
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2019) 9:3113–3133 
https://doi.org/10.1007/s13202-019-0710-1

REVIEW PAPER – PRODUCTION ENGINEERING

Critical evaluation of infill well placement and optimization of well 
spacing using the particle swarm algorithm

Evans Annan Boah1   · Obed Kwami Senyo Kondo2 · Abraham Aidoo Borsah1 · Eric Thompson Brantson3

Received: 28 September 2018 / Accepted: 5 June 2019 / Published online: 12 June 2019 
© The Author(s) 2019

Abstract
Optimizing the placement of new wells and well spacing are vital issues in oilfield development. In recent years, the use of 
particle swarm algorithm (PSA) in many reservoir applications has gained wide acceptance. More importantly, the applica-
tions of PSA in determining optimal well placement and well spacing facilitate subsurface development in oil and gas fields. 
Due to the quest for hydrocarbons, there is the need to maximize oil recovery from petroleum reservoirs. Besides, drilling 
infill wells are one way to maximize oil recovery from reservoirs. However, the problem of infill well placement is very 
challenging. This is because many different well placement scenarios must be evaluated when undertaking the optimization 
program. Most often, the variables that affect the reservoir performance are nonlinearly correlated with some degree of 
uncertainty. Therefore, the use of computational algorithm has become increasingly common in handling well placement 
problems. In this paper, PSA has been efficiently used to determine optimal locations of infill wells and their spacings in a 
synthetic reservoir. The reservoir used in the optimization process is a two-dimensional implicit black-oil model. The objec-
tive function in this study is the net present value of the asset (reservoir). For optimal locations, 20-acre, 40-acre and 80-acre 
spacing were considered for maximization of the objective function. The spacing for optimal locations was varied between 
wells in the reservoir model. Multiple cases for infill well locations with six existing appraisal wells were considered. After 
various simulation runs, the optimum locations of infill wells, number of wells and the corresponding well spacings were 
determined. Consequently, 4 vertical infill wells located at 40-acre spacing predicted the optimum NPV of $3.973 × 109. 
Therefore, this infill design is recommended for field development. Pressure and saturation distribution maps were generated 
with the maximization of net present value as the objective function. The oil, water and gas productions from the reservoir 
after infill well drilling were also analyzed. The total oil production after implementation of infill drilling peaked at 44.0 
MMSTB, representing 48.31% recovery. In addition, an uncertainty analysis was performed to evaluate the reservoir per-
formance and its impact on economic parameters that directly affect the net present value. Probability estimates: P10, P50, 
and P90 were obtained from the uncertainty analysis to provide a basis to estimate the possible net present values and the 
options for evaluating the different reservoir development scenarios. The major contribution of this study is that a methodol-
ogy for infill well design has been developed. This will be a useful tool to support petroleum engineers in deciding how to 
maximize the value of their asset—the petroleum reservoir.
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Abbreviations
PSA	� Particle swarm algorithm
NPV	� Net present value
Sor	� Residual oil saturation
TranX	� Transmissibility
PermX	� Horizontal permeability
PermZ	� Vertical permeability
PUNQ-S3	� Production forecasting for uncertainty 

quantification
bGA	� Binary genetic algorithm
cGA	� Continuous genetic algorithm
ANN	� Artificial neural network
Poro	� Porosity

Introduction

The development of petroleum reservoirs through infill drill-
ing to exploit hydrocarbon reserves not properly drained by 
existing producing wells is on the growing demand. Deter-
mination of locations of infill wells and their optimum 
spacing, in addition to the maximization of corresponding 
incremental field production and subsequently the projects 
profitability, are vital aspects of optimal reservoir manage-
ment. This is because wide well spacing will consequently 
cause some of the hydrocarbon bearing sands not to be swept 
efficiently. Close spacing between wells will cause some of 
the hydrocarbon bearing sands to be penetrated by more 
than one well, causing interference and lowering fluid vol-
umes drained by the producing wells. However, the task of 
optimizing infill well placement is challenging because the 
prediction of the production capacity of many wells may be 
required, with each evaluation requiring a simulation run for 
large or complicated reservoir models. The time for simula-
tion run can sometimes be computationally expensive. The 
extent of simulations required depends largely on the num-
ber of optimization variables, the size of the search space 
and the type of optimization algorithm employed. Therefore, 
a more integrated and comprehensive strategy is required 
than just creating a development plan for effective petroleum 
reservoir exploitation and management. Different optimiza-
tion techniques have been utilized to find the optimum well 
locations in a petroleum reservoir. Among the commonly 
used well placement algorithms are gradient-free optimiza-
tion algorithms. One of the gradient-free algorithms is the 
particle swarm optimization algorithm which has gained 
wide usage in the industry (Agbauduta 2014). The devel-
opment of a field involves determining the optimum num-
ber, type, and location of new wells that will augment an 
objective function. The commonly used objective function 
in addressing well placement optimization problems is the 
net present value (NPV). Determining the optimal location 
of wells that ensure high financial returns plays a key role 

during decision making on reservoir development. Simu-
lations need to be carried out to get the fluid volumes to 
be used in evaluating the objective function. Optimum well 
spacing determination is an essential aspect of well place-
ment programs. It is important to ensure some constraints 
are imposed in the problem formulation. For example, two 
or more wells cannot be located at the same place or too 
close to each other to avoid interference and other adverse 
problems (Onwunalu 2006). This requires the development 
of a special simulator for well placement and optimization 
of well spacing in petroleum reservoirs.

Genetic algorithm is considered to be the most commonly 
used stochastic optimization algorithm employed for well 
placement and other reservoir management-related applica-
tions. The optimization algorithms used for well placement 
problems are categorized into two domains: global search 
stochastic algorithms (gradient-free) and gradient-based 
algorithms (Yeten 2003). The GA is a dynamic computa-
tional analog of the process of evolution based on natural 
selection, where species (solutions) undergo competition to 
survive. GA illustrates potential solutions to the optimiza-
tion problem as individuals within a population strive for 
successive survival. The solution quality (fitness) of the indi-
vidual evolves as the algorithm iterates significantly (i.e., 
proceeds from generation to generation). At the end of the 
simulation, the individual with the highest fitness (best indi-
vidual) represents the solution to the optimization problem 
(Goldberg 1989). The two main categories of the GA are the 
bGA and cGA. Genetic algorithm-based methods have been 
applied to optimize the locations of both non-conventional 
wells and vertical wells for solving well spacing optimiza-
tion problems (Bittencourt and Horne 1997; Artus et al. 
2006; Onwunalu 2010). The solutions (fitness) obtained 
using GA can be improved by combining GA and other 
optimization algorithms, e.g., Hooke–Jeeves-type of search 
algorithm, ant colony algorithm, tabu search or polytope 
algorithm (Bittencourt and Horne 1997; Badru and Kabir 
2003; Yeten et al. 2003).

Several researches such as those conducted by Bittencourt 
and Horne (1997), Guyaguler et al. (2000), Yeten (2003), 
Onwunalu (2006), Farshi (2008), Abukhamsin (2009) and 
Emeric et al. (2009) have employed various optimization 
algorithms for handling intricate optimization issues.

Bittencourt and Horne (1997) developed a hybrid bGA. In 
their research, they combined GA with the polytope method 
to benefit from the best features of each method. In the poly-
tope method, optimal solution is achieved by constructing a 
model that has the number of vertices equal to or more than 
the dimensionality of the search space. Each vertex is evalu-
ated. The method guided the search space by reflecting the 
worst point around the centroid of the existing nodes. The 
approach was able to optimize the placement of horizontal 
and vertical wells in a real faulted petroleum reservoir by 
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optimizing three variables for each well considered: well 
location, well type (vertical or horizontal), and horizontal 
well orientation.

Guyaguler et al. (2000) adopted a mixed optimization 
algorithm and functions such as artificial neural networks 
and Kriging to serve as proxies to help minimize the cost 
related with reservoir simulations. The basis for the Krig-
ing algorithm relates to the fact that a certain relationship 
exists between parameters located in space and time. This 
relationship is well understood by the algorithm which then 
tries to obtain the acceptable output. The ANN algorithm 
works on the principles of biological neurons, which help 
to establish relations between the inputs and outputs for a 
series of simulations. The outcome of their study revealed 
that the Kriging algorithm performed better compared to the 
ANN algorithm.

Yeten (2003) used bGA to optimize the location, type and 
trajectory of non-conventional wells. They also developed 
an optimization tool based on a nonlinear conjugate gradient 
algorithm to optimize smart well controls. Various helper 
functions including ANNs and the Hill Climber (HC) were 
also applied in their research. An experimental design pro-
cedure was proposed to measure the effects of uncertainty 
during the optimization. Finally, they conducted sensitivity 
analysis in a similar manner to Guyaguler’s study.

Onwunalu (2006) applied statistical proxy based on 
cluster analysis of the GA optimization process for non-
conventional wells using Yeten’s multilateral well model. 
The core objective of applying the proxy in their research 
was to minimize the excessive computational requirements 
when optimizing under geological uncertainty. The method 
adopted is similar to the ANN’s method in terms of building 
a store of simulation outputs. The record is then partitioned 
into clusters containing similar objects. In their study, the 
objective function of a new scenario can be approximated 
by assigning it to one of the constructed clusters. In the 
optimization of individual wells, the proxy provided a close 
match to the full optimization by simulating only 10% of the 
cases. This resulted in a 50% increment when several non-
conventional wells were optimized.

Farshi (2008) conducted a research on well placement 
optimization. They converted well placement and design 
optimization framework that was developed by Yeten (2003) 
from bGA to a real-valued cGA. The results of their study 
indicated that the cGA provided reliable results when com-
pared to the performance of bGA on the same synthetic 
models. Moreover, several improvements to the optimization 
process such as imposing a minimum distance between the 
various wells and modeling curved wellbores were imple-
mented by Farshi (2008) to obtain better results.

Abukhamsin (2009) conducted a comparative study 
between the two variants of GA: the bGA and cGA to make 

a decision on the more robust algorithm to be applied in 
order to determine optimum well location and well design. 
The different internal algorithm parameters were tuned by 
the contribution of adding helper tools and hybrid tech-
niques to the search space for optimum solutions. After 
performing sensitivity tests on the algorithm, optimum 
parameters were selected and more in-depth analysis was 
performed to ascertain an optimum field development 
plan. In Abukhamsin’s study, it was concluded that solu-
tions from different runs had dissimilar well schemes due 
to the stochastic behavior of the algorithm. However, there 
were some similarities in well locations. Comparing the 
bGA and cGA, it was observed that average results from 
the cGA were slightly higher. This algorithm appeared to 
be more consistent when several runs were made. Also, 
analysis of the results showed that better optimization out-
comes can be obtained within the shortest possible period 
of time when dynamic population sizes are utilized. The 
use of the HC helper tool with the GA delivered efficient 
final solutions.

Emeric et al. (2009) implemented a genetic algorithm 
to find the best well configuration for a number of deviated 
wells. In their study, unrealistic solutions were handled by 
creating a population-based model that produced reliable 
results. Unfeasible solutions obtained during the optimiza-
tion process were also handled by comparing to the base 
population until a feasible result was attained. The method 
was implemented with the use of the base population ini-
tialized randomly and this yield a better solution.

The review works compared the different algorithms 
employed for solving well placement problems. Most of 
these works also considered the optimization of a differ-
ent number of wells and well types (vertical, deviated, 
multilateral, etc.) for reservoir development. However, the 
works did not pay particular and detailed attention to inter-
well spacing variations and how the variations impact the 
field’s cumulative production, and subsequently the profit-
ability of the development project. In this research, differ-
ent inter-well spacings were considered in the optimization 
process.

Despite the usage of GA, the use of PSA is very rare in 
literature. Therefore, this paper focuses on the use of par-
ticle swarm algorithm as the core optimizer to find the best 
possible locations and spacing of infill wells in a reservoir 
model for optimal field development. The objective func-
tion is the NPV of the asset-petroleum reservoir.

The PSA is applied to a reservoir arbitrary named 
PUNQ-S3 reservoir to optimize the spacing and locations 
of infill wells in the reservoir model. Also, the best well 
configuration for the development of the reservoir model 
is determined and an uncertainty analysis performed on 
the reservoir to evaluate different development options.
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Particle swarm algorithm for well placement 
optimization

There are many stochastic optimization algorithms of which 
the particle swarm algorithm is one of those. This algorithm 
was introduced by Eberhart and Kennedy (1995). The algo-
rithm imitates the actions displayed by animal swarms. The 
name given to a point found in the search space is referred to 
as a particle, and a collection of particles per every iteration 
is referred to as the swarm. Particle positions are altered in 
the search space until a stopping criterion is satisfied.

Let y represents a probable answer in the search space 
having p-dimensions, thus, yi(k) = {yi,1(k), …, yi,p(k)} as the 
position of the ith particle in iteration k, yi

pbest(k) as the previ-
ous best solution generated by the ith particle up to iteration 
k and yi

gbest(k) as the position of the finest particle in the 
vicinity of particle yi up to iteration k. The new position of 
particle i in iteration k + 1, yi(k + 1), is calculated by adding 
a velocity, vi(k + 1), to the current position yi(k) (Kennedy 
and Eberhart 1995; Shi and Eberhart 1998):

where vi(k + 1) = {vi,1(k + 1), …, vi,p(k + 1)} is the velocity of 
particle i at iteration k + 1.

The velocity vector is computed as (Engelbrecht 2005; 
Shi and Eberhart 1998):

where ω, c1 and c2 represent weights; D1(k) and D2(k) denote 
matrices with diagonal constituents that are evenly spread 
arbitrary variables within the range [0, 1]. The values of 
ω, c1 and c2 used are ω = 0.729 and c1 = c2 = 1.492. These 
values were obtained from investigations implemented by 
Clerc (2006). The new particle velocity, vi(k + 1), is added 
to the present location to get the new vector, yi(k + 1), as 
shown in Eq. (2). Table 1 shows the PSA parameters used 
in this study.

Particle swarm optimization procedure

The particle swarm algorithm process is described briefly 
as follows:

(1)yi(k + 1) = yi(k) + vi(k + 1)

(2)
vi(k + 1) = �vi(k) + c1D1(k)

(

y
pbest

i
(k) − yi(k)

)

+ c2D2(k)
(

y
gbest

i
(k) − yi(k)

)

1.	 Initialization of the values of c1, c2, ω, Ns (population 
size) and K (maximum number of iterations). These val-
ues for this study (Table 1) were obtained from Clerc 
(2006).

2.	 Initializing the positions of the particle, yi,j(k), with arbi-
trary components chosen from an even distribution.

	   Set each velocity component to zero, thus, vi,j(k) = 0.
3.	 Evaluate the objective function for all particles that have 

met the optimization constraints. The objective function 
in this work was estimated by carrying out a simulation 
run.

4.	 Previous best position particles are updated. The best 
particle in the vicinity is determined for particle i. New 
particle velocities are then calculated, thus, vi(k + 1).

5.	 Particles positions are updated.
6.	 The objective function is again estimated at these new 

positions, thus, f(yi(k + 1)).
7.	 The former finest locations of each particle, yi

pbest(k) 
is evaluated and if the new objective function value, 
f(yi(k + 1)), is better than the one at the former finest 
location, f(yi

pbest(k)), the new objective function value 
and particle positions are accepted.

8.	 Steps 5–7 are repeated until the maximum number of 
iterations is reached, but the objective function value 
and particle positions are changed only when the new 
ones are better than the ones obtained in step 7.

9.	 The algorithm terminates when the maximum number 
of iteration is reached.

Evaluation of objective function

One important component in every optimization process is the 
evaluation of an objective function which is either, minimized 
or maximized during the optimization process. Decisions in an 
optimization process are based on the outcome of an evaluated 
objective function. The objective function used in this work 
is the NPV. The NPV is simply discounting the cash flow to 
the beginning of the project. Evaluating the NPV during the 
optimization process requires a simulation run. The Sensor6K 
simulator (Coats 2013) was used for the simulations. The NPV 
is evaluated from the fluid productions obtained after each 
simulation run. These are presented as follows:

where Cf is the facilities installation cost, Nprod is the number 
of producer(s), Ninj is the number of injector(s), Cprod is the 
cost of producer and Cinj is the cost of an injector.

The net cash flow at time t, NCFt , is computed using:

(3)NPV =

k
∑

t=1

NCFt

(1 + r)t
− CCAPEX

(4)CCAPEX = Cf + NprodCprod + NinjCinj

Table 1   Particle swarm 
algorithm parameters

Parameters Values

Inertia weight (ω) 0.729
Cognitive term (c1) 1.492
Social term (c2) 1.492
Population size (Ns) 15.00
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where Rt and Et represent the revenue ($) and operating 
expenses ($), respectively, at time t. The revenue and oper-
ating expenses depend on the fluid production volumes at 
time t:

where Po and Pg represent the oil price ($/STB) and gas price 
($/MSCF), respectively; and Qo

t
 and Qg

t  represent the total 
volumes of oil (STB) and gas (MSCF) produced, respec-
tively, over the time step.

The operating expense at time t, Et , is computed as:

where Cwp represents water production and treatment costs 
($/STB), Cwi represents water injection cost, Cop represents 
cost of operation per STB of oil and Qw

t
 represent the total 

volumes of water produced (STB) at time t, Qwi
t

 represent 
the total volumes of water injected (STB) at time t. Po , Pg , 
Cwp , Cwi and Cop are taken to be constant in time, in all cases. 
Table 2 lists the economic parameters used in the computa-
tion of the objective function, NPV.

Methodology

This research presents a systematic methodology to evalu-
ate potential locations and spacing of infill wells for opti-
mization purpose. Development of a MATLAB program 
is carried out for the PSA for well placement with respect 
to maximization of the objective function, i.e., NPV. The 
scope of this study does not include creating an actual res-
ervoir development strategy that can be implemented in this 
field of interest. Rather, it involves evaluating several res-
ervoir development scenarios and using reservoir simula-
tion approach to maximize the profitability of the studied 
reservoir. The optimization procedure involved evaluating 
initial production with existing wells subject to minimum 

(5)NCFt = Rt − Et

(6)Rt = PoQ
o
t
+ PgQ

g

t

(7)Et = CwpQ
w
t
+ CwiQ

wi
t
+ CopQ

o
t

oil rate, maximum water cut, maximum gas–oil ratio and 
minimum bottom-hole pressure constraints. The resulting 
fluid productions obtained from multiple simulation runs 
are used to compute the NPV. The analysis of cases to select 
the best alternative for optimal reservoir development was 
made. This included infill well drilling after the initial pro-
duction period under three conditions: type of wells, the 
number of wells and spacing between the drilled wells. 20-, 
40-, and 80-acre well spacing arrangements were considered 
for drilling of new infill wells. Three and four vertical infill 
wells were initiated for different simulation runs. The spac-
ing for the infill wells was varied in the reservoir model. 
Initially, the six existing wells were produced for 15 years. 
Afterward, a production forecast is then carried out for an 
additional 15 years making a total of 30 years continuous 
production. Computational cost analysis is performed to 
assess the computational time for the various case runs. The 
next stage involved carrying out uncertainty analysis on the 
reservoir using hypothetical parameters. The uncertainty 
analysis provided the basis for estimation of the net present 
value and also evaluate the risk associated with the reservoir 
development.

Finally, the results obtained were analyzed, discussed and 
conclusions drawn. Tools used in this research included: 
MATLAB and Sensor 6K simulation tools. MATLAB was 
used to develop a program for the particle swarm optimiza-
tion algorithm. The Sensor6K tools were used to run simu-
lations for a series of cases considered to achieve optimal 
well locations and spacing of infill wells. It was also used for 
carrying out uncertainty analysis for the different scenarios. 
Figure 1 presents a flowchart for methodology.

Reservoir model description

The reservoir used in this study is the PUNQ-S3 reservoir 
model. This reservoir model is a real field which was oper-
ated by Elf Exploration and Production. This reservoir model 
was categorized as a small-size engineering reservoir model. 
Grid dimensions in the model are 19 × 28 × 5. The size of 
each grid in the x and y directions are approximately 200 
ft, respectively, and approximately 52 ft for each grid in the 
z-direction. There are five layers in the reservoir model. The 
gas–oil and oil–water contacts are located at 7726.4 ft and 
7856.3 ft in the reservoir, respectively. The reservoir has a 
strong aquifer support connected to the northern and western 
sides. It has a fault at the eastern and southern parts. There 
is a gas cap located at the top of the dome-shaped struc-
ture. There are six existing producing wells in the reservoir 
model but no injection wells as a result of the existence of a 
strong aquifer. During the first 8 years (0–2936 days), well 
PRO-1, PRO-3 have a gas breakthrough; PRO-4 has water 
breakthrough; no other well had gas or water breakthrough. 
The corner point geometry was used in the construction of 

Table 2   Economic parameters 
for NPV computation

Parameters Values

Cf $50 × 106

Cprod $4.0 × 106

Cinj $4.0 × 106

Cop $11.5/STB of oil
Cwp $7/STB of water
Cwi $10/STB of water
Po $44/STB of oil
Pg $3.57/MSCF
r 0.10
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the reservoir model. Detailed analysis was carried out to 
study the application of infill well placement optimization 
in the PUNQ-S3 reservoir model. The objective is to find the 
optimal locations for drilling infill wells, with already six 
producing wells in the reservoir model, while considering 
the uncertainties associated with the reservoir and economic 
parameters. Figure 2 shows the contours for oil saturation 
zones with locations of appraisal wells.

Permeability distribution model

Permeability anisotropy predicts reservoir performance 
and the geometry (shape) of the drainage area surrounding 
every wellbore including its storage effect. The possibility 
of obtaining higher permeability values in one direction can 
lead to formation of elliptical well drainage area. On this 
note, the permeability distribution pattern in the vertical 
and lateral direction for layers of the reservoir model was 
mapped and analyzed. Considering the permeability distri-
bution of the model, one can determine optimum well loca-
tions trivially. Detailed analysis was performed for layers 3 
and 4 where the infill wells were located. We assumed iso-
tropic permeability condition in the lateral direction of the 

reservoir model, thus, kx = ky. However, the permeability dis-
tribution of the reservoir would be the same regardless of the 
infill design. The essence of this task is to provide informa-
tion on the spatial variations of permeability in the reservoir 
layers where infill well placement was performed. From the 

Fig. 1   Flowchart of methodol-
ogy used for the optimization 
process

Define optimization 
parameters

Initialization of 
particle positions and 

particle velocities 

Run simulations on current 
positions that have met the 

optimization constraints

Compute particles new velocities and update particles positions

Simulations and iterations terminate after maximum 
number of iterations (stopping criteria) is reached

Analyze results

Start

Initialization of optimization 
parameters

Specify iteration t=0

Evaluate  objective 
function i.e. NPV

Update and set iteration count k =1

EndEvaluate fitness of final 
terminating state/convergence

Fig. 2   Contour map showing oil saturation at various depths with 
location of appraisal wells
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results, higher permeability values were observed in the ver-
tical and lateral directions for layers of the reservoir model 
as shown in Fig. 3. The horizontal permeability values for 
both layers (3 & 4) ranged between 2.625–999.10 mD and 
69.17–498.87 mD, whereas vertical permeability values fell 
between 0.7579–496.80 mD and 0.1478–99.76 mD, respec-
tively. Table 3 shows the summary of history data used. Ini-
tial conditions of reservoir used for the optimization process 
is also presented in Table 4.

Summary of optimization process, results 
and discussion

Disseminating acceptable location to place wells in a reser-
voir is a critical issue in oil and gas field development. The 

Fig. 3   Directional permeability 
distribution maps for various 
layers of the reservoir model

Table 3   Ranges of reservoir history data used for the well optimiza-
tion process

Parameters (units) Minimum Average Maximum

Threshold pressure gradient (psia/
ft)

284 1288 1958

Reservoir temperature (°F) 165.7 168 198.6
Bottom-hole flowing pressure 

(psia)
2080 2885 3317.7

Cumulative oil production 
(MMSTB)

23.5 25.8 28.7

Cumulative gas production (BCF) 10.87 13.10 15.53
Cumulative water production 

(MMSTB)
0.0452 0.0599 0.0879

Recovery efficiency, RF (%) 22.72 22.93 32.0
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optimization process is subject to the fulfillment of certain 
constraints. Therefore, to achieve the aim of this paper, we 
focused on maximization of the net present value as the 
objective function for the case study considered. The PSA 
was implemented to identify the optimal well locations and 
spacing between the wells. Several development scenarios 
were analyzed for the simulated case runs before selecting 
the best alternative plan for reservoir development. First, the 
constraints are presented. This is followed by the discussion 
of the development scenarios examined in this study.

Constraints developed for the well placement 
process

1.	 The minimum inter-well spacing is one important con-
sideration in this work. Infill wells cannot be placed 
at locations occupied by existing wells and cannot be 
placed at locations where another infill well has already 
been placed. Another consideration is to ensure that 
wells are placed at an appreciable distance away from 
each other to avoid interference between wells and other 
adverse drainage problems.

2.	 The proposed locations for the infill wells should have 
an average pressure which is more than the threshold 
pressure of the reservoir. This is done to ensure that 
the proposed locations have enough pressure (reservoir 
energy) to support fluid production.

3.	 Infill wells must be placed in areas in the reservoir where 
there is enough oil saturation. Locations for infill drill-
ing should have oil saturation (So) which is more than 
the residual oil saturation (Sor), plus some allowable per-
centage margin. The margin used in this study is 10%. 
That is, So ≥ Sor + 0.1. The areas that do not meet the 
constraint was not included in the search space.

4.	 Infill wells are placed only in active blocks in the reser-
voir model. There are 2660 blocks in the reservoir model 
of which 1761 are active blocks.

5.	 Infill wells are placed at a fair distance away from the 
reservoir boundaries, the aquifer, and the oil–water inter-

face. The infills wells were produced at constant rate and 
bottom-hole pressure of 1800 stb/day and 3317.7 psia, 
respectively.

Computational cost analysis for the optimization 
process

Computational cost analysis was performed to evaluate the 
computational time for the various simulation runs adopted. 
The linearization schemes for PSA and implicit pressure, 
explicit saturation (IMPES) models were compared in terms 
of their numerical convergence by constantly monitoring 
the computational times. The models were specified within 
tolerance limit considering two cases of infill well drilling 
which captured both pressure and saturation distributions. 
100 iterations were initialized for each of the two scenarios 
considered for well placement optimization using the parti-
cle swarm algorithm. The PSA models exhausted 2 min 18 s 
CPU time for the optimization process. The iterative solution 
from the PSA models converged rapidly from 62nd to 70th 
iteration with repeated solutions. Hence, computational cost 
is minimized due to its faster convergence rate. Again, the 
PSA model revealed a stabilized numerical solution within 
acceptable tolerance limit compared to the IMPES models. 
The IMPES models utilized 4 min 57 s simulation time to 
reach terminating state, exhausting much run time. It can 
be inferred that the IMPES models required much compu-
tational time and search space as the simulation progresses. 
Therefore, it can be stated that computational time for the 
IMPES models increased while CPU time for the PSA 
decreased within the defined time steps.

Pressure and saturation distribution maps for initial 
production period with existing wells

Pressure is considered the primary energy that supports 
production of fluids from a reservoir. Therefore, it is essen-
tial to quantify and monitor pressure variations in reservoir 
development projects. In this paper, we present pressure 
and saturation distribution maps generated after the initial 
production with existing wells in the reservoir model. The 
results obtained were used to identify potential areas in the 
reservoir that have enough pressure and oil saturations suit-
able for infill well placement. These existing wells have been 
used to produce the reservoir for a period of 15 years. A 
minimum pressure of 1800 psia was used as the threshold 
pressure to identify locations that have the energy to support 
the production of the reservoir.

The hydrocarbon pore volumes associated with oil satu-
rations for the two-dimensional synthetic reservoir model 
is shown in Fig. 4. It represents areas where there are pro-
ducible concentrations of oil in the reservoir model. Again, 
high permeable layers of the reservoir were considered to 

Table 4   Initial conditions of the reservoir

Conditions Values

Initial oil-in-place 109.276 MMTSB
Total recovery after initial production period 25.049 MMSTB
Recover factor 22.93%
Initial years of production 15 years
Number of existing wells 6
Approximate initial well spacing(s) Varied between  

80 and 130 acres
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locate optimal wells due to the fact that more oil can be 
extracted from those layers. This provided the guide in our 
well placement optimization process. To start with, we pre-
sent the pressure distribution maps for layers (3 & 4) in the 
reservoir produced with existing wells as shown in Fig. 5. 
The pressure distribution maps in Fig. 5 were used to iden-
tify high-pressure areas in the reservoir model. This was 
done to select areas in the reservoir with the adequate pres-
sure support which can be considered for well placement. In 
this manner, the feasible areas in the reservoir model with 
an average pressure equal or above the reservoir threshold 
pressure, (i.e., 1800 psia) were considered. These areas were 
included in the computational search space to place infill 
wells. This was incorporated in the optimization process 
such that the optimizer searches for only feasible areas in the 
reservoir with pressure equal or above the reservoir thresh-
old pressure. Moreover, locations with inadequate pressure 
support (reservoir energy) were considered non-feasible for 
well placement. The distribution maps presented in Fig. 5 
have pressures above the threshold point. However, there 
was an aquifer connected to the northern and western sides 
of the reservoir model. This is shown as the red-colored 
areas in Fig. 5. These areas were considered as non-feasible 
for infill drilling, although they met the pressure constraint, 
they failed to meet the saturation constraint.

Making a decision on where to locate infill wells in a 
reservoir based on pressure distribution alone is not enough 
to result in optimum hydrocarbon recovery. This is because 
there are areas in the reservoir with very low oil and high 
water saturations which can result in low hydrocarbon 
recovery. In order to satisfy the constraints to achieve better 
fluid recovery in the reservoir, fluid saturation maps were 

generated for the different layers in the reservoir, produced 
with existing wells as shown in Fig. 6. As a rule-based con-
straint, simulating potentially known poor locations was 
avoided. For this reason, the search space was conditioned 
to select areas with adequate oil and low water saturations 
for infill well placement. Screening individual layers of the 
reservoir helped to define the search domain to carry out the 
optimization process.

However, sections of the reservoir with strong aquifer 
support are considered water saturated zones. These areas 
did not meet the saturation constraint and were treated as 
non-feasible locations. Therefore, these areas were elimi-
nated from the search space as shown in Fig. 6.

Implementation of the particle swarm algorithm

The particle swarm algorithm is a population-based algo-
rithm that mimics the movement of a swarm of animals. 
Basically, the algorithm has two main equations. These 
are the particle velocity formulation which can be found in 
Eq. (1) and particle position vector represented in Eq. (2), 
that track the movement of particles within the swarm (pop-
ulation size) until a stopping criterion is met. The critical 
evaluation factors used in our maximization process include 
the cumulative oil production, cumulative gas production 
and cumulative water production. The optimization process 
together with the simulations was programmed in MATLAB. 
Initially, detailed screening of the reservoir was done to know 
the suitable areas where infill wells can be located in the 
model. Afterward, all the necessary constraints were defined. 
The optimization and well placement process were carried 
out. The number of infill wells and their spacings were varied 

Fig. 4   Hydrocarbon pore vol-
ume map showing oil saturation 
at various depths
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in the computational search space during the optimization. 
Three outcomes were obtained after multiple runs for the 
optimization process. This is outlined as follows: (1) The 
optimized locations of infill wells in the reservoir model, (2) 
The net present value that corresponds to these optimized 
locations and (3) An output file from which the cumulative 
fluid production versus time can be obtained. The detailed 
procedure for the optimization process is captured in Fig. 1.

Case studies

Regarding infill design for oilfield development, the wells 
cannot be placed at the same locations. Therefore, we pro-
posed an approach to finding optimal well locations and 

spacing to make infill drilling decision within well-defined 
pressure and saturation zones in a reservoir model. The 
optimized locations of the wells were estimated using the 
particle swarm optimization algorithm. In these examples, 
we maximize NPV by optimizing vertical infill wells in a 
two-dimensional synthetic reservoir model for proposed 
field development. The approach was applied to two differ-
ent reservoir development scenarios. The amount of fluid 
produced in each case was compared to the well spacing 
for each infill pattern. Several simulation runs were carried 
out using the optimization program to evaluate different 
well spacings with a certain number of wells. The evalu-
ation aimed at finding the optimal location and spacing of 
infill wells. Different well patterns: 20 acre, 40 acre, and 
80 acre were considered. However, the case study focused 

Fig. 5   Pressure distribution 
maps for various layers of the 
reservoir with existing wells 
(15 years simulated production 
period)
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on drilling three and four infill wells in the model. In each 
of the spacing, a certain number of wells were drilled for 
different development scenarios. Initially, six existing wells 
were completed in the reservoir. These existing wells were 
first produced for 15 years. Then, followed by an additional 
15  years of production forecast combined in all cases. 
Finally, feasibility studies of the infill wells were made tak-
ing into consideration the total production of each case to 
find the best infill candidates with the highest NPV. Figure 7 
shows the locations of existing wells in the reservoir model.

Case 1: 20‑, 40‑ and 80‑acre spacing for 3 vertical 
infill wells

The performance and economic feasibility of different well 
placement scenarios were evaluated and their optimum 

design determined. In case 1, three vertical infill well drill-
ing scenario was considered for development of the reser-
voir. The model operates under bottom-hole pressure and 
production rate constraints of 3317.7 psia and 1800 stb/day, 
respectively. The optimum drilling location of three verti-
cal wells is investigated considering 15 years of production. 
The results of the optimized well locations, as well as the 
net present values of the petroleum asset, are presented. The 
optimized locations of the infill wells at different spacings: 
20 acre, 40 acre, and 80 acre are shown in Fig. 8. Subse-
quently, the pressure and saturation distribution maps for 
the optimized well locations after the three vertical infill 
drilling are presented in Figs. 9 and 10. It is interesting to 
note that the infill wells considered in case 1 are located in 
high saturation zones, ranging between 33.98 and 42.17% in 
the reservoir model. These are potential locations for drilling 

Fig. 6   Saturation distribution 
maps for various layers of the 
reservoir with existing wells 
(15 years simulated production 
period)
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additional well. Moreover, the 40-acre spacing is associated 
with adequate pressure drawdown compared to the 20- and 
80-acre locations. The infill wells located at 40-acre spac-
ing had lower residual oil saturations compared to the wells 
placed at 20-acre and 80-acre spacing. This can be seen in 
Fig. 10. However, an optimum pressure was observed for all 
the three vertical infill wells.

Despite the performance improvement from the infill 
wells, it is important to note that the 80-acre infill wells 
drained more oil than the other wells. The well configuration 
has high-pressure drawdown and lowest residual oil satura-
tion after extensive production period. We observed high 
average pressure values in the reservoir at locations of the 

80-acre infills (See Fig. 9). After multiple simulation runs, 
it recorded the highest cumulative oil and gas productions 
with low cumulative water production profiles as shown in 
Figs. 11, 12 and 13.

Considering the net present values of the three vertical 
infill wells, it should be mentioned that the 80-acre spac-
ing had the highest value. That is $3.751 × 109 as shown 
in Fig. 14. The optimized locations for the 80-acre infill 
wells are these blocks: (8, 14), (10, 9) and (14, 10). This 
well configuration could be considered for development of 
the reservoir because it had the optimum cumulative pro-
duction and net present value. The 40- and 20-acre infills 
had net present values of $3.424 × 109 and $3.215 × 109, 
respectively, and the corresponding optimum locations for 
these well configurations are found in grid blocks: [(10, 7), 
(10, 12), (14, 9)] and [(12, 7), (12, 18), (14, 13)]. The total 
recovery after initial production with existing wells resulted 
in oil-in-place of 25.049 MMSTB. After drilling three verti-
cal wells, production of oil in the reservoir peaked at 43.82 
MMSTB. This indicates an increase in recovery efficiency 
from 29.54 to 42.03% at the end of the simulation.

On the other hand, the potential locations for well place-
ment in example 1 spotted high saturation and pressure areas 
between the existing wells in the reservoir. This confirms the 
rising impact of oil production after drilling additional three 
vertical wells. It is evident that varying the distance between 
wells to a certain limit resulted in an increase in total hydro-
carbon productions, although the optimized locations of the 
infill wells experienced pressure and saturation variations in 
the reservoir model.

Case 2: 20‑, 40‑ and 80‑acre spacing for 4 vertical 
infill wells

In our decision to improve productivity in the reservoir, we 
further consider drilling four additional wells as a second 

Fig. 7   Locations of existing wells in the reservoir model

Fig. 8   Optimized locations for 3 vertical infill wells at different well spacings. Existing wells are indicated by brown color and infill wells indi-
cated by green color
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case scenario for field development. In this case, four verti-
cal infill wells located at 20-acre, 40-acre and 80-acre spac-
ing were implemented in the reservoir model. Total pro-
duction time of about 15 years was initiated for simulation 

to determine optimized locations for the four vertical infill 
wells. The results of the optimized well locations and the net 
present values are presented to evaluate the profitability of 
the reservoir investigated. As an established constraint, we 

Fig. 9   Pressure distribution 
maps for layers of the reservoir 
with 3 infill wells located at dif-
ferent well spacings (additional 
15 years simulated production 
period)
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also present the pressure and saturation distribution maps 
for the four vertical infill wells, with respect to maximiza-
tion of the net present value of the model (See Figs. 16, 17). 
Figure 15 presents the optimized locations for the 20-acre, 
40-acre and 80-acre infill wells. The optimized locations for 

these wells are seen in the following blocks: [(8, 8), (11, 6), 
(12, 18), (14, 13)], [(11, 5), (9, 9), (10, 13), (12, 19)] and 
[(10, 8), (9, 13), (11, 19), (14, 11)], respectively.

Subsequent to determining optimal well locations in the 
reservoir, infill drilling scenario for the four vertical wells 

Fig. 10   Saturation distribution 
maps for layers of the reservoir 
with 3 infill wells located at dif-
ferent well spacings (additional 
15 years simulated production 
period)
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needs to be evaluated. All initial conditions, as well as con-
straints, are similar to the first infill drilling scenario. After 
several numerical simulations, the four vertical wells with 
40-acre spacing have high-pressure values and least residual 
oil saturations as shown in Figs. 16 and 17. In this case, there 
is a higher possibility of experiencing high-pressure draw-
down from these wells in the reservoir. Also, we obtained 
optimum oil and gas recoveries, with the lowest water pro-
duction from these wells. The cumulative oil, gas and water 
production profiles are presented in Figs. 18, 19 and 20.

It is evident that the total fluid production increased after 
drilling the four infill wells (See Figs. 18, 19, 20). The total 
oil production of the field increased to about 44.0 MMSTB, 
representing 48.31% field wide recovery. Consequently, an 
optimum value of $3.973 × 109 was obtained for the 40-acre 

infill wells. In addition, the 80-acre and 20-acre spacing had 
net present values of $3.697 × 109 and $3.641 × 109, respec-
tively as shown in Fig. 21.

It is therefore appropriate to conclude that the 40-acre 
spacing targeted high-pressure and oil-saturated areas, 
resulting in more hydrocarbon recovery and the highest net 
present value. Likewise, it is economically viable to use this 
well configuration to enhance productivity in the reservoir.

Although the recovery efficiency from both infill drilling 
strategies used in this paper gave appreciable results in terms 
of oil production. However, optimal solutions from the four 
vertical infill drilling scenario outperform the three vertical 
infill drilling strategy. The reason behind this rise in NPV 
is that the best places which are abundant with probable oil 
production were determined by the second case scenario. 
The second case scenario increased the recovery factor of 
about 6.34% greater than the first case drilling strategy that 
was implemented. It can be established that the infill drilling 
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scenario has a great influence on increasing the production 
performance of reservoirs.

Analysis of the results obtained from the simulation out-
comes for both cases (Case 1 & 2) showed that the four 
vertical infill wells with 40-acre spacing yield the highest net 
present value of $3.973 × 109. Therefore, it is recommended 
that this infill design be used in developing the reservoir of 
interest. In brief, it can be stated emphatically that varying 
the well spacing in relation to the number of wells tends 
to accelerate the production of hydrocarbons from the res-
ervoir. As a result, feasibility of infill drilling potential is 
presented to make well-informed decision for selecting the 
best infill candidate to develop the field.

Uncertainty analysis

The degree of uncertainties has been a prevailing issue in 
well optimization problems. Because the optimization vari-
ables are usually associated with uncertainties, we consider 
uncertainty analysis as a criteria to evaluate the petroleum 
asset. The cumulative fluid production and subsequently, 
the net present values are directly or indirectly obtained 
from reservoir and economic parameters that are uncer-
tain. Uncertainties relating to the reservoir and economic 
parameters were investigated to monitor their impact on the 
NPV as the objective function. This provided the platform to 
evaluate the probability of achieving successful development 
project for a given infill design. In this paper, the base case 
values used in the uncertainty analysis were multiplied with 
high and low values (multipliers) to cover the expected range 
of uncertainty in the reservoir model and economic varia-
bles. Table 5 presents the summary of the economic and res-
ervoir parameters that were varied during the optimization 
process. The base case values for the reservoir parameters 
are averaged values in the reservoir model. The base case oil 

price used is the West Texas Intermediate (WTI) oil price 
during the period of the analysis (i.e., April/May 2016). The 
multiplier for the oil price was estimated from the fluctua-
tions in the prices of oil and forecasts made on the oil price. 
The base case discount rate was obtained as an average 
value. These multipliers were used to carry out uncertainty 
analysis on the reservoir model and for determining the net 
present value of the proposed field development project. The 
multipliers were varied to obtain the list of runs presented 
in Table 6. After various simulations were carried out, the 
probability values assigned to each net present value were 
obtained. This is presented graphically in Fig. 22.

Figure 22 shows a plot of probabilities against net present 
values obtained from the uncertainty analysis. It evaluates 
the economic profitability of the proposed field develop-
ment project. The net present values at 10%, 50%, and 90% 
probabilities (i.e., P10, P50, and P90) were estimated to be 
$2.83 × 109, $3.29 × 109 and $3.79 × 109, respectively. This 
implies that there is 90% probability of achieving $2.83 × 109 
as the net present value. Also, it is probable to make a rea-
sonable net value of $3.29 × 109. Likewise, there is 10% 
probability to earn $3.79 × 109 for the proposed project.

Summary of discussions and conclusions

In this study, optimization approach has been proposed for 
finding suitable locations and spacing between infill wells 
in a reservoir model. For this approach, the net present value 
was used as the key objective function for the optimization 
process. After considering different infill drilling scenarios, 
the optimum spacing for infill wells was determined for the 
reservoir model, PUNQ-S3. Using PUNQ-S3 reservoir as 
the benchmark, the best well configuration was selected for 
field development.

Fig. 15   Optimized locations for 4 vertical infill wells at different well spacings. Existing wells are indicated by brown color and infill wells rep-
resented by green color
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Fig. 16   Pressure distribution 
maps for layers of the reservoir 
with 4 infill wells located at dif-
ferent well spacings (additional 
15 years simulated production 
period)
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Fig. 17   Saturation distribution 
maps for layers of the reservoir 
with 4 infill wells located at dif-
ferent well spacings (additional 
15 years simulated production 
period)
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The following conclusions were drawn from the study:

1.	 The first case drilling scenario showed that the 80-acre 
spacing infill wells had the highest net value of 
$3.751 × 109 in the reservoir model after the optimiza-
tion process.

2.	 The 4 vertical infill wells with 40-acre spacing were 
selected as the optimum design in the reservoir model. 
This well configuration predicted the highest net pre-
sent value in the second case considered. That is 
$3.973 × 109. It is therefore recommended that this well 
pattern be used in developing the studied reservoir.

3.	 Results from the uncertainty analysis showed possibili-
ties of maximizing the net present values for the differ-
ent infill designs. Analysis of the 4 vertical infill drill-

ing scenario revealed that there are 10%, 50% and 90% 
probabilities of attaining the corresponding net present 
values: $3.79 × 109, $3.29 × 109 and $2.83 × 109. This 
demonstrated the efficacy of the optimization program 
to evaluate the field development.
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Fig. 20   Cumulative water production versus time for 4 vertical infill 
wells at different well spacings
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Table 5   Summary of the economic and reservoir parameters varied 
during the uncertainty analysis

Parameters Low (multiplier) High (multiplier) Actual/
average 
values

Oil price 0.875 1.125 44.0
Discount rate 0.800 1.20 0.10
TranX 0.800 1.20 1.00
Poro 0.900 1.10 0.187
PermX 0.720 1.25 414.6
PermZ 0.900 1.10 187.9
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4.	 Results from the initial production with appraisal 
wells (i.e., without infill wells) using the optimization 
approach showed a recovery efficiency of 29.54%. More-
over, the total recovery after second case infill drilling 
increased to 48.31%, indicating an improvement in oil 
recovery by 19% of the initial volume of oil-in-place.
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estimation
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