute 
analysis methods eventually measure the desired parameter 
in the form of a three-dimensional cube, while the geosta-
tistical method results in a two-dimensional form, shown on 
one page. To compare these methods, they can be averaged 

Fig. 32  Results of multi-
attribute regression for the third 
category of data

Table 12  Verification of correlation attributes by adding multi-attrib-
ute analysis in the second category of data

Well log data Seismic data Correlation

1 Den-porosity Den-porosity using 2 attributes 0.953242
2 Den-porosity Seismic freq rms average 0.862859
3 Den-porosity Seismic length 0.696151
4 Den-porosity Seismic amp rms average 0.542924
5 Den-porosity Seismic phase rms average − 0.534704
6 Den-porosity Seismic amp rms average 0.476309
7 Den-porosity Seismic envl rms average 0.463962
8 Den-porosity Seismic integrated rms average 0.406331

Fig. 33  The structure of the 
second seismic attributes
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from the porosity cube at the same level the geostatistical 
analysis has calculated porosity, resulting in the form of two-
dimensional and on one page achieved. This is performed 
by data slicing with the software. Which data at the level of 
interest does average. As can be seen in Fig. 41, for the third 
category data, the geostatistical method provides an estima-
tion of the data with greater precision and better quality, 
especially around wells. However, the maps obtained with 
the three methods all achieve a good approximation. With 
regard to the difference between the porosity obtained by the 
geostatistical method and the other two methods, the poros-
ity estimated by the geostatistical method is about 2% lower 
than that obtained with the other two methods (Figs. 42, 43)

Conclusions

1. In the process of computing multiple regression meth-
ods, it was found that the use of a greater number of 
attributes resulted in better correlation of the estimated 
data with actual data on the location of wells. However, 
this did not necessarily lead to increased accuracy in 
data estimation distant from the well and thus the gener-
alizability of the method. Different attributes should thus 
be reviewed and evaluated in order to select attributes 
that help to increase the accuracy of estimates in loca-
tions remote from wells.

2. Attributes used in the estimates must have a physical 
connection with the desired parameter, and attributes 
that are unrelated to the desired parameter (such as 
azimuth or curvature attributes for porosity) should be 
removed from the list of attributes and analysis.

3. Since physically, porosity provides the greatest impact 
on the density and speed of sound, and as a result acous-
tic impedance, attributes obtained from the results of 
seismic inversion are generally best for estimating reser-
voir parameters, especially porosity. Inversion accuracy 
will have a large impact on the accuracy of the estimated 
data, so the seismic inversion operation must be per-
formed carefully and accurately.

4. Care must be taken in the matching of well data to the 
seismic data, because it can have a significant impact 
on the results, and if is not done correctly, it will lead to 
differences in the final result.

Fig. 34  The structure of the second seismic attributes

Fig. 35  Result of geostatisti-
cal estimation of porosity on 
the one page for the second 
category of data
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Fig. 36  Result of geostatistical 
estimation of porosity on the 
one page for the third category 
of data

Fig. 37  Map of estimation error 
distribution



1312 Journal of Petroleum Exploration and Production Technology (2020) 10:1289–1316

1 3

Fig. 38  2D porosity from 
PNN_dataset2

Fig. 39  2D porosity from multi-
attribute_dataset2
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5. The results of linear regression show lower correlation 
and higher error than the other two methods. In contrast, 
the neural network approach has a specific equation and 
correlation coefficient and fixed error. While equations 
and the nature of the data in the artificial neural network 
are hidden, and correlation questions with the aim of 
estimating error are also random and may change each 
time the program is run, because of the higher compli-
ance with the neural network approach, this method is 
preferable to multiple regression.

6. When the smallest range is used for estimating the 
desired parameter, because the heterogeneity of the data 
is reduced, estimation will be easier and more accurate.

7. By comparing different neural network approaches, it 
can be concluded that the neural network PNN using 
Gaussian functions is the best algorithm to obtain poros-
ity in seismic data volume.

8. It is not possible to conclude whether the geostatisti-
cal or neural network method is more appropriate for 
estimation, as the nature and quality of the data will 
determine whether one or the other is better. Generally, 
however, considering the spatial structure of the data 
and the complexity of the geology, geostatistical meth-
ods are the most reliable method.

9. If the number of wells is small, geostatistical methods 
may lose their effectiveness. In the geostatistical meth-
ods, estimation error is lowest in the local area around 
the well, and increases with distance from the well.

Fig. 40  2D porosity from geo-
statistics_dataset2

Table 13  The results of three different methods for first category data

Dataset1 Train Corr Train Err Valid. Corr Valid. Err

Multi-attribute 
analysis

0.64 4.92 0.63 5.02

PNN network 0.82 3.72 0.74 4.31
Kriging – – – –

Table 14  The results of three different methods for second category 
data

Dataset2 Train Corr Train Err Valid. Corr Valid. Err

Multi-attribute 
analysis

0.61 5.30 0.53 5.73

PNN network 0.83 4.04 0.48 5.86
Kriging 0.95 1.37 – –

Table 15  The results of three different methods for third category 
data

Dataset3 Train Corr Train Err Valid. Corr Valid. Err

Multi-attribute 
analysis

0.86 3.04 0.80 3.60

PNN network 0.84 3.26 0.81 3.53
Kriging 0.77 3.11 – –
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Fig. 41  2D porosity from 
PNN_dataset3

Fig. 42  2D porosity from multi-
attribute_dataset3
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