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Abstract
An accurate prediction of well flowing bottom-hole pressure (FBHP) is highly needed in petroleum engineering applica-
tions such as for the field production optimization, cost per barrel of oil reduction, and quantification of workover remedial 
operations. A good number of empirical correlations and mechanistic models exist in the literature and are frequently used 
in oil industry to estimate FBHP. But majority of the empirical models were developed under a laboratory scale and are 
therefore inaccurate when scaled up for the field applications. The objective of this study is to present a new computational 
intelligence-based model to predict FBHP for a naturally flowing vertical well with multiphase flow. The present study 
shows that the accuracy of FBHP estimation using PSO-ANN is better than the conventional ANN model. A small average 
absolute percentage error of less than 2.1% is observed with the proposed model, while comparing the previous empirical 
correlations and mechanistic models on the same data gives more than 15% error. The new model is trained on a surface 
production data, which makes the prediction of FBHP in a real time. A group trend analysis tests were also carried out to 
assure that the proposed model is accurately capturing the underline physics behind the problem.

Keywords Flowing bottom-hole pressure · Real time · Artificial neural network · Particle swarm optimization · Empirical 
model · Vertical well

Abbreviations
AAPE  Average absolute percentage error
ANFIS  Adaptive neuro-fuzzy interference system
ANN  Artificial neural network
API  American Petroleum Institute
BHP  Bottom-hole pressure (Psia)
BTM  Bottom-hole temperature (°F)
CC  Correlation coefficient
CI  Computational intelligence
FBHP  Flowing bottom-hole pressure (Psia)
FFNN  Feed-forward neural network
GLR  Gas–liquid ratio
GMDH  Group method of data handling

ID  Internal diameter
IPR  Inflow performance relationship
LM  Levenberg–Marquardt learning algorithm
Logsig  Logistic sigmoid activation/transfer function
PETE  Petroleum engineering
PSO  Particle swarm optimization
Pwh  Wellhead pressure (Psia)
RMSE  Root-mean-square error
STM  Surface temperature (°F)
Std  Standard deviation
SVM  Support vectors regression
Tansig  Tangential sigmoid activation/transfer function
x  Input parameters
y  Output variable

List of symbols
�  Learning rate
b1  Biases vector between the input layer and the 

single hidden layer of ANN
b2  Bias value between the single hidden layer and 

an output layer of ANN
c1  Cognitive parameter (0 ≤ c1 ≤ 1.2)

c2  Cognitive parameter (0 ≤ c2 ≤ 1.2)

Emax  Maximum error
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Emin  Minimum error
i  Index used for total number of neurons
j  Index used for number of inputs
J  Total number of input parameters
n  Normalized value
Nh  Total number of neurons
Np  Total number of input parameters
pi  Particle i position at any iteration
pb
i
  Particle best solution

pgb  Global best solution
qo  Oil production rate (bbls/day)
qg  Gas production rate (MScf/day)
qw  Water production rate (bbls/day)
R2  Coefficient of determination
vi  Particle velocity
w1  Weights matrix between the input layer and the 

single hidden layer of ANN
w2  Weights vector between the single hidden layer 

and an output layer of ANN
x  Input parameters
y  Output variable
�o  A transfer function between the hidden layer and 

an output layer of FFNN
�L  A transfer function between the input layer and 

the hidden layer of FFNN
∅  Tubing internal diameter (inches)
�  Weight (0 ≤ w ≤ 1.2)

Introduction

Estimation of well bottom-hole pressure at any existing 
operating conditions is continuously needed in oil and gas 
wells to monitor fluid movements inside the wellbore and 
the nearby wellbore regions. Petroleum wells normally pro-
duce a mixture of liquids and gases at the surface. The phase 
distribution typically changes due to the pressure variations 
along the course of the flow. At pressure above the bubble 
point pressure of the liquid phase, particularly at the bottom 
of the well, the flow is the single phase, i.e., oil phase only, 
but as oil moves up inside the vertical well, the hydrostatic 
pressure drop causes liberation of gases from the oil phase 
which resulted in the multiphase flow of oil and gas (Hage-
dorn and Brown 1965; Govier and Fogarasi 1975). Mul-
tiphase flow is a simultaneous flow of two or three phases 
such as oil, gas, and water which can start producing any 
time in the life of well (Beggs and Brill 1973). Multiphase 
flow phenomenon has also gained considerable attention in 
many other science fields including mechanical, civil, chem-
ical, and nuclear engineering (Jahanandish et al. 2011). The 
representative prediction of the pressure drop in a vertical 
well during the simultaneous multiphase flow of fluids is a 
well-known problem in the petroleum industry (Hagedorn 

and Brown 1965). The need to properly estimate pressure 
drop in a vertical well is very necessary for the accurate 
forecast of production performances and for the appropriate 
well completions design and artificial-lift systems (Ansari 
et al. 1994).

Nowadays, smart well completion is very common, in 
which down-hole pressure gauges are permanently installed 
at the bottom of the well to measure FBHP. However, these 
pressure gauges need constant calibration and maintenance 
to prevent malfunctioning and misleading readings (Davies 
and Aggrey 2007; Al-Shammari 2011). In case of conven-
tional well completions, frequently intervening a well to 
measure FBHP is an exhaustive job which is linked with sev-
eral risks like production interruptions and economic losses. 
For these purposes, the real-time information of FBHP is 
very handy for production engineers.

Numerous mechanistic and empirical models were devel-
oped to estimate the pressure drop inside the tubing in a 
vertical well. Most of the empirical models and correlations 
were formulated under laboratory scale, which eventually 
become less accurate when up-scaled to field situations 
(Pucknell et al. 1993). The most commonly used correlations 
are Duns and Ros (1963); Hagedorn and Brown (1965); Aziz 
and Govier (1972); Beggs and Brill (1973); and Mukher-
jee and Brill (1983). Several studies have shown that these 
empirical correlations estimate pressure drop in multiphase 
flowing wells with large errors and high level of uncertainty 
(Asheim 1986; Pucknell et al. 1993; Takacs 2001; Lawson 
and Brill 1974). Mechanistic models are based on theoreti-
cal approaches to calculate multiphase flow characteristics 
such as mixture densities, flow patterns, and liquid hold ups. 
The most commonly used mechanistic models in petroleum 
engineering calculations are Kabir and Hasan (1986), Ansari 
et al. (1994), Chokshi et al. (1996), and Gomez et al. (1999).

The past two decades have seen significant increase in 
computational intelligence (CI) applications in various areas 
of geosciences and petroleum engineering (PETE). The rel-
evance of CI in PETE applications stems from CI’s ability to 
handle the huge streams of data generated in the field such as 
seismic data, petrophysical well log data, and injection and 
production data. Every wiggle in the log and every blip in the 
data signify something and have the potential to be used in 
addressing pertinent issues. Also, in the real world, the basic 
assumptions used in the derivation of the physical equations 
may be violated, due to numerous reasons such as anisot-
ropy, heterogeneity, nonlinearity, nonelasticity, and nonideal 
fluid behavior. CI can address such complications with rela-
tive ease (Anifowose et al. 2017). Some of the domains of 
the petroleum engineering in which CI techniques brought 
new innovations include porosity–permeability predictions 
(Abdulraheem et al. 2007; El-Sebakhy et al. 2012; Noorud-
din et al. 2013; Helmy et al. 2013; Anifowose et al. 2013, 
2014, 2017), hydraulic flow unit identification (Shujath Ali 
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et al. 2013), rock mechanical parameters estimation (Yang 
and Rosenbaum 2002; Sonmez et al. 2004; Abdulraheem 
et al. 2009; Cevik et al. 2011; Tariq et al. 2018b), missing 
petrophysical well logs estimation (Tariq et al. 2019), well-
testing parameters estimation (Artun 2017; Bazargan and 
Adibifard 2017), asphaltene and wax precipitation predic-
tions (Rezaian et al. 2010; Adeyemi and Sulaimon 2012; Fat-
tahi et al. 2015; Alimohammadi et al. 2017), water saturation 
prediction (Adebayo et al. 2015; Bageri et al. 2015; Baziar 
et al. 2016, 2018; Khan et al. 2018), gas compressibility fac-
tor (Mohagheghian et al. 2015; Tariq and Mahmoud 2019), 
oil well drilling rate of penetration optimization (Gidh et al. 
2012), and many other oil and gas applications (Ashena et al. 
2010; Jahanandish et al. 2011; Asoodeh 2013; Rammay and 
Abdulraheem 2016).

An artificial neural network (ANN) is one of the most 
powerful and robust CI tools for solving complex nonlinear 
problems, including function approximation, pattern recog-
nition, parameter selection, and automated control and opti-
mization (Maren 1990; Huang et al. 1996). This technique is 
originated from the learning principles of biological neurons 
found in human body (Graves et al. 2009). Recent advances 
in the mathematics of neural network and its ability to solve 
complex and nonlinear problems have gained wide recogni-
tion in the petroleum industry (Anifowose et al. 2014).

Petroleum industry has paid significant attention to use 
CI technique to predict FBHP in oil and gas wells. Osman 
et al. (2005) developed the model for estimating bottom-
hole flowing pressure using artificial intelligence (AI) tools. 
Their model was based on 300 data points. Jahanandish et al. 
(2011) presented an ANN model for the estimation of the 
BHP. Their model was developed on 413 data points. Al-
Shammari (2011) predicted BHP using adaptive neuro-fuzzy 
interference system (ANFIS) on 596 data points obtained 
from Middle Eastern fields. He used Genfis-2 (subtractive 
clustering) to develop ANFIS model for BHP prediction. 
Bello and Asafa (2014) predicted the FBHP and bottom-hole 
temperature using functional network technique. They have 
used 200 data points from multiple wells. Li et al. (2014) 
designed a calculation procedure to predict BHP using mul-
tiphase correlation and trained ANN model. They predicted 
BHP with 23% average absolute percentage error (AAPE) 
and 0.176 std. Ebrahimi and Khamehchi (2015) used ANN 
technique on the data obtained from Middle Eastern field to 
improve the prediction of BHP. Their objective was to test 
several optimization algorithms to optimize ANN param-
eters and then compare their results with conventional meth-
ods in oil and gas industry. Memon et al. (2015) created 
dynamic well surrogate reservoir models (SRM) to predict 
flowing well bottom-hole pressure using radial basis func-
tion neural network (RBF). The input data of their model 
were porosity and permeability of different layers in SRM 
and production rate. The output data of their model were 

extorted from a SRM model. Ayoub et al. (2015) presented 
the model to predict the pressure drop in a multiphase flow 
vertical well using the group method of data-handling 
(GMDH) approach. The GMDH is a commonly used regres-
sion technique based on constructing high-order polynomials 
(Karnazes and Bonnell 1982; Assaleh et al. 2013). Ahmadi 
et al. (2016) predicted FBHP at different time steps for an 
initially undersaturated reservoir using surrogated reservoir 
modeling and radial basis neural network approach. They 
have used the output of reservoir simulator such as oil rate, 
gas rate, and saturation to predict FBHP. Chen et al. (2017) 
used support vector regression (SVR) to predict FBHP in gas 
wells. They have used the measured FBHP data from Sulige 
gas field as an output parameter. Their model was based on 
the well perforation depth, flowing water rate, flowing gas 
rate, relative gas density, average wellbore temperature, cas-
ing pressure, and gas compressibility factor.

It can be inferred from the literature survey that CI meth-
ods can be applied to estimate FBHP. The previous analyti-
cal and mechanistic models (Duns and Ros 1963; Hagedorn 
and Brown 1965; Beggs and Brill 1973; Mukherjee and Brill 
1985; Kabir and Hasan 1986; Ansari et al. 1994; Gomez 
et al. 1999) are built on the parameters which can be deter-
mined from the laboratory analysis. This means that they are 
not capable of giving real-time FBHP values under existing 
operating conditions. Also, these models are computation-
ally very expensive to execute. Two major problems with 
the previous works are going to be addressed in this study. 
Firstly, previous CI research studies predicted the FBHP 
using laboratory-dependent inputs, so the first objective is 
to identify the real-time input parameters that are readily 
available on the surface to estimate the real-time FBHP with 
good accuracy. Secondly, previous researchers (Osman et al. 
2005; Davies and Aggrey 2007; Jahanandish et al. 2011; Al-
Shammari 2011; Adebayo et al. 2013; Bello and Asafa 2014; 
Memon et al. 2014, 2015; Li et al. 2014; Ayoub et al. 2015; 
Ebrahimi and Khamehchi 2015; Awadalla and Yousef 2016; 
Chen et al. 2017) proposed a black box type of CI models. 
In all these papers, authors only mentioned the approach 
they have used to train their models. Readers of their papers 
cannot use them to predict FBHP on a new dataset, so the 
second objective is to develop robust ANN-based mathemat-
ical model to predict real-time flowing bottom-hole pressure 
(FBHP) by using real-time surface production data param-
eters. To improve the accuracy of the ANN model, particle 
swarm optimization (PSO) algorithm is used to optimize the 
weights and biases of the trained neural network to predict 
FBHP; previously, Ebrahimi and Khamehchi (2015) and 
Awadalla and Yousef (2016) used optimization algorithms 
to optimize the parameters of ANN model. In this study, 
ANN model is translated into simple mathematical model 
by extracting optimized weights and biases. This will allow 
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readers to use proposed model without the need for any CI 
software.

Methodology

Data acquisition and preprocessing

Data analysis and preprocessing are the key steps to perform 
carefully, since the prediction performance of CI models is 
highly dependent on the quality of the data. A total of 206 
data points were obtained from published sources (Govier 
and Fogarasi 1975; Asheim 1986). In these sources, the pres-
sure data were obtained from the BHP surveys by lowering 
the down-hole pressure gauges inside the well just above the 
perforations to record the well bottom-hole flowing pressure. 
Table 1 lists some of the data points used for FBHP predic-
tion modeling. To scrutinize the quality of the obtained data 
and to remove any suspicious outliers, various mechanistic 
and empirical models were used to predict the FBHP and 
their results were then compared with the measured actual 
values. Data points which constantly caused poor predictions 
by all mechanistic models and correlations were assumed 
to be erroneous and therefore deleted. The mechanistic and 
empirical models used to check the quality of the data were 
Duns and Ros (1963), Hagedorn and Brown (1965), Beggs 
and Brill (1973), Mukherjee and Brill (1985), Kabir and 
Hasan (1986), Ansari et al. (1994), and Gomez et al. (1999).

Data analysis and description

The real-time production data used in this study were taken 
from the perfectly vertical wells with no any form of arti-
ficial lift, and all wells were completely naturally flowing. 
FBHP was measured at the depth of perforation. Dataset 
consists of total of nine input parameters such as well per-
foration depth, flowing oil rate (qo), flowing gas rate (qg), 
flowing water rate (qg), production tubing internal diameter 
( ∅ ), surface temperature (STM), well bottom-hole tempera-
ture (BTM), oil gravity (API), and wellhead pressure ( Pwh ). 
The output is measured FBHP. The ranges of input param-
eters employed are perforation depth, 4500–7550 ft, qo, 
280–19,800 bbl/day, qg, 33.6–27,400 MScf/D, qg, 0–11,000 
bbl/day, ∅ , 1.995–4.000 inches, STM, 76–160 °F, BTM, 
157–215 °F, and Pwh , 80–960 psia. The ranges of all investi-
gated input parameters are considered practically reasonable 
in the petroleum field and are comparable with previously 
published studies. A complete statistical description of the 
data used in the training of the model is given in Table 2.

The next most imperative step taken in the data analysis 
process of this study was to determine the relative impor-
tance (in terms of correlation coefficient (CC)) of each input 
parameter with the FBHP. The CC was calculated between Ta
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the FBHPs with each input using Pearson’s correlation coef-
ficient method. The definitions of CC and other statistical 
parameters are given in “Appendix A.” In general, the CC 
value ranges from − 1 to 1, in which the values close to 
+ 1 show strong direct relationship between two param-
eters while the CC values close to zero show no relation-
ship between two parameters and the CC values close to 
− 1 show strong indirect relationship between two variables. 
Figure 1 shows that the FBHP is a good direct function of 
perforation depth, oil rate, and wellhead pressure. The CC 
values for perforation depth, oil rate, and wellhead pressure 
with FBHP are 0.65, 0.56, and 0.56, respectively. FBHP is 
a weak function of surface temperature and bottom-hole 
temperature as shown in Fig. 1. The CC values for surface 
and bottom-hole temperature with FBHP are 0.29 and 0.35, 
respectively. However, the rest of the parameters have mod-
erate relationship with FBHP.

ANN algorithm

In this study, ANN model is designed on the three com-
ponents, namely learning algorithm, transfer function, and 

a signal processing element termed as neurons. Network 
consists of three structural layers: an input layer, a hid-
den layer, and an output layer. Input layer consists of nine 
input parameters which are well perforation depth, flowing 
oil rate (qo), flowing gas rate (qg), flowing water rate (qw), 
tubing string internal diameter ( ∅ ), surface temperature 
(STM), well bottom-hole temperature (BTM), oil gravity 
(API), and wellhead pressure ( Pwh ). The learning rate and 
the number of neurons inside the hidden layer are the key 
components in ANN structure (Gitifar et al. 2013; Ashena 
and Thonhauser 2015). During training of the model, data 
were transferred from input layer to the single hidden layer 
and from the hidden layer to the output layer to get required 
output (Jorjani et al. 2008). Each layer connects with subse-
quent layer by connections termed as weights and auxiliary 
functions termed as biases (Lippman and Lippman 1987). 
Network functionality strongly depends on the tuning of 
these weights and biases (Hinton et al. 2006). At the output 
layer, the predicted and actual values were compared and 
the difference between the two calculated is called as error. 
To improve the predictive capability of the system, the error 
was transferred back to the layers to tune up the weights and 

Table 2  Statistical description of (a) training dataset and (b) testing dataset

Variables Minimum Maximum Mean Range SD Kurtosis Skewness

(a) Training dataset
Inputs
Depth (ft) 4550.00 7100.00 6361.04 2550.00 563.49 − 1.66 1.98
Oil rate (bbls/day) 280.00 19,618.00 6497.97 19,338.00 5101.40 0.76 − 0.54
Gas rate (Mscf/day) 33.60 13,562.20 3595.11 13,528.60 3301.76 1.12 0.59
Water rate (bbls/day) 0.00 11,000.00 2494.76 11,000.00 2580.46 0.90 0.01
Tubing diameter (inches) 2.00 4.00 3.65 2.01 0.62 − 1.86 1.85
Oil gravity (API) 30.00 37.00 33.96 7.00 2.37 − 0.06 − 1.35
Surface temperature (°F) 76.00 160.00 120.31 84.00 31.28 0.16 − 1.88
Bottom-hole temperature (°F) 161.00 215.00 203.94 54.00 16.60 − 1.96 2.14
Wellhead pressure (Psi) 80.00 960.00 324.29 880.00 153.49 1.37 1.95
Output
Flowing bottom-hole pressure (Psi) 1227.00 3124.00 2483.88 1897.00 293.08 − 0.54 1.28
(b) Testing dataset
Inputs
Depth (ft) 4650.000 7079.000 6357.082 2429.000 577.561 1.701 − 1.552
Oil rate (bbls/d) 1041.000 18,146.000 5902.082 17,105.000 4143.083 0.715 1.090
Gas rate (Mscf/day) 124.920 9998.450 2990.485 9873.530 2396.573 0.918 1.192
Water rate (bbls/day) 0.000 10,785.000 3187.902 10,785.000 3213.975 − 0.727 0.662
Tubing diameter (inches) 1.995 4.000 3.676 2.005 0.547 2.387 − 1.899
Oil gravity (API) 30.000 37.000 33.338 7.000 2.152 − 0.796 0.391
Surface temperature (°F) 90.000 160.000 111.607 70.000 28.939 − 1.311 0.756
Bottom-hole temperature (°F) 157.000 215.000 202.934 58.000 17.910 1.368 − 1.746
Wellhead pressure (Psi) 95.000 780.000 313.443 685.000 154.737 1.336 1.324
Output
Flowing bottom-hole pressure (Psi) 1911.000 3217.000 2501.295 1306.000 324.945 − 0.751 0.139
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biases. This process of iteration is called as epoch. ANN 
then self-corrects iteratively and becomes better with pro-
gressive training runs. The final model at the end of training 
phase is a representation of the transfer function between the 
inputs and the desired output (Rao and Ramamurti 1993). In 
the current study, it is found that fewer number of neurons 
result in underfitting problem while excessive number of 
neurons cause more computational time with memorization 
or overfitting problem, which is also proved by other studies 
(Mohaghegh 2017).

Mathematically, the signal of neuron can be expressed 
by Eq. 1:

where

where wij is the weight of input j of neuron i and xj is the 
input parameter, bi is the bias. Zi is the output signal of neu-
ral network, and �(x) is the transfer function. There are three 
types of transfer function, namely: piecewise linear func-
tion, sigmoidal function, and threshold function (Yang et al. 
1996). The most commonly used transfer function employed 
in feed-forward neural network (FFNN) is sigmoidal func-
tion (Ashena and Thonhauser 2015), given by Eq. 3:

where ‘s’ is the slope parameter of the sigmoid function. By 
changing the parameter, a different slope of sigmoid function 
can be achieved.

In ANN, two types of models were investigated, namely 
radial basis function neural network function and FFNN. A 

(1)Zi = �(�i + bi)

(2)�k =

Nh∑
j=1

wijxj

(3)�(x) =
1

1 + e−sx

comparison between these two models based on minimum 
averaged absolute percentage error (AAPE) and highest 
coefficient of determination (R2) was made between actual 
and predicted values. FFNN model was based on three struc-
tural layers, namely an input layer, a single hidden layer 
and an output layer. Sensitivity of number of neurons in the 
single hidden layer was performed by varying them in the 
range of 5 to 30. The optimum number of neurons was found 
to be 20, since this combination ended up in highest R2 and 
lowest AAPE in training/testing phases of the modeling. 
Sensitivity for selecting optimum transfer function between 
input layer and the single hidden layer was also executed 
between log-sigmoidal- and tan-sigmoidal-type transfer 
functions. Tan-sigmoidal-type transfer function performed 
better than the log-sigmoidal. To get the initial weights and 
biases, back-propagation Levenberg-Marquardt (LM) learn-
ing algorithm was selected. To further tune the weights and 
biases to improve the quality of prediction, PSO a computa-
tional evolutionary algorithm was coupled with ANN.

Design of hybrid PSO‑ANN model

In this study, particle swarm optimization (PSO) algorithm is 
used to optimize the weights and biases of the trained ANN 
model. PSO is a stochastic population-based evolutionary 
algorithm, motivated by the societal attitude of fish school-
ing and birds clustering (Kennedy 1997; Shi and Eberhart 
1998; Abido 2002). ANN coupled with PSO has proved to 
be better and faster predictive tool in comparison against the 
conventional ANN technique (Catalao et al. 2010; Vasum-
athi and Moorthi 2012; Wang et al. 2015; Tariq et al. 2016; 
Jahed Armaghani et al. 2017; Chatterjee et al. 2017; Tariq 
et al. 2018a; Ethaib et al. 2018). PSO represents population 
of random solutions in the search space as particles assign-
ing random velocities to them and iteratively tuning the 

Fig. 1  Relative importance of 
input parameters with flowing 
bottom-hole pressure
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fitness of the particles until the best solution called global 
best is achieved. PSO initializes based on predefined algo-
rithm parameters (i.e., population, weight, cognitive param-
eters, etc.). It then randomly generates particle locations in 
the solution search space for initial objective function evalu-
ation. Particles velocity term is given by Eq. 4:

where � is the weight (0 ≤ w ≤ 1.2) , vi particle velocity, c1 
cognitive parameter (0 ≤ c1 ≤ 1.2) , c2 cognitive parameter 
(0 ≤ c2 ≤ 1.2) , n iteration number, pb

i
 particle best solution, 

pgb global best solution, and pi particle i position at any 
iteration.

The inertia term in the particle velocity equation (wvi(n)) 
ensures the particle moves toward its original direction, 
whiles its weight (w) ensures the particle rate of accelera-
tion moves toward its original direction. The cognitive com-
ponent c1 × rand[0, 1] × (pb

i
− pi(n)) memorizes the particle 

previous best solution obtained. The social component 
c2 × rand[0, 1] × (pgb − pi(n)) moves the particle toward the 
global best fitness. New position for each candidate solution 
in the solution search space is generated by sum of the cur-
rent position and velocity:

An objective function (a function that is desired to be 
minimized) is determined to assign the global best value, if 
the current best value is better than the values obtained in the 
previous iteration. The pseudocode for PSO-ANN algorithm 
is given in Table 3. After optimization, tuned weights and 
biases from the optimized model were retrieved.

(4)
vi(n + 1) = �vi(n) +

{
c1 × rand[0, 1] ×

(
pb
i
− pi(n)

)}
+
{
c2 × rand[0, 1] ×

(
pgb − pi(n)

)}

(5)pi(n + 1) = pi(n) + vi(n).

Results and discussion

A total of 206 data points were divided randomly into two 
sets with the proportion of 70:30. The set with 70% of the 
dataset (145 data points) were used for training of the mod-
els, and the other set with 30% of the dataset (60 data points) 
were used to test the prediction capabilities of the trained 
models. The histogram plots for training and testing datasets 
are given in Figs. 2 and 3.

In ANN, two types of models, FFNN and RBF, were 
tested. During training, FFNN predicted FBHP with AAPE 
of 10% and R2 of 0.90, while RBF type of ANN predicted 
FBHP with AAPE of 13.6% and R2 of 0.853. During testing, 
FFNN predicted FBHP with AAPE of 12.3 and R2 of 0.89 
while RBF predicted FBHP with AAPE of 13.6% and R2 of 
0.879, as shown in Table 4. Based on the lowest AAPE and 
highest R2, FFNN was selected as better ANN type com-
pared to RBF for the prediction of FBHP

To improve the accuracy of the model, the hybrid PSO-
ANN algorithm is applied for the prediction of FBHP in a 
vertical well. On a set of random data which is 70% the total 
data (145 data points), PSO-ANN predicted FBHP with the 
AAPE of 2.0% while ANN predicted the FBHP with the 
AAPE of 10% as shown in Fig. 4. For the set of data which 
were dedicated for testing the generalization capabilities 
and stability of the trained model (30% of the total data, 
60 data points), PSO-ANN predicted FBHP with AAPE of 
3.1%, while ANN predicted FBHP with the AAPE of 12% 
as shown in Fig. 5.

Comparing the performance of two models; PSO-ANN 
and ordinary ANN, during training ANN model predicted 
FBHP with less AAPE than ordinary ANN, respectively, 
on the other hand PSO-ANN gave R2 of 0.98 which is 

Table 3  Pseudocode for PSO-ANN algorithm

Step 1 Set number of input parameters
Step 2 Initialize all parameters of ANN
Step 3 Select number of hidden layers and number of neurons (sensitivity of number of neurons between 5 and 30)
Step 4 Select ANN training algorithm and ANN learning rate [0,1]
Step 5 Train neural network and extract weights and biases
Step 6 Set parameters of PSO algorithm, population of particles, number of iterations, social acceleration, cogni-

tive acceleration, and initial and final inertia weights values
Step 7 Set sample search space range for each weight and bias
Step 8 Input weights and biases of ANN matrix in PSO as initial population
Step 9 Define AAPE as on objective function to be minimized
Step 10 Check for convergence of error (minimum convergence)
Step 11 Repeat the iterations until stopping criteria are met (maximum number of iterations reached, or maximum 

number of inactivity reached)
Step 12 Select the global optimum solution as final weights and biases matrix
Step 13 Set final weights and biases in the ANN model for the prediction of FBHP
Step 14 End
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higher than the R2 produced by ordinary ANN which is 
0.9. During testing the unseen data, PSO-ANN also out-
performed ANN and yielded lower AAPE and higher R2. 

Figure 6 shows the comparison cross-plots between actual 
and predicted FBHP for both during training and testing 
phases.

Fig. 2  Frequency histograms of training dataset (145 data points)

Fig. 3  Frequency histograms of testing dataset (60 data points)
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Development of an ANN‑based mathematical model 
for FBHP prediction

A FFNN model is created by a series of three layers, an input 
layer, a single hidden layer, and an output layer. Hidden layer 

neurons use their weights w1 and biases b1 . These parameters 
are described by Eq. 6:

where NP is the total number of inputs, x are the input 
parameters, and �L is the transfer function between the input 
layer and the single hidden layer. The output of the whole 
network ‘ �P ’ can be expressed as in Eq. 7:

where �o is a transfer function between the single hidden 
layer and the output layer and Nh is the hidden layer number 
of neurons. Weights between the input layer and the hidden 
layer are a matrix denoted by w1 , and weights between the 
hidden layer and the output layer are a vector denoted by 
w2 . Biases between the input layer and the hidden layer are 
denoted by b1 , and bias between the hidden layer and the 
output layer is termed as b2.

The proposed PSO-ANN model is trained with nine input 
parameters which are Depth , qo , qg , qw , ∅n , API , STM , BTM , 

(6)�L

(
NP∑
j=1

w1j
xj + b1

)

(7)�P(�) = �o

[
Nh∑
i=1

w2i
�L

(
NP∑
j=1

w1i,j
xj + b1i

)
+ b2

]

Table 4  Prediction comparison 
of ANN types, FFNN and RBF

ANN type Training set Testing Set

AAPE CC R2 AAPE CC R2

Feed-forward neural 
network (FFNN)

10.0 0.95 0.90 12.3 0.94 0.89

Radial basis func-
tion (RBF)

13.6 0.924 0.853 15.9 0.938 0.879

Fig. 4  FBHP prediction using optimized and unoptimized models 
(training dataset)

Fig. 5  FBHP prediction using optimized and unoptimized models 
(testing dataset)

Fig. 6  Training and testing cross-plot of FBHP prediction using PSO-
ANN and ANN models
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and Pwh , with one hidden layer containing 20 neurons, tan-
sigmoidal as a transfer function between input layer and hid-
den layer, and pure linear as a transfer function between the 
hidden layer and the output layer. Figure 7 shows the general 
architecture of the proposed model. Table 5 shows the list of 
learning parameters involved in the training and testing of 

the proposed model. An empirical correlation is developed 
from the proposed PSO-ANN model. An empirical correla-
tion depends on the associated weights and biases which are 
listed in Table 6. The proposed equation can be written more 
specifically as in Eq. 8:

Fig. 7  Architecture of PSO-
ANN model for FBHP
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where �L(x) = (2∕1 + e−2x) − 1 , �o(x) = x 

The detailed procedure to use the proposed equation is 
given in “Appendix B.”

Evaluation and validation of the proposed 
model to predict FBHP

Evaluation and validation of new equation is based on pub-
lished data and group trend analysis.

Comparison of the proposed FBHP model with other 
correlations and mechanistic model

A total of 50 data points from the published data by Pef-
fer et al. (1988) were utilized to validate the generalization 
capability of the proposed PSO-ANN model. To achieve this 
purpose, various mechanistic and empirical models were 
tested on the same dataset. The mechanistic and empirical 
models tested were Duns and Ros (1963), Hagedorn and 
Brown (1965), Beggs and Brill (1973), Mukherjee and Brill 
(1985), Kabir and Hasan (1986), Ansari et al. (1994), and 
Gomez et al. (1999). Table 7 shows the list of various statis-
tical parameters obtained from the comparison for evalua-
tion purposes. To demonstrate the strength of the proposed 

(8)

FBHPn = �o

[
Nh∑
i=1

w2i
�L(w1i,1

Depthn + w1i,2
qon + w1i,3

qgn

+w1i,4
qwn

+ w1i,5
�n +w1i,6

APIn + w1i,7
STMn

+w1i,8
BTMn + w1i,9

Pwhn
+ b1i) + b2

]

(9)FBHP =
(3217 − 1227)(FBHPn + 1)

2
+ 1227

model, R2 and AAPE were used as suitable pointers of 
robustness. Analysis of Table 7 shows that PSO-ANN model 
outperforms all other investigated mechanistic and empirical 
models by giving less AAPE and high R2 between actual and 
predicted datasets.

Group trend analysis

A group trend analysis was carried out to assess the strength 
of the proposed empirical model and to make sure that how 
effectively the proposed model captures the physical phe-
nomenon behind each scenario. To achieve this, synthetic 
datasets were created, where in every set of data only one 
input parameter was varied from its minimum to maximum 
values while all other parameters were kept constant at their 
average values. FBHP is calculated and plotted in Figs. 8, 9, 
10, 11, and 12 with different scenarios which are changing 
flow rate of oil, changing flow rate of gas, changing flow 
rate of water, changing depth of perforations, and changing 
GLRs with different tubing IDs.

Effect of changing oil flow rate on FBHP curve

Figure 8 shows the effect of increasing oil rate on FBHP 
with three different tubing IDs of sizes 2.875, 3.5, and 4.0 
inches. Increase in tubing diameter reduces frictional losses 
which helps in increasing the flow rate. For instance, at the 
FBHP of 2500 psi, the 2.875” tubing gives 8500 bbls/day, 
the 3.5” tubing gives 13,200 bbls/day, and 4” tubing gives 
18,700 bbls/day. Figure 8 also shows that as the oil flow rate 
is increasing, the FBHP is decreased to certain value and 
then starts increasing. The value at which FBHP is minimum 
at increasing oil flow rate is known as liquid loading point. 
It is a minimum oil rate needed to keep the well unloaded. 
For example, in case of 2.875 inches tubing, the minimum 
of 4000 bbls/day of flow rate is needed to keep the well 
unloaded. This information is needed to evaluate the size of 
tubing which is going to be installed in a well and to deter-
mine the rate at which the well starts to deliver for a specific 
size of tubing. PSO-ANN model accurately predicted the 
effect of liquid loading on FBHP with the increase in oil 
production rate.

Effect of changing gas flow rate on FBHP curve

Figure 9 shows the effect of increasing gas rate on FBHP 
with three different tubing IDs of sizes 2.875, 3.5, and 4 
inches. Figure 9 shows that as the gas flow rate is increasing, 
the FBHP is also increasing. This type of trend is also justi-
fied by general energy equation. PSO-ANN model predicted 

Table 5  PSO-optimized neural network architecture

Neural network parameters Ranges

Number of inputs 9
Number of outputs 1
Number of neurons 20
Number of hidden layer(s) 1
Training algorithm Levenberg–Marquardt
Learning rate ( �) 0.12
Hidden layer transfer function Tan-sigmoidal
Outer layer transfer function Pure linear
Training ratio 0.7
Testing ratio 0.3
Number of iterations 500
CPU time 60 s
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the correct trend of increasing FBHP with the increasing gas 
production rate.

Effect of changing water flow rate on FBHP curve

Figure 10 shows the effect of increasing water rate on FBHP 
with three different tubing IDs of sizes 2.875, 3.5, and 4 
inches. Again, PSO-ANN model predicted the accurate trend 
with the sensitivity of water rate which shows that the higher 
water rate gives higher FBHP.

Effect of changing perforation depth on FBHP curve

Figure 11 shows the effect of changing tubing perforation 
depth on FBHP. Sensitivity analysis with five different 

tubing IDs of sizes 1.995, 2.375, 2.875, 3.5, and 4.0 inches 
was performed. It is a well-documented fact that the pres-
sure drop inside the vertical well is a result from three 
components which are hydrostatic pressure loss, frictional 
pressure loss, and kinetic pressure loss. For the case of 
vertical well, pressure losses due to kinetics are very mini-
mal and can be neglected. Increase in perforation depth 
increases the hydrostatic component (function of the fluid 
density and depth) and therefore increases the FBHP. As 
can be depicted from Fig. 11, the proposed PSO-ANN 
model can capture the right physics which shows the 
increase in tubing pressure with the increase in perfora-
tion depth.

Table 7  Statistical analysis of the comparison between empirical cor-
relations, mechanistic models, and proposed ANN model on testing 
dataset

Models R2 AAPE

Kabir and Hasan (1986) 0.7502 19.53
Ansari et al. (1994) 0.8178 8.856
Chokshi et al. (1996) 0.8836 8.26
Gomez et al. (1999) 0.8324 13.95
Hagedorn and Brown (1965) 0.8508 9.96
Duns and Ros (1963) 0.8495 9.026
Orkiszewski (1967) 0.9015 15.65
Beggs and Brill (1973) 0.8647 10.56
Mukherjee and Brill (1983) 0.8792 7.89
Proposed PSO_ANN equation 0.983 2.566

Fig. 8  Effect of changing oil rate on flowing bottom-hole pressure at 
tubing IDs of 2.875, 3.500 and 4.000 inches

Fig. 9  Effect of changing gas rate on flowing bottom-hole pressure at 
tubing IDs of 2.875, 3.500 and 4.000 inches

Fig. 10  Effect of changing water rate on flowing bottom-hole pres-
sure at tubing IDs of 2.875, 3.500 and 4.000 inches
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Effect of changing gas–liquid ratio (GLR) with perforation 
depth on FBHP curve

Figure 12 shows the effect of changing gas–liquid ratio 
(GLR) with the changing depth on FBHP curve using con-
stant tubing ID of 4.0 inches. As expected and depicted from 
Fig. 12, the increase in GLR results in decrease in FBHP.

Conclusions

The real-time prediction of the FBHP with real-time 
surface production data parameters helps in minimizing 
the cost of conducting sequential pressure surveys via 

running expensive wireline tools (having pressure-meas-
uring gauges) inside the down-hole. The new approach 
avoids the need for unnecessary production interruptions 
to record bottom-hole pressures. Real-time assessment of 
FBHP allows engineer to model real-time inflow perfor-
mance relationship curves (IPR), which in turn helps in 
identifying early well problems, and hence, prompt inter-
ventions can be taken to uphold the potential of the well. 
This method of estimating FBHP is also a good alternative 
in areas of high security concerns and adverse weather 
situations. The dataset used to develop proposed model is 
based on the true vertical depth of the tubing where the 
perforation was done, however the new model can also be 
used to measure the FBHP at the heel of the horizontal 
well, while the pressure drop from the toe to the heel of the 
horizontal well can be estimated from existing analytical 
equations (Ozkan et al. 1995, 1999; Su and Gudmundsson 
1998) based on the dip angle that includes friction losses 
and gravity values in cases when perfect horizontal well 
was not drilled. The approach used in this study can also 
be extended to the inclined wells by training the model on 
a measured depth with the additional input of inclination 
angles. Based on observations and results, the following 
conclusions can be inferred:

1. A hybrid application of ANN and PSO served as one of 
the robust CI techniques to predict FBHP in a producing 
well.

2. PSO-ANN model predicted FBHP with a R2 of 0.98 and 
AAPE of 2.0%.

3. The proposed PSO-ANN model outperformed former 
mechanistic and empirical models for FBHP predictions.

4. The accurate prediction by the proposed model in a 
group trend analysis shows that the proposed model is 
capturing the right physics.

5. The new model can be applicable for a wide range of 
operating conditions as defined in Table 2a.

6. From overall results, it can be said that the new model 
can be used as a cost-effective alternative in terms of 
eliminating the need for intervening the well to record 
FBHP by running pressure-measuring tools.

7. The new mathematical model formulated from tuned 
weights and biases of PSO-ANN can be utilized to pre-
dict FBHP in new wells without the need for expensive 
commercial software for AI training purposes.
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Fig. 11  Effect of changing depth on flowing bottom-hole pressure at 
tubing IDs of 1.995, 2.375, 2.875, 3.500 and 4.000 inches

Fig. 12  Effect of changing depth with different gas–liquid ratios 
(GLRs) on flowing bottom-hole pressure at tubing diameter of 4.000 
inches
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Appendix A

Averaged absolute percentage error (AAPE) is defined as 
follows:

where  FBHPmeasured is the measured value of FBHP and 
 FBHPpredicted is the estimated value from the models. k is 
the total number of data points.

Correlation coefficient CC between two variables was 
defined as follows:

where x and y are two variables.
Coefficient of determination R2 between two variables 

was defined as follows:

Appendix B

Steps to use new mathematical model for FBHP 
prediction

Step 1 Normalize input parameters between − 1 and 1. 
Input parameters are denoted here by ‘ x .’ Normaliza-
tion can be done by slope form using Eq. 10:

AAPE =

∑���
�
FBHPmeasured − FBHPpredicted

���� ∗
100

FBHPmeasured

k

CC =
k
∑

xy −
�∑

x
��∑

y
�

�
k
�∑

x2
�
−
�∑

y
�2�

k
�∑

b2
�
−
�∑

b
�2

R2 =

⎛⎜⎜⎜⎝

k
∑

xy −
�∑

x
��∑

y
�

�
k
�∑

x2
�
−
�∑

y
�2�

k
�∑

b2
�
−
�∑

b
�2

⎞⎟⎟⎟⎠

2

.

(10)

Inputnorm =
(Inputmax − Inputmin)(x − xmin)

xmax − xmin

+ Inputmin

x is the input parameter, xmin is the minimum values 
of input parameters, and xmax is the maximum values 
of input parameters. xmin and xmax for each of the input 
parameters are given in Table 2a. To perform the nor-
malization, the following equations (Eqs. 11–19) can also 
be used:

Step 2 Inserting weights and biases in Eq. 8 gives normal-
ized FBHP values. These weights and biases are given 
in Table 6.
Step 3 To convert FBHP value in a real space, de-normal-
ization is required which can be done by applying Eq. 9.

Note The results obtained using Eq. 9 will be in psi.
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