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Abstract
The increased speed and accuracy in solving optimization problems of gas allocation in the gas lift process are of high 
importance. Solving gas allocation optimization problems generally involves two steps: (1) The gas lift performance curve 
(GLPC) fitting (gas lift modeling) and (2) optimizing the allocation of gas between wells. Therefore, in order to increase the 
speed and accuracy of solving gas allocation optimization problems, both steps need to be improved. In order to increase the 
accuracy of the first step, a new correlation was proposed in which, in addition to increasing the accuracy of fit, the optimi-
zation speed was improved by decreasing the number of constants used in the correlation. Besides, in order to improve the 
performance of the second step, water cycle optimization algorithm was used and the results obtained from this algorithm 
were compared with the results obtained from previous studies on teaching–learning-based optimization (TLBO) algorithm, 
continuous ant colony (CACO) algorithm, genetic algorithm (GA) and particle swarm optimization algorithm (PSO) for 
solving the five-well Nishikiori index problem. The results suggested that the water cycle optimization algorithm has a very 
good performance in terms of convergence rate, non-capture at local optimum points and repeatability. Finally, as a new 
problem, the gas allocation between the wells of one of the heavy oil fields in the southwest of Iran was optimized with 
predetermined oil production rates. The goal of optimization was to obtain the minimum amount of gas required to produce 
the predetermined oil rates using the water cycle optimization algorithm. The results showed that optimization is of higher 
importance in lower oil production targets, resulting in higher additional oil production.
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Introduction

When the natural energy of the reservoir is not able to trans-
fer the fluid to surface and to overcome the weight of the 
fluid column in the well, one of the artificial lift techniques 
should be used to produce the fluid in an economically 
efficient way. Artificial lift techniques reduce the pressure 
from the fluid column in the well and, as a result, reduce the 
pressure at the well bottom, causing a large pressure differ-
ence between the reservoir and the well bottom, resulting in 
the transfer of the fluid produced to the surface. One of the 
most commonly used artificial lift techniques is the gas lift 

process. In this method, the pressured gas is injected in the 
bottom of the tubing, and the oil is produced through two 
mechanisms of pushing through the expansion of the gas and 
reducing the hydrostatic pressure of the fluid column inside 
the well. However, the excessive increase in the amount of 
gas injected leads to the increased frictional pressure drop 
and, consequently, a decrease in the production increase 
due to the reduction in hydrostatic pressure (Economides 
et al. 2013). Therefore, determining the optimal amount of 
injected gas between network of production wells is one of 
the main gas lift challenges and is referred to as the gas lift 
allocation problem (Miresmaeili et al. 2015).

Gas lift allocation optimization

In general, the gas lift allocation optimization is discussed in 
two scenarios: (1) optimizing the allocation of gas between 
wells to maximize oil production in conditions where a lim-
ited amount of gas is available (Hamedi et al. 2011) and (2) 

 *	 Hamed Namdar 
	 h_namdar@sut.ac.ir

1	 Faculty of Petroleum and Natural Gas Engineering, 
Sahand Oil and Gas Research Institute (SOGRI), Sahand 
University of Technology, P.O. Box 51335/1996, 
Sahand New City, Tabriz, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-019-0697-7&domain=pdf


2966	 Journal of Petroleum Exploration and Production Technology (2019) 9:2965–2978

1 3

optimizing the allocation of gas between wells and minimiz-
ing gas injections in a situation where a certain amount of oil 
production is pre-planned. All studies conducted so far on 
gas lift allocation optimization have focused on the first case 
and explored it from different perspectives (Hamedi et al. 
2011; Miresmaeili et al. 2015; Mahdiani and Khamehchi 
2015; Miresmaeili et al. 2019). However, gas lift allocation 
optimization using the second technique is not studied yet 
and addressed for the first time in the present study. The 
objective function typically used when a limited amount of 
gas is available to maximize the oil production level (sce-
nario 1) is expressed as follows (Hamedi et al. 2011):

in which the total amount of injected gas to the wells must 
be equal to or less than the amount of available gas and is 
expressed as a linear inequality constraint (Hamedi et al. 
2011):

where n represents the number of wells, Qoi is the amount 
of oil produced per well, Qgi is the amount of gas injected 
per well and A is the amount of available gas (Hamedi et al. 
2011). In the second scenario which aims to minimize the 
amount of gas injected into wells to produce a predeter-
mined quantity of oil, the objective function is expressed 
as follows:

in which the total oil produced from the well is equal to a 
predetermined amount and expressed as follows:

where B is the predetermined oil quantity for production. 
The important point is that in the second scenario the prob-
lem constraint turns into a nonlinear equality constraint com-
pared to the first case with a linear inequality constraint, 
since the production of each well is itself a nonlinear func-
tion of the amount of gas injection, resulting in a nonlinear 
function of the amount of gas injected. Therefore, in the 
second scenario, handling the problem constraints will be 
more complicated.

In addition, an initial gas injection is required in some 
wells in order to start the production of oil, and there is 

(1)max

n∑

1

Qoi = f
(
Qg1,Qg2,… ,Qgi

)
, i = 1, 2,… , n

(2)
n∑

1

Qgi ≤ A

(3)min

n∑

1

Qgi, i = 1, 2,… , n

(4)
n∑

1

Qoi = f
(
Qg1,Qg2,… ,Qgi

)
= B

also an optimum performance point in the gas lift perfor-
mance curve (GLPC) beyond which the gas injection further 
increases the frictional pressure gradient and decreases the 
production level. Therefore, in both scenarios, the follow-
ing constraints are expressed in addition to the constraints 
specific to each state (Hamedi et al. 2011):

where Qgi−max is the minimum amount of gas injection 
required to start the oil production and Qgi−max is the 
amount of gas injected in the peak of gas lift performance 
curve (optimum performance point).

Literature review

Considering the importance of gas allocation optimiza-
tion, many studies have been conducted to explore it. 
For instance, Kanu et  al. (1981) used the equal slope 
method to properly distribute gas rates between wells. 
Later, Nishikiori et al. (1995) used the nonlinear con-
strained formulation with a stochastic quasi-Newton 
method to find optimal solutions. Fang and Lo (1996) 
departed from the nonlinear programming process and 
proposed the piecewise linearization of the well perfor-
mance curves and thus changed the problem into a linear 
programming problem. Afterward, Buitrago et al. (1996) 
combined stochastic search and heuristic descent direc-
tion and called their method Ex-In. Alarcon et al. (2002) 
improved the method proposed by Nishikiori et al. (1995) 
by replacing the quasi-Newton algorithm with sequential 
quadratic programming (SQP). Wang et al. (2002) pro-
posed a mixed-integer nonlinear programming (MINLP) 
techniques for integrating the previous methods. Their 
model included the allocation of gas rates, the produc-
tion rate of wells and equipment constraints. Nakashima 
and Camponogara (2006) developed the recursive algo-
rithm for gas rate allocation. They were the first to study 
the discontinuity of the well performance curve in detail. 
Ray and Sarker (2006) used the piecewise linearization 
method and genetic algorithm (GA) to optimize the gas 
allocation rate. Camponogara and Conto (2009) improved 
the piecewise linearization formulation that was previ-
ously developed. Zerafat et al. (2009) solved the gas rate 
distribution using two genetic and ant colony (ACO) 
algorithms. Hamedi et al. (2011) used the particle swarm 
optimization algorithm (PSO) to optimize the gas rate 
allocation in the wells of an Iranian oil field. Sharma and 
Glemmestad (2013) used the generalized reduced gradi-
ent (GRG) technique, self-optimizing control structure 
and multi-start technique to optimize gas allocation in 
the gas lift process. Ghaedi et al. (2014) employed the 

(5)Qgi ≥ Qgi−min

(6)Qgi ≤ Qgi−max
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continuous ant colony (CACO) algorithm to explore gas 
allocation optimization and compared their results with 
previous studies. Ghassemzadeh and Pourafshary (2015) 
proposed a new method for considering the time factor 
in optimizing the gas allocation process. They used a 
piecewise cubic hermite function for modeling the gas 
lift performance and genetic algorithm for optimization. 
Miresmaeili et al. (2015) used a multi-objective optimiza-
tion algorithm, Gaussian Bayesian networks and Gauss-
ian kernels to solve the gas allocation problem in the 
gas lift process. Mahdiani and Khamehchi (2015) used 
the genetic algorithm to investigate instability in the gas 
allocation optimization problem. Tavakoli et al. (2017) 
used the artificial neural networks (ANNs) to the gas lift 
modeling and then studied the gas allocation optimiza-
tion using the genetic algorithm. Also, Miresmaeili et al. 
(2019) employed the artificial neural networks and used 
Levenberg–Marquardt (LM) and Bayesian regulariza-
tion (BR) algorithms to model gas lift operation and then 
used the teaching–learning-based optimization (TLBO) 
algorithm to optimize gas allocation. Moreover, Namdar 
and Shahmohammadi (2019), with the help of a simple 
method without programming, optimized the gas alloca-
tion by the excel solver optimization tool.

In this study, in order to increase the speed and accu-
racy of solving gas lift allocation optimization problems, 
at the first a new correlation was proposed for modeling 
the gas lift process and GLPC curve fitting. The modeling 
results were compared with those obtained through other 
modeling techniques. In order to improve the optimiza-
tion performance, a water cycle optimization algorithm 
(WCA) was used and the results of its implementation 
were compared with the results obtained from previous 
studies on TLBO, CACO, GA and PSO algorithms for 
solving the five-well Nishikiori (1989) index problem. 
Also, given the effect of the gas lift process modeling on 
the optimization results, and since previous studies have 
used various modeling techniques, we compared the per-
formance of the water cycle optimization algorithm with 
the two well-known PSO and GA algorithms in terms of 
convergence rate, non-capture at local optimum points and 
repeatability with the same correlation for modeling gas 
lift and with equal number of iterations in order to evalu-
ate the performance of the algorithm itself individually 
and eliminate the modeling accuracy effects. Finally, given 
that the optimization problem of scenario 2 has not been 
investigated so far, this study attempted to optimize the gas 
allocation between the wells of one of the heavy oil fields 
in the southwest of Iran with predetermined quantities of 
oil production. In this scenario, the optimization goal was 
to obtain the minimum amount of gas required to produce 
the predetermined oil levels using the water cycle optimi-
zation algorithm.

Water cycle algorithm

This new meta-heuristic algorithm has been inspired by the 
behavior of the water cycle in nature (Fig. 1) and has not yet 
been used in the field of petroleum engineering. Similar to 
other meta-heuristic algorithms, the water cycle algorithm 
begins with the initial population of so-called streams cre-
ated after rain. To simulate this process, initially, a primitive 
population Npop is created randomly, each stream having Nvar 
design variables (Sadollah et al. 2015).

Then, the value of the objective function of each stream 
is calculated and the best solution is selected as the sea. 
Afterward, some of the streams that are best after the sea are 
chosen as rivers, and the remaining streams are remained as 
streams and flow to the rivers or directly to the sea. NSR is 
a parameter whose value is determined by the user and the 
number of rivers, and a sea is determined through Eq. 7. 
As a result, the number of streams (NStreams), which is the 
remainder of the population, is calculated from Eq. 8 (Sadol-
lah et al. 2015):

=   + 1⏞
(7)

(8)NStream = Npop − NSR

Fig. 1   Schematic diagram of water cycle in the nature (Sadollah et al. 
2015)
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Thereafter, the number of streams flowing into specific 
rivers or the sea is determined. The allocation of streams 
is based on the intensity of the flow of rivers and the sea 
(or the values of their objective functions) through Eqs. 9 
and 10 (Sadollah et al. 2015):

where NSn is the number of streams that flow into specific 
rivers or the sea. After that, the surface movement of streams 
and rivers to the sea or the movement of streams to the riv-
ers and their new positions are determined. The movement 
of the streams directly flowing into the sea is calculated by 
Eq. 11, the movement of the streams joining the rivers is 
determined through Eq. 12 and the movement of the rivers 
to the sea is estimated through Eq. 13 (Sadollah et al. 2015):

(9)Cn = Costn − CostNSR+1
, n = 1, 2, 3,… ,NSR

(10)

NSn = round

����
���

Cn

∑NSR

i=1
Costi

���
���

× NStream

�

, n = 1, 2, 3,… ,NSR

sea is exchanged (that is, the sea changes into the river and 
the river into the sea). This exchange can also occur for the 
streams and the sea as well as the streams and the rivers 
(Sadollah et al. 2015).

In order to prevent the rapid convergence of the algo-
rithms (immature convergence) and increase the explora-
tion ability of the algorithms, a new chance commensurate 
with the distance of the rivers and streams from the sea 
is given to them. This concept in the WCA algorithm is 
applied under evaporation condition and raining process. 
If the Euclidean distance of the rivers and streams from the 
sea is less than a predetermined insignificant value (near 
zero) ( dmax ), the conditions for evaporation from the sea 
are fulfilled and the raining process starts, and the rivers 
and streams are reformed (Sadollah et al. 2015).

The conditions for evaporation from the sea for rivers and 
streams are expressed by pseudo-codes 14 and 15, respec-
tively (Sadollah et al. 2015):

where t is the iteration number, and C is a constant whose 
value varies from 1 to 2 and its best value equals two. Also, 
rand is a uniformly distributed random number ranging from 
zero to one. These equations act as exploration at the initial 
stages and as exploitations at the final stages (Sadollah et al. 
2015).

If the solution presented by a river is more effective 
than that of the sea, then the position of the river and the 

(11)

X⃗
i

Stream
(t + 1) = X⃗

i

Stream
(t) + rand × C ×

(
X⃗
i

Sea
(t) − X⃗

i

Stream
(t)

)
,

i = 1, 2,… ,NStream

(12)

X⃗
i

Stream
(t + 1) = X⃗

i

Stream
(t) + rand × C ×

(
X⃗
i

River
(t) − X⃗

i

Stream
(t)

)
,

i = 1, 2,… ,NStream

(13)

X⃗
i

River
(t + 1) = X⃗

t

River
(t) + rand × C ×

(
X⃗
i

Sea
(t) − X⃗

i

River
(t)

)
,

i = 1, 2,… , (NSR − 1)

(14)

(15)

where dmax sets the intensity of the search around the sea 
and decreases by Eq. 16 in each step (Sadollah et al. 2015):

If a condition for evaporation is fulfilled, new streams are 
formed randomly in the search space due to raining, and the 
new location of these streams is determined by the following 
equation (Sadollah et al. 2015):

where UB and LB are upper and lower bound vectors that 
are defined by the problem. Figure 2 shows the developed 
WCA optimization process. The circles, stars and the dia-
mond refer to streams, rivers and sea, respectively, and the 
white circles and stars mark the new positions of streams 
and rivers, respectively. 

(16)
dmax(t + 1) = dmax(t) −

dmax(t)

max Iteration
,

t = 1, 2, 3,… ,Max Iteration

(17)X⃗New
Stream

= ����⃗LB + rand ×
(
�����⃗UB − ����⃗LB

)
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The application of constraints

Usually, in gas lift allocation optimization problems, a 
penalty function is used to address the constraints of the 
problem and prevent violation of them (Sukarno et al. 2009; 
Rashid 2010; Hamedi et al. 2011). The main problem with 
this method is that the coefficient of the penalty function 
itself needs to be optimized and if it is not selected prop-
erly, the slightest violation of the constraints may result in 
a large penalty for the objective function. In order to apply 
the constraints and to reach feasible solutions, Deb (2000) 
approach was used in this study. This approach is based on 
the penalty function, with the difference that there is no need 
for the coefficient of the penalty function and its optimiza-
tion. This method is used for the genetic algorithm by Deb 
(2000) and is used in this study for use in the water cycle 
algorithm. The rules used in this method (for the minimiza-
tion problem) are as follows:

1.	 Of two feasible solutions, the solution whose objective 
function has a lower value is selected.

2.	 Of a feasible solution and a non-feasible solution, the 
feasible solution is preferred.

3.	 Of the two non-feasible solutions, a solution that has the 
slightest violation of the constraints is selected as the 
feasible solution.

Methodology

The increased speed and accuracy in solving optimization 
problems of gas allocation in the gas lift process are of high 
importance. Solving gas allocation optimization problems 
generally involve two steps:

1.	 Modeling the gas lift process and fitting the oil produc-
tion data against gas injections by one of the correlations 
presented.

2.	 Implementation of the objective function of the gas 
allocation optimization problem and its constraints and 
solving it by one of the optimization algorithms.

Therefore, in order to increase the speed and accuracy of 
solving gas allocation optimization problems, each of these 
steps needs to be improved individually. In order to increase 
the accuracy of the first stage, first, a new correlation was 
proposed to model the gas lift process, and then the results 
of modeling with it were compared with the results obtained 
from other methods for different wells. In order to improve 
the performance of the second stage of the optimization pro-
cess, an optimization algorithm was used and the results of 
this algorithm were compared with the results obtained from 
previous studies on TLBO, CACO, GA and PSO algorithms 
for solving the five-well Nishikiori (1989) index problem. 
Also, given the effect of the gas lift process modeling on the 
optimization results, we compared the performance of the 
water cycle optimization algorithm with the two well-known 
PSO and GA algorithms in terms of convergence rate, non-
capture at local optimum points and repeatability with the 
same correlation for modeling gas injections and with equal 
number of iterations in order to evaluate the performance of 
the algorithm itself individually and eliminate the modeling 
accuracy effects. Finally, this study attempted to optimize 
the gas allocation between the wells of one of the heavy oil 
fields in the southwest of Iran with predetermined quantities 
of oil production. In this scenario, the optimization goal was 
to obtain the minimum amount of gas required to produce 
the predetermined oil levels using the water cycle optimiza-
tion algorithm. In other words, the aim was to divide the oil 
production among the wells in a way that it requires the min-
imum gas rate for injection into the wells. Figure 3 shows 
the proposed procedure used in this study to solve the gas 
lift optimization problems.

Results and discussion

Gas lift modeling process

The formation of the gas lift performance curve (GLPC) is 
the first step in modeling the gas lift process. Obtaining an 
accurate GLPC has a significant effect on optimizing the 
allocation of injected gas into wells because if the curves 
are not sufficiently accurate, despite the high performance of 
the optimization algorithm, the optimization results will not 
be accurate and the produced oil overestimated or underes-
timated. So far, many methods have been used to model the 
gas lift process and the fitting of GLPCs. In general, these 

Fig. 2   Schematic view of the used methods in the WCA (Sadollah 
et al. 2015)
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methods can be divided into two groups: modeling methods 
by fitting through correlation and modeling methods based 
on artificial neural networks. To date, various correlations 
have been proposed for GLPC fitting. The quadratic polyno-
mial model is one of these models (Nishikiori 1989).

However, since most of the GLPCs are not symmetrical, 
the model does not have a high efficiency for modeling. In 
order to increase the accuracy of the quadratic polynomial 
model, Alarcon et al. (2002) added a logarithmic term to it 
and proposed the following model:

By replacing the quadratic term of the quadratic poly-
nomial model with a squared term, Hamedi et al. (2011) 
proposed the following model:

With the linear combination of the previously proposed 
models, Behjoomanesh et al. (2015) developed a model as 
follows:

(18)Qo = a + b × Qg + c × Q2
g
+ d × Ln(Qg + 1)

(19)Qo = a + b ×

√
Qg + c × Qg

(20)
Qo = a + b × Qg + c × Q2

g
+ d × Ln

(
Qg + 1

)

+ e ×

√
Qg + f × exp

(
Qg

)

In addition to the previously proposed models, the author 
developed the following model fitting the operational data of 
oil production against gas injection by adjusting the numbers 
in the previously proposed correlations and removing some 
of the less important terms:

where a, b, c, d, e and f are constant coefficients of correla-
tions, Qg is the injected gas flow rate and Qo is the produced 
oil flow rate. Among the previous correlations proposed for 
modeling the gas lift process, the correlation proposed by 
Behjoomanesh et al. (2015), despite the high accuracy in 
fitting, has some basic problems, which reduces its general-
izability to be used for all wells. Therefore, it has been tried 
to solve these problems in the model proposed by the author, 
while maintaining the accuracy of the model proposed by 
Behjoomanesh et al. (2015). The fitting of operational oil 
production data against gas injection becomes convergent for 
some wells in the model proposed by Behjoomanesh et al. 
(2015), and it is necessary to limit the range of variations of 
the coefficients of this model. For example, operational data 
on oil production versus gas injections presented in studies 
conducted by Nishikiori (1989) and Jung and Lim (2016) 
cannot be fitted by this equation for the mentioned reasons. 
Also, the operational data fitting using the model proposed 
by Behjoomanesh et al. (2015) would result in overestimat-
ing or underestimating the oil production in some wells. Fig-
ure 4 shows a comparison of the fitting of the operational 
data for six wells studied by Kanu et al. (1981) using the 
model developed by the author of the present study and the 
model proposed by Behjoomanesh et al. (2015).

As it can be seen, the GLPC fitting curve trend in the 
model proposed by Behjoomanesh et al. (2015) is in a way 
that leads to the overestimation or underestimation of oil 
production in some parts of the fitting curve. Generally, the 
GLPC curve should follow a downward trend on the right 
side, while, as shown in Fig. 4, in wells 2, 3 and 5, the model 
proposed by Behjoomanesh et al. (2015) moves upward in 
the right. Also, however, the downward trend of the curve 
for well 6 is suddenly bulged and these behaviors generally 
invalidate the oil production values estimated by this model.

In order to assess the accuracy of the proposed models 
and to select the best one for modeling the gas lift process, 
the fitting of operational data for oil production versus gas 
injection of wells in the previous studies was calculated and 
the results were compared with the results of the model pro-
posed in this study. In order to evaluate the accuracy of the 
models, the indices of correlation factor (R2) and the root-
mean-square error (RMSE) were used for fitting the opera-
tional data. The correlation factor (R2) shows the correlation 
between the model and the data and the closer values to one 

(21)
Qo = a + b × Qg + c × Q0.7

g
+ d × Ln

(
Qg + 0.9

)
+ e × exp

(
−Q0.6

g

)

Fig. 3   Graphical demonstration of the procedure used in this study to 
solve the gas lift optimization problems
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are more optimal. This coefficient can be defined as follows 
(MATLAB Manual 2018):

where SSE is the sum of squared errors and is estimated as 
follows:

where n is the number of observation data, yi is the ith 
observed value, ŷi is the estimated value of yi from fit and 
wi is the weight used for each data point, which is usually 1. 
TSS is the total sum of squares and is calculated as follows:

(22)R2 = 1 −
SSE

TSS

(23)SSE =

n∑

i=1

wi

(
yi − ŷi

)2

(24)TSS =

n∑

i=1

wi

(
yi − ȳii

)2

As before, n is the number of observation data, yi is the 
ith observed value, ȳi is the mean of all observed data and 
wi is the weight used for each data point, which is usually 1.

Root-mean-square error (RMSE) represents the average 
difference between the values predicted by the model and the 
actual values, and the closer the value to zero, the model fit 
is more accurate. This index is defined as follows (MATLAB 
Manual 2018):

MSE is the mean squared error and is calculated as 
follows:

Table 1 shows the accuracy of the proposed model by 
author and the models presented by Hamedi et al. (2011) 
and Alarcon et al. (2002) in terms of fitting the operational 
data in the studies conducted by Nishikiori (1989) and Jung 

(25)RMSE =
√
MSE

(26)MSE =
1

n
SSE

Fig. 4   Comparison of opera-
tional data fitting for wells 
studied by Kanu et al. (1981) 
using the author’s model and 
the Behjoomanesh et al.’s 
(2015) model
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and Lim (2016). As shown in Table 1, the proposed model 
by author yields better results than the other two models.

Table 2 also shows the results of the fitting of the opera-
tional data in the studies of Vieira (2015) by the proposed 
model by author and the models presented by Behjoomanesh 
et al. (2015), Hamedi et al. (2011) and Alarcon et al. (2002). 
As shown in Table 2, the proposed model by author has 
higher R2 values and lower RMSE, thus having more accu-
rate fitting results than the other three models.

As shown in Table 2, although the proposed model has 
one constant less than the model proposed by Behjoomanesh 
et al. (2015), it has higher R2 values and lower RMSE than 
the other three models and thus provides more accurate 

results in terms of the operational data fitting. The lower 
number of constants while maintaining the fitting accuracy 
makes it possible to reduce the time of computation by main-
taining accuracy in cases where it is necessary to optimize 
the gas allocation between a large numbers of wells.

In addition, Tavakoli et al. (2017) fitted the operational 
data with artificial neural networks and compared their 
results with models presented by Hamedi et al. (2011) and 
Alarcon et al. (2002) in terms of R2 values. Table 3 shows 
the results of fitting the data in the study conducted by Tava-
koli et al. (2017) using the proposed model, in comparison 
with the artificial neural network and the models proposed 
by Hamedi et al. (2011) and Alarcon et al. (2002).

Table 1   Results of author’s 
model, Alarcon et al.’s (2002) 
model and Hamedi et al.’s 
(2011) model for fitting 
operational data from Nishikiori 
(1989) and Jung and Lim (2016)

References Well no. Alarcon et al.’s (2002) 
model

Hamedi et al.’s (2011) 
model

Author’s model

R2 RMSE R2 RMSE R2 RMSE

Nishikiori (1989) 1 0.987848 12.15155 0.997918 4.591787 0.999817 1.924778
2 0.991633 27.43855 0.995863 17.86276 0.999992 1.013721
3 0.988812 48.66602 0.997012 23.28292 0.99998 2.509012
4 0.996597 7.947265 0.999726 2.522818 0.999965 1.27366
5 0.996583 16.63779 0.980617 37.06711 0.999939 2.634642
Ave. 0.992295 22.56823 0.994227 17.06548 0.999939 1.871163

Jung and Lim (2016) 1 0.998931 20.69668 0.978634 86.55026 0.999973 3.563994
2 0.999433 14.29458 0.975063 88.70493 0.999993 1.701711
3 0.995613 56.26503 0.987708 88.10038 0.999979 4.198918
4 0.999499 12.88447 0.974472 86.01951 0.999996 1.241376
Ave. 0.998369 26.03519 0.978969 87.34377 0.999985 2.6765

Table 2   Results of author’s 
model, Behjoomanesh et al.’s 
(2015) model, Hamedi et al.’s 
(2011) model and Alarcon 
et al.’s (2002) model for fitting 
operational data from Vieira 
(2015)

Reference Well no. Alarcon et al.’s (2002) 
model

Hamedi et al.’s (2011) 
model

Author’s model

R2 RMSE R2 RMSE R2 RMSE

Vieira (2015) 1 0.9999 4.279252 0.988402 42.10739 0.9999173 5.028378
2 0.999659 15.47992 0.998197 31.83748 0.9999833 4.847634
3 0.999802 6.364839 0.987168 47.4466 0.9999904 1.720824
4 0.974538 21.61731 0.981893 22.95411 0.9999996 0.127734
5 0.975266 18.99519 0.96637 19.8109 0.9999997 0.091736
Ave. 0.989833 13.3473 0.984406 32.8313 0.9999780 2.363261

Table 3   Results of author’s 
model, ANN method, Hamedi 
et al.’s (2011) model and 
Alarcon et al.’s (2002) model 
for fitting operational data from 
Tavakoli et al. (2017)

Error index Well no. Alarcon et al.’s 
model (2002)

Hamedi et al.’s 
model (2011)

ANN method Author’s model

R2 5 0.97450 0.98630 0.99445 0.999492
4 0.99350 0.97990 0.99980 0.999745
3 0.99720 0.98350 0.99920 0.999687
2 0.99900 0.97210 0.99950 0.999078
1 0.99510 0.98290 0.99980 0.994151
Ave. 0.99186 0.98094 0.99855 0.998431
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As it is shown, the accuracy of the model proposed in 
the present study is within the limits of the artificial neu-
ral network approach. Accordingly, it can be suggested that 
the proposed model possesses a high accuracy in terms of 
the operational data fitting. In the following section, the 
proposed model is used for the gas lift performance curve 
(GLPC) fitting.

Performance evaluation of the water cycle 
algorithm

In order to assess and validate the performance of the water 
cycle algorithm, it was attempted to optimize the five-well 
Nishikiori (1989) index problem using the water cycle 
algorithm and the obtained results were compared with the 
results obtained from previous studies. The five-well Nishi-
kiori (1989) index problem is a gas allocation optimiza-
tion problem of scenario 1 and has been optimized for the 
available gas quantities of 4600 MMSCF/D by the TLBO 
(Miresmaeili et al. 2019), CACO (Ghaedi et al. 2014) and 
GA (Ghassemzadeh and Pourafshary 2015) algorithms and 
3000 MMSCF/D by PSO algorithm (Hamedi et al. 2011). 
Table 4 illustrates the optimization results for the five-well 
Nishikiori (1989) index problem by using the water cycle 
optimization algorithm and compares them with the TLBO, 
CACO, GA and PSO algorithms. As shown in Table 4, only 
the oil rates generated by the TLBO algorithm are more 
than the values obtained by the WCA algorithm, but a thor-
ough examination of the data obtained for the gas allocation 
among the wells by the TLBO algorithm shows that the oil 
production rate by this algorithm has been overestimated. 
An investigation of initial operational data for oil production 
versus gas injection for well no. 1 in Nishikiori (1989) stud-
ies indicates that only 490.2 MSCF/D gas is required to pro-
duce 367.5 STB/D oil. However, the amount of gas required 
to produce 367.4 STB/D oil is estimated by the TLBO algo-
rithm to be 394.3 MSCF/D. In other words, the amount of oil 
producible by this amount of gas is overestimated.

Also investigation of initial operational data for oil pro-
duction versus gas injection for well no. 5 in Nishikiori 
(1989) studies indicates that by injecting 1667.3 MSCF/D 
gas into the well no. 5, the oil production rate will be 813.6 
STB/D. Therefore, in order to produce 839.3 STB/D oil, 
over 1667.3 MSCF/D gas needs to be injected into the well. 
However, the required amount of the injected gas to produce 
the same amount of oil as estimated by this algorithm is less 
than 1667.3 MSCF/D (1447.7 MSCF/D). Therefore, it can 
be said that the oil production rate is overestimated by the 
TLBO algorithm, while the results obtained by the WCA 
algorithm are more reasonable than the initial operational 
data of the Nishikiori’s (1989) study.

Also, given the effect of the gas lift process modeling 
on the optimization results, and since previous studies have Ta
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used various modeling techniques for solving the five-well 
Nishikiori (1989) index problem, the performance of the 
water cycle optimization algorithm was compared with 
the two well-known PSO and GA algorithms in terms of 
convergence rate, non-capture at local optimum points and 
repeatability with the same correlation for modeling gas 
lift process and with equal number of iterations in order to 
evaluate the performance of the algorithm itself individu-
ally and eliminate the modeling accuracy effects. For this 
purpose, in all three algorithms, the correlation proposed by 
the author was used in the present study for gas lift fitting 
and modeling. Also, following previous studies for solving 
Nishikiori (1989) index problem (Miresmaeili et al. 2019, 
Ghaedi et al. 2014, Hamedi et al. 2011), the number of itera-
tions was considered equal to 100 in all three algorithms.

The WCA, PSO and GA algorithms are all three popula-
tion-based algorithms, in which the population in these three 
algorithms is expressed in terms of the number of streams, 
chromosomes and particles. Figure 5 shows optimized oil 
production rates in different populations using the three 
WCA, PSO and GA algorithms.

As it is shown Fig. 5, the exploration and exploitation 
phase in the search space in the genetic algorithm is highly 
dependent on the population and in the lower population, the 
algorithm is trapped in the local optimum points, while the 
PSO and WCA algorithms have a more powerful, explora-
tion and extraction phase in the search space and, therefore, 
are not so dependent on the population and are not trapped 
in the local optimum points. In addition, the PSO and WCA 
algorithms have high repeatability in the obtained results.

Figure 6 shows the optimization run time by the three 
algorithms studied in different populations. As it is shown, 
the PSO optimization algorithm has a better performance 
than the GA algorithm in terms of speed because the PSO 
algorithm converges to the optimal point at 24.81 s with a 

population of 50, while the GA algorithm converges to the 
optimal point at 85.85 s with a population of 650. In con-
trast, the WCA algorithm has a much better performance in 
terms of speed than the PSO algorithm, so that it converges 
to the optimal point at lower populations and at higher 
speeds. However, as shown in Fig. 6, the PSO algorithm 
has a lower performance at high populations in terms of 
speed. The WCA algorithm converges to an optimal point 
in 0.56 s with a population of 50. Therefore, it can be said 
that the WCA algorithm has a better performance in the opti-
mization problems than GA and PSO algorithms in terms 
of convergence speed, non-capture in local optimum points 
and repeatability.

Case study (Scenario 2)

All studies on gas lift allocation optimization have assumed 
that if a limited amount of gas is available, then the gas 
should be distributed between the wells in a manner that it 
would be possible to produce the maximum amount of oil. 
However, an issue of interest not investigated in the previous 
studies is if the goal is to produce a predetermined amount of 
oil from the reservoir, then how this predetermined amount 
of oil should be distributed between the wells to require the 
minimum amount of gas injection in the gas lift operation? 
This section addresses this problem in one of the heavy oil 
fields of southwest Iran using the water cycle algorithm. The 
field in question contains four wells, of which the well no. 
2 is closed because of the high water cut. Table 5 shows the 
specifications of the three productive wells in the field. The 
normal production of the field is 3728 STB/D without any 
gas lift operation. Table 6 also shows the data of oil produc-
tion against gas injection in the wells in gas lift operation, 
which were obtained by using wells modeling in Prosper 
software.
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To solve the optimization problems, it is necessary to 
have a correlation to calculate the amount of oil produced for 
different amounts of injected gas. Therefore, to find the best 
correlation, we calculated the fitting of the data presented 
in Table 6 by using different correlations. Table 7 shows the 
correlation factor (R2) and root-mean-square error (RMSE) 
for the GLPC fitting calculated through different correla-
tions. As it was expected, the model proposed in this study 
produces better fitting results than other models presented 
in the literature. Therefore, the proposed model was used to 
investigate gas allocation optimization.

Table 8 shows the values of the constants obtained from 
the GLPC fitting by the proposed model. The GLPCs for dif-
ferent wells suggest that the injection of 8.718, 10.017 and 
10.13 MMSCF/D in the wells 1, 3 and 4 results in the pro-
duction of maximum oil production, i.e., 1937.257 STB/D. 
Four oil production targets (12500, 15000, 17500 and 
19737.257 STB/D) were set for the oil field under analysis. 
Following these targets, the gas allocation between the wells 
was optimized in such a way that the minimum amount of 
gas is required for the production of the targeted oil produc-
tion rates. Furthermore, to show the effect of optimization, 
the worst possible gas injection scenario with the maximum 
amount of gas used to produce the predetermined oil produc-
tion was calculated.

Table 9 shows the results for the gas allocation opti-
mization for different wells of the oil field at different oil 
flow rates. The Qo/Qg ratio in the table indicates the num-
ber of standard barrels of oil produced per injection of 
every one million cubic feet of the standard gas. As it was 
expected, in the optimal scenario (the minimum required 

Table 5   Specifications of the three productive wells in the field

Property Well 1 Well 3 Well 4

Well TVD (ft) 9730.7 9898.29 10080.8
Well MD (ft) 9730.97 12513.1 11302.5
Reservoir pressure (psia) 4640 4640 4640
Bottom hole temperature (F) 204 204 204
Well head temperature (F) 77 77 77
Well head flowing pressure (Psia) 150 150 150
Formation gas–liquid ratio (scf/STB) 137 137 137
API oil gravity (API) 13.11 13.11 13.11
Water cut (%) 40 40 40
PI (STB/day/psi) 9.3 8.5 10.1
Tubing O.D. (in.) 4 1/2 4 1/2 4 1/2
Casing O.D. (in.) 5 5 5
Specific gravity of gas 0.91 0.91 0.91

Table 6   Data of oil production 
versus gas injection in wells of 
the field

Well 1 Well 2 Well 3

Qg (MMSCF/D) Qo (STB/D) Qg (MMSCF/D) Qo (STB/D) Qg (MMSCF/D) Qo (STB/D)

0.00E+00 1.46E+03 0.00E+00 8.68E+02 0.00E+00 1.40E+03
6.99E−01 4.19E+03 5.84E−01 3.51E+03 7.16E−01 4.30E+03
1.11E+00 4.77E+03 9.46E−01 4.06E+03 1.15E+00 4.91E+03
1.75E+00 5.35E+03 1.52E+00 4.65E+03 1.80E+00 5.52E+03
2.66E+00 5.82E+03 2.37E+00 5.19E+03 2.76E+00 6.04E+03
3.96E+00 6.18E+03 3.61E+00 5.64E+03 4.15E+00 6.48E+03
5.75E+00 6.42E+03 5.36E+00 5.98E+03 6.10E+00 6.80E+03
8.19E+00 6.53E+03 7.75E+00 6.18E+03 8.73E+00 6.96E+03
1.14E+01 6.49E+03 1.09E+01 6.22E+03 1.22E+01 6.95E+03

Table 7   Error indices values of 
GLPC fitting through different 
correlations

Well no. Error index Alarcon et al.’s 
(2002) model

Hamedi et al.’s 
(2011) model

Behjoomanesh 
et al.’s (2015) model

Author’s model

1 R2 0.989154 0.996935 0.999981 0.999987
RMSE 215.7698 104.7083 11.68057 8.254048

3 R2 0.979262 0.993753 0.999982 0.999993
RMSE 297.11 150.9735 10.64476 6.668139

4 R2 0.98866 0.997422 0.999976 0.999990
RMSE 241,768 105.23 14.23711 7.994826

Table 8   Constants of the proposed model obtained from the GLPC 
fitting

Well no. a b c d e

1 5976.40 32.19 − 477.73 1129.00 − 4397.74
3 5138.54 − 375.23 1071.04 − 186.29 − 4289.66
4 5669.25 − 280.89 661.66 367.49 − 4230.72
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gas), a higher number of standard barrels of oil can be 
produced per injection of every one million cubic feet of 
gas than the worst scenario (the maximum required gas). 
Figure 7 also shows the surplus oil rate produced in the 
optimal scenario (the minimum required gas) compared to 
the worst possible scenario (the maximum required gas). 
As it can be seen, the closer the targeted oil production 
rates to the maximum oil production rate in the gas lift 
process (1937.257 STB/D), the surplus oil producible 

through the optimization can be reduced. Therefore, it can 
be suggested that in lower oil production targets, the opti-
mization is more important and generates more extra oil.

In addition to the gas lift, the method used in this paper 
can be used in improving steam allocation management in 
thermal enhanced oil recovery methods such as SAGD. One 
of the challenges in these methods is excessive water produc-
tion which is due to an improper steam injection plan. Thus, 
for a given volume of steam, steam allocation between wells 
should be managed in a manner to delay the water break-
through in producer wells and, as a result, improves sweep 
efficiency and increases the oil recovery.

Conclusion

1.	 In the gas lift process modeling, the correlation proposed 
by Behjoomanesh et al. (2015), despite the high preci-
sion, cannot be applied to all wells because firstly, in 
some wells, convergence requires limiting the variations 
of constant coefficients, and secondly, the oil production 
rates in some oil wells are overestimated or underesti-
mated

2.	 The model proposed in this study, despite the reduc-
tion of a constant compared to the model presented by 

Table 9   Gas allocation optimization for wells of the field at different oil flow rates

Required gas Min. Max.

Determined oil rate (STB/D) Well Gas injected 
(MMSCF/D)

Oil produced 
(STB/D)

Gas injected 
(MMSCF/D)

Oil 
produced 
(STB/D)

12500 1 0.772406 4314.469 1.20246 4874.365
3 0.724736 3746.082 10.017 6222.635
4 0.800147 4439.449 0 1403
Total 2.297289 12500 11.21946 12500
Qo/Qg (STB/MMSCF) 5441.195 1114.136

15000 1 1.455337 5117.931 8.718 6534.253
3 1.434568 4575.322 0.025065 1485.387
4 1.539948 5306.747 10.136 6980.359
Total 4.429853 15000 18.87906 15000
Qo/Qg (STB/MMSCF) 2821.764 794.5309

17500 1 2.790915 5870.636 0.761482 4297.009
3 2.985055 5445.478 10.017 6222.635
4 3.105087 6183.886 10.13 6980.356
Total 8.881057 17500 20.90848 17500
Qo/Qg (STB/MMSCF) 1970.486 836.9809

Max = 19,737.25 1 8.718 6534.253 8.718 6534.253
3 10.017 6222.635 10.017 6222.635
4 10.13 6980.359 10.13 6980.359
Total 28.865 19737.25 28.865 19737.25
Qo/Qg (STB/MMSCF) 683.7779 683.7779
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Behjoomanesh et al. (2015), has a higher fitting accu-
racy and is also free from the limitations of the men-
tioned model. Reducing a constant coefficient in this 
model will increase the speed of optimization. Also, the 
correlation proposed in this study is more accurate than 
the Hamedi et al. (2011) and Alarcon et al. (2002).cor-
relations.

3.	 The GA algorithm is highly dependent on population 
and is trapped in low populations at local optimum 
points, while the water cycle and PSO algorithms are 
not so population dependent and have good repeatability.

4.	 In terms of the convergence rate, the water cycle algo-
rithm has a much better performance than the PSO and 
GA algorithms. In high populations, the performance 
of the PSO and GA algorithms is reduced significantly 
in terms of speed. The PSO algorithm converges to 
the optimal response faster than the GA algorithm in a 
smaller population and more rapidly.

5.	 In optimization problems that aim to produce a prede-
termined amount of oil, the closer the targeted oil pro-
duction rates to the maximum oil production rate in the 
gas lift process, the surplus oil producible through the 
optimization can be reduced. As a result, in lower oil 
production targets, the optimization is more important 
and generates more extra oil.
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