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Abstract
Currently, engineers are using numerical correlations to describe the flow of oil and gas through chokes. These numerical 
correlations are not 100% accurate, as indicated by other studies, so there is a need to find a better approach to describe and 
calculate the choke size. Artificial intelligence (AI) can be used for better results. In this study, AI was used to estimate the 
optimum choke size that is required to meet the desired flow rate. Four techniques are used in this study: artificial neural 
networks, fuzzy logic (FL), support vector machines, and functional networks. Results obtained using these techniques were 
compared. After researching each technique, FL was found to give the best predictions.

Keywords Multiphase flow · Artificial intelligence · Modeling · Choke size

Introduction

The value of the production rates of the flowing oil and gas 
well in Middle Eastern counties is essential for economic 
revenue. However, there is not enough research being done 
to vindicate the validity of the current models. Numerical 
correlations impede the ability for predicting choke size 
accurately that controls the production rate. Artificial Intel-
ligence (AI) can be used to address this problem.

In the wellhead assembly component, the wellhead choke 
that is used to control the flow of oil and gas can be either 
adjustable or positive. Because these two types of chokes 
are essential for controlling the flow in pipelines, we will 
be focusing on the adjustable choke as it can turn the flow 
on and off, whereas the positive choke is fixed and cannot, 
therefore, control the quantity of oil and gas being produced. 

Adjustable chokes can be used in the well completion pro-
cess, which help to control the flow while cleaning or testing 
the oil and gas well. During this process, an optimum flow 
rate can be achieved, and so we can change from adjustable 
to a positive choke before production.

Since the estimation of multiphase flow is crucial to Mid-
dle East economic production, many numerical correlations 
were developed to optimize the choke size. There are two 
types of multiphase flow: critical and subcritical. Critical 
flow occurs when the fluid velocity is equal to or higher than 
the velocity of sound in that fluid, whereas subcritical is less 
than the sound velocity in that fluid. The focus of this study 
will be on subcritical flow as it has gotten less attention on 
research compared to sonic flow.

To have a vital rate, downstream pressure should be 
about 0.55 of the upstream pressure. In such a situation, 
the flow rate depends on the upstream pressure and gas 
oil ratio (GOR) only; therefore, the change in the down-
stream pressure does not influence the flow rate. Damage 
of surface facilities may occur if the choke breakdown or 
malfunctioning due to the prevention of the smooth transi-
tions between downstream and upstream pressure. For this 
reason, the correct design of the production well will lead 
to the accurate prediction of the flow behavior of multiphase 
mixtures through chokes. Modern techniques, as well as AI, 
are also used in the design operations over the entire produc-
tion system. This process demands accurate models that can 
describe the performance of each element in the system.
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Many studies (Elhaj et al. 2015, 2017; AlAjmi et al. 2015) 
proved that the AI gave more accurate results compared to 
the numerical correlations when it comes to the choke size 
prediction.

Four techniques of AI will be used to increase the accu-
racy of the prediction of the choke size. These techniques 
are: artificial neural networks (ANN), fuzzy logic (FL), sup-
port vector machines (SVM), and functional networks (FN). 
Each technique will be discussed in detail in the following 
paragraphs to determine which technique has the best accu-
racy for optimizing choke size.

Literature review

As numerical correlations are usually used to examine choke 
size, the types of multiphase flow chokes will be outlined in 
this research. There are two types of two-phase flow: criti-
cal and subcritical. The developed model for critical flow 
has gotten most of the attention of researchers compared to 
subcritical flow, according to the literature. These models 
were created with inspiration from the Gilbert-type empiri-
cal relationship (Gilbert 1954). Several researchers revised 
and developed Gilbert’s model during the decades, such 
as Ros, Baxendell, Achong, Pilehvari, Secen, and Osman 
and Dokla (Sachdeva et al. 1986; Osman and Dokla 1990; 
Omana et al. 1969a, b; Ros 1960; Abdul-Majeed and Maha 
1991; Pilehvari 1981). Most of these models have a linear 
relationship between the flow rate the upstream pressure.

Another type of correlations of a four-parameter equation 
was presented by other investigators (Surbey et al. 1989; 
Al-Attar 2008). These investigators considered a nonlinear 
relationship between the flow rate and the wellhead pressure 
(Al-Towailib and Al-Marhoun 1994; Al-Attar and Abdul-
Majeed 1988; Al-Towailib and Al-Marhoun 1992; Hosmer 
et al. 2013; Salah and Rahman 2005). Surbey et al. (1989) 
developed a four-parameter equation for critical two-phase 
flow through multi-orifice-valve chokes. They stated that 
this equation is probably restricted to this type of chokes 
only. However, Al-Towailib and Al-Marhoun (1992, 1994) 
obtained consistent results when they applied this equation 
for Middle East data. Al-Attar and Abdul-Majeed (1988) 
proposed a similar correlation for East-Baghdad oil wells.

Recently, AI has been successfully applied in many 
applications in oil businesses. A range of analysis has 
been disbursed on the utilization of varied computational 
intelligence (CI) schemes to estimate the two-phase flow 
through reservoirs and pipes. Many researchers used these 
schemes in oil and gas industry, such as logistic regression 
(LR), K-nearest neighbor (KNN), multilayer perceptrons 
(MLP), radial basis function (RBF), Bayesian belief net-
works (BBN), Naïve Bayes (NB), random forests (RF), func-
tional networks (FunNets), support vector machines (SVM), 

artificial neural networks (ANN), probabilistic networks 
(PN), adaptive-neuro fuzzy systems (ANFIS) and decision 
trees (DT) (Hosmer et al. 2013; Salah and Rahman 2005; 
Duch et al. 1997; Guojie 2004; Lauría and Duchessi 2006).

Although both AI and CI seemed to be similar in trying 
to search for the same goal, CI deals with fixing issues in 
which effective computational algorithms are not available. 
In other words, CI is a branch of AI and every CI process 
is an AI process, but not the reverse. However, some areas 
and application can be done by both techniques, such as pat-
tern recognition, image analysis, and operations research. CI 
is based only on soft computing techniques, while AI uses 
hard computing technique. The only problem when using 
the hard computing technique is that human language cannot 
always be translated to binary logic, which is based on only 
two values (0 and 1). Therefore, using techniques based on 
fuzzy logic is essential when dealing with this situation. CI 
relies on different logic algorithms such as fuzzy systems, 
neural networks, support vector machines, and evolutionary 
computation. In addition, CI also embraces techniques that 
use swarm intelligence, fractals and chaos theory, artificial 
immune systems, wavelets, etc.

For more than five decades, fuzzy sets (FS) are widely 
used in different sciences, especially in computer science, 
which is found to give more accurate estimation and simu-
lation for a specific scenario compared to others. There are 
two types of these sets type 1 FS and type 2 FS, which is 
introduced by Zadeh (1965). The idea behind these sets is to 
represent uncertainty and vagueness mathematically in addi-
tion to give a tool for dealing with the imprecision. The FS 
consists of grades of membership; each member is a based 
on logic too (Karnik et al. 1999).

Support vector machines

SVMs are one of the AI techniques that can be used as a 
learning machine, and they applied for classification and 
regression. They can be classified under the linear classifi-
ers. In addition, the use in the specific scenario of regression, 
such as the regularization of ill-posed problems (Tikhonov 
regularization), is also one of the usages of SVMs. SVM 
models can be represented by either data points or map. 
Each map constructs a hyperplane or a group of hyperplanes 
in a high or infinite dimension space. Two parallel hyper-
planes are built on each side of the hyperplane that separates 
the data. The generalization error is directly proportional to 
the distance between those two parallel hyperplanes, which 
is assumed by Burges (1998).

Many applications of SVMs are applied in both engineer-
ing and science, such as defect prediction (Elish and Elish 
2008), surface tension (Wang et al. 2007), geotechnical pro-
cess (Goh and Goh 2007) and petroleum engineering (Hou 
and Wenfen 2006).
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Functional networks

Functional networks are different than neural networks in 
many ways, for example, the functional networks do not 
have weights that related to neurons, and moreover, the neu-
ron functions are adaptable, not steady like in neural net-
works. In these networks, a system of functional equations 
is obtained as a solution to a problem, in which this system 
has a smaller number of degrees of freedom compared to 
neural networks.

The concept behind the work of functional networks is 
by permitting the f functions learning, whereas weights are 
terminated. Moreover, these functions can be in multidimen-
sional, even though these functions can be changed by the 
functions of single variables. The functional networks con-
sist of four main elements (1) input units; (2) output units; 
(3) one or many layers of computing units; and (4) group of 
directed links.

A complete explanation of the applications of functional 
networks in both engineering and statistics are presented 
in the research done by Castillo et  al. (2001). Unfortu-
nately, it is scarce to find in the literature that functional 
networks have that much of application regarding petroleum 
engineering.

For two-phase flow through chokes prediction using AI, 
the only research was done by Al-Khalifa and Al-Marhoun 
(2013). He studied in his master thesis the application of 
neural network for two-phase flow through chokes. The 
study used 4031 data points collected from different wells 
in the Middle East. In his research, he developed an ANN 
model to predict the choke size utilizing a ratio of 80% for 
training and 10% for validation and 10% for testing for the 
data under study. A comparison was made between the 
results obtained by NN and the existing correlations. It was 
shown that the ANN gives better results among all the cor-
relations and models.

Problem statement

Since the Multiphase flow prediction is highly crucial, 
as discussed in the introduction, the prediction should be 
accurate enough. The study of Al-Khalifa and Al-Marhoun 
(2013) used only a neural network (NN). In this investiga-
tion, several techniques of artificial intelligence will be used, 
and a comparison of the results obtained from the different 
procedure will be made.

Methodology

This section discusses how models were developed, the 
methodology, selecting the independent variable, model 
architecture, and optimization. Models developed based on 

these techniques used about 10,440 data points and a ratio 
of 70% for training, 15% for validation, and 15% for testing.

The artificial intelligence techniques used for prediction 
are:

1. Artificial neural networks (ANN) (Al-Khalifa and Al-
Marhoun 2013)

2. Fuzzy logic (FL) (Castillo, et al. 2001)
• Genetic algorithm (GA) as an optimization tool.

3. Support vector machines (SVM) (Hou and Wenfen 
2006)

4. Functional networks (FN) (Hosmer et al. 2013)

The models built using the above techniques will be 
implemented using Matlab software. Statistical analysis will 
be carried out to compare between results obtained by the 
different techniques and methods.

Correlation coefficient

It measures the statistical correlation between the predicted 
and actual values. This method is unique in the sense that 
it does not change with a scale in values. A higher number 
means a better model, with a one indicating perfect statisti-
cal correlation and a zero meaning there is no correlation at 
all. This performance measure is only used for numerical 
input and output (Karnik et al. 1999).

Data collection

Data from several fields in the Middle East were collected to 
develop artificial intelligent models. A wide range of choke 
sizes and flow rates were covered in this study. The reported 
production test data includes: oil and gas flow rates, choke 
sizes, downstream and upstream wellhead tubing pressures, 
gas relative density and oil API. Mixture density, ɤm, was 
calculated as shown below and used as an input parameter. 
(AlAjmi et al. 2015).

As the parameters setting play a vital role in the out-
comes of the results, the same AI techniques were used in 
the gas reservoir using different setting with almost the same 
parameters to emphasize the effect on the findings. For more 
details, see (Elhaj et al. 2015, 2017).

Table 1 summarizes some statistical parameters for the 
input and output data (6960 data points).

Relations between the input parameters and the output 
were studied to develop the AI models. Figure 1 shows a 
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clear relationship between the choke size and the total flow 
rate and upstream pressure. On the other hand, there is no 
significant correlation between choke size, gas oil ratio 
and mixture relative density. Table 2 shows the correlation 
between the input parameters, the output, and the relation-
ship between the parameters themselves, which can help in 
designing the models. Therefore, the dominant factor affect-
ing the choke size is the flow rate rather than the upstream 
pressure. In Table 2, the negative sign indicates that the 
parameter is inversely proportional to the output. Table 3 
Column (1) shows that taking the log value for all the param-
eters did not show any significant difference compared to the 
raw data. Similarly, the same conclusion was noticed when 
normalizing the data, as shown in Table 3 Column (2). A 
visual check of the relation between the choke size and the 
input parameters was performed by plotting the choke size 
versus flow rate (Fig. 1), gas oil ratio (Fig. 2), wellhead pres-
sure (Fig. 3), and mixture relative density (Fig. 4).

Data screening

The primary purpose of this study is to develop different 
artificial intelligent models to be used in choke design; 
therefore, this research deals primarily with data under the 
critical flow pattern. Subcritical flow data were not included. 
The critical flow pattern occurs when the downstream tubing 
pressure is less than 55% of the upstream tubing pressure. 
The Bernoulli principals and gas law equations were used to 
select the independent variables for the critical flow. Outlier 
data were removed, and the raw data was used in this study.

Table 1  Input and output data statistical analysis

Flow rate GOR Pus ɤm Choke Size

Min 312 100 200 0.839763 17
Max 20,308 3507 1360 1.326279 159
Range 19,996 3407 1160 0.486517 142
Mean 8817.51 672.26 605.26 0.89597 80.7
SD 3450.83 295.09 238.95 0.05841 25.67

y = 73.83x1.1122

R² = 0.5772
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Fig. 1  Total flow rate versus choke size of the raw data

Table 2  Correlation between the input and the output parameters

Choke size Flow rate GOR Pu ɤm

Choke size 1.0000
Flow rate 0.7532 1.0000
GOR − 0.1739 − 0.1125 1.0000
Pu − 0.4341 − 0.1530 0.5761 1.0000
ɤm − 0.2136 − 0.1549 0.6337 0.5778 1.0000

Table 3  Correlation between the log and typical values of the input 
and the output parameters

Choke size (log values) Choke size 
(normaliza-
tion)

Choke size 1.0000 1.0000
Flow rate 0.7597 0.7532
GOR − 0.1581 − 0.1739
Pu − 0.4244 − 0.4341
ɤm − 0.2209 − 0.2136

y = 1375x-0.196

R² = 0.025
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Fig. 2  Gas oil ratio versus choke size of the raw data

y = -332ln(x) + 2108.7
R² = 0.1933

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200

U
pS

tr
ea

m
 P

re
ss

ur
e 

(P
si)

Choke Size (1/64)

Fig. 3  Wellhead pressure versus choke size of the raw data
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Because the research covers wide data ranges and each 
input parameter has a different scale than the others, the data 
were normalized before feeding it into the network. Two 
methods of normalization were done.

The first method uses the following formula:

The second method is the same as method one except that 
the mean was not deducted

Tables 4 and 5 show a statistical analysis of both the input 
and output data after normalization and taking the logarithm, 
respectively.

Results and discussion

Artificial neural network

The trial and error technique was used to estimate the num-
ber of neurons, layers, and type of function, which proves 
to be a successful technique when it comes to ANN mod-
eling. Several functions were examined during the process 
of developing the model, and the log-sigmoid gave the best 
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result among other functions. In contrast, cascade-forward 
was the best learning algorithm for the training data. During 
the process of running the model, some problems occurred 
due to the local minimum, which caused the training run-
ning to stop. To avoid this kind of issue from happening, the 
validation failure was increased to 300.

Two types of general layer feed were used in the ANN 
model: feed-forward (type 1) and cascade-forward (type 2). 
The main feature of these types is the internal feedback of 
information; one type shall not permit the internal feedback 
of information (type 1), while the other (type 2) enable this 
feedback. When it comes to dynamic models, type 2 is pre-
ferred. In this model, both types were tested and examined, 
but type 2 gave the best results and was recommended for 
this model. The following command and Fig. 5 illustrate the 
structure of the cascade-forward NN.

net=newcf (IPdata,TRGdata,[5,10,5],{‘logsig’,’pureli
n’},’trainlm’,’learngd’);

command (1)

In this study, more than one transfer functions were used 
for both the input and output data like log-sigmoid and 
purelin. Table 6 summarizes some of the results obtained 
from the different NN types and the learning techniques. 
Generally, cascade-forward NN type shows the best results 
achieved, so it is recommended.

Table 7 proves that three layers with different neurons 
(5, 10, 5) for cascade-forward NN type gave the best output.

Figures 6 and 7 show some of the results obtained from 
the ANN. The correlation coefficient (R) was 0.92, 0.79 and 
0.82 for training, validation and testing, respectively. It was 
found to be 0.87 for the whole set of data, as shown in Fig. 6.
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Fig. 4  Mixture relative density versus choke size of the raw data

Table 4  Statistical analysis of 
the data after normalization

Flow rate GOR Pus ɤm Choke Size

Min − 2.4612 − 1.9383 − 1.6961 − 0.9623 − 2.4916
Max 3.3233 9.6140 3.1400 7.3669 3.0531
Mean − 3.62E−17 − 6.51E−17 2.05E−16 − 7.49E−14 − 1.99E−16
SD 1.0 1.0 1.0 1.0 1.0

Table 5  Statistical analysis of the log data (except mixture relative 
density, ɤm)

Flow rate GOR Pus ɤm Choke size

2.49415 2.00000 2.30103 0.83976 1.23045
Min 4.30767 3.54494 3.13354 1.32628 2.20140
Max 3.90336 2.79270 2.74783 0.89597 1.88411
Mean 1.81351 1.54494 0.83251 0.48652 0.97095
SD 0.21081 0.17432 0.17786 0.05841 0.14810
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Fuzzy logic

Along with ANN, fuzzy logic (FL) is also used in this 
research. As it is known, FL has two types: grid partition 
and sub-clustering. The difference between these two types 
is that the grid partition takes a much longer time to accom-
plish a specific task compared to sub-clustering. Because 
of time constraints, sub-clustering was chosen to be used in 
this study. The range of influence (radii) was changed in the 
developing model to achieve a quicker and better result. Dif-
ferent radius ranges were used, and the range was between 
0.01 and 0.2. Table 8 displays the influence of different 
radii. It was noticed while running the code for the train-
ing stage that the smaller the radii, the better the prediction 
was. For the testing stage, as the radius decreased, the error 
increased. Therefore, to avoid this kind of awkwardness, two 
techniques of optimization were used: trial and error and 
genetic algorithm. The optimum values for both mean square 
error (MSE) and the correlation coefficient were 0.145 and 
0.01, respectively.

Figures  8, 9 and 10 show the results obtained for 
both training and testing data for a radius of 0.1. Results 

illustrated that this radius of influence is good enough for 
training and testing. Results were estimated using a radius 
of 0.01. These results confirmed that the smaller the radius 
was, the better the results, as shown in Figs. 11, 12 and 13. 
A comparison of the results acquired with different radius 
values is organized in Table 8, and it is clear that the results 
that corresponded to a radius of 0.01 were the best.

Radial basis function

Another type of neural network used here is the radial basis 
function (RBF). Generalized regression neural network 
function (GRNN) with different spread values ranging from 
0.01 to 0.1 was used. The optimum spread value was found 
to be 0.1, as illustrated in Figs. 14, 15 and 16. For the spread 
value of 0.01, the training prediction was perfect; however, 
when comparing the testing data, results were inaccurate, as 
shown in Figs. 17, 18 and 19. Table 9 concludes the results 
for various spread values. The two points that deviated from 
the trend line in Fig. 17 related to the actual data that were 
used in this study. In other words, the focus of this study was 
the prediction of choke size that can be estimated from the 

Fig. 5  ANN structure

Table 6  Results of type 1 and type 2 NN with different learning and transfer functions (newcf = cascade-forward)

(newcf) newff newff newff newff newff newff
trainlm trainlm trainlm traingdx trainbfg trainscg trainoss

logsig-pureline logsig-pureline logsig–logsig logsig–logsig logsig–logsig logsig–logsig logsig–logsig

Training 0.88 0.89 0.94 0.80 0.84 0.85 0.20
Validation 0.81 0.80 0.61 0.77 0.77 0.83 0.82
Testing 0.84 0.82 0.83 0.77 0.79 0.83 0.80
All 0.85 0.86 0.83 0.78 0.82 0.84 0.20

Table 7  The effect of the 
neurons number combination 
for type 2 NN

No. of neurons (7,15,8) (5,10,5) (10,10,10) (7,7,7) (7,10,8) (12,9,7) (7,9,12)

Training 0.96 0.91 0.95 0.93 0.95 0.96 0.94
Validation 0.55 0.82 0.43 0.55 0.71 0.07 0.61
Testing 0.87 0.84 0.79 0.76 0.79 0.79 0.85
All 0.86 0.88 0.73 0.79 0.86 0.45 0.84
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actual data, not the error that occurred in the actual data as 
in such case.

Support vector machines

Many different kernel functions are available in a support 
vector machine (SVM). In this study, a few of these func-
tions were used, such as

kernel=‘poly’; %’gaussian’; 
‘polyhomog’;’htrbf’;’rbf’;

command (2)

During the buildup of the SVM model, Poly and Gauss-
ian predicted the best results among the others. Figures 20 
and 21 show results achieved using a Poly function for both 
training and testing data with correlation coefficient 0.82 
for training and 0.998 for testing. The Gaussian function 
results were not as good as the Poly function, as illustrated 
in Figs. 22 and 23.

Table 10 summarizes the results from the two techniques.

Functional network

Different percentages for training and testing were used in 
the functional network model, but the best results were 70% 
for the training and 30%. Both results for training and testing 
gave the same values of R-square when using this percentage 
combination as can be seen in Figs. 24 and 25.

Concluding remarks

Four main models for multiphase flow rate through chokes 
were developed, which are artificial neural network (ANN), 
fuzzy logic (FL), support vector machine (SVM), and func-
tional network (FN). Several statistical and graphical tech-
niques were made to check the accuracy of the new models.

The artificial intelligent (AI) was successfully applied 
to solve this problem using the different techniques pro-
posed. The input and output data were preprocessed using 
normalization and log. It was observed that normalization 

Fig. 6  Correlation coefficient 
for the trained, the validated, the 
tested and all data
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Fig. 7  Correlation between the 
actual and the predicted choke 
size for both training and testing 
data
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Table 8  Correlation coefficient 
for trained and tested data of FL 
model

Radii 0.1 0.05 0.01 0.20 0.145

Test Train Test Train Test Train Test Train Test Train

R 0.91 0.82 0.79 1.00 0.81 1.00 0.79 0.87 0.82 0.88

y = 0.8206x + 13.862
R2 = 0.8323
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Fig. 8  Actual versus predicted choke size for FL model training 
(Radii = 0.1)
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Fig. 9  Actual versus predicted choke size for FL model testing 
(Radii = 0.1)
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of the input data was not as good as taking the log for the 
prediction.

Table 11 compares the five methods using the correlation 
coefficient as a comparison criterion for the data of testing 
and training. Fuzzy logic (FL) gives the best results for the 

training data while support vector machines (SVM) provide 
the best results for the testing data. Since the analysis of the 
data indicated that the data were clustered for most of the 
input parameters and as the fuzzy logic is best in its predic-
tion for clustered data, it gives the best results in this study.

Fig. 10  Correlation between the 
actual and the predicted choke 
size for both training and testing 
data (FL model for Radii = 0.1)
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Fig. 11  Actual versus predicted choke size for FL model training 
(Radii = 0.01)
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Fig. 12  Actual versus predicted choke size for FL model testing 
(Radii = 0.01)



496 Journal of Petroleum Exploration and Production Technology (2020) 10:487–500

1 3

Fig. 13  Correlation between the 
actual and the predicted choke 
size for both training and testing 
data (FL model for Radii = 0.01)
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Fig. 14  Actual versus predicted choke size for RBF model training 
(spread = 0.1)
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Fig. 15  Actual versus predicted choke size for RBF model testing 
(spread = 0.1)
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Fig. 16  Correlation between 
the actual and the predicted 
choke size for both training and 
testing data (RBF model for 
spread = 0.1)
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Fig. 17  Actual versus predicted choke size for RBF model training 
(spread = 0.01)
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Fig. 18  Actual versus predicted choke size for RBF model testing 
(spread = 0.01)
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Fig. 19  Correlation between 
the actual and the predicted 
choke size for both training and 
testing data (RBF model for 
spread = 0.01)
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Table 9  Correlation coefficient 
for trained and tested data of 
RBF model

Spread 0.1 0.01 0.05

Testing Training Testing Training Testing Training

R 0.72 0.89 0.41 1.00 0.69 0.95
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Fig. 20  Correlation between the actual and the predicted choke size 
for training data (Poly function) (R = 0.82)
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Fig. 21  Correlation between the actual and the predicted choke size 
for testing data (Poly function) (R = 0.998)
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Fig. 22  Correlation between the actual and the predicted choke size 
for training data (Gaussian function) (R = 0.75)
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Fig. 23  Correlation between the actual and the predicted choke size 
for testing data (Gaussian function) (R = 0.998)

Table 10  Correlation coefficient 
for trained and tested data of 
SVM model

Function Poly Gaussian

Training 0.820 0.750
Testing 0.997 0.997
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Fig. 24  Correlation between the actual and the predicted choke size 
for training data (FN) (R = 0.81)
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Fig. 25  Correlation between the actual and the predicted choke size 
for testing data (FN) (R = 0.81)

Table 11  Correlation coefficient summary for the different tools

NN Fuzzy RBF SVM FN

Training 0.910 1.000 0.950 0.820 0.810
Testing 0.840 0.810 0.690 0.997 0.810
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