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Abstract
Improper hole cleaning or drilled-cutting transportation impacts drilling operations. To illustrate, inefficient cleaning of the 
wellbore can lead to many drilling problems such as low drilling rate (i.e. low ROP), early bit wear and, in the severe cases, 
a complete loss of the well due to stuck pipe. To understand efficiency in cutting transport in drilling and to provide solutions 
for the problem, many studies have been conducted. In all cases, they provide empirical models based on experimental data. 
In this study, different artificial intelligence (AI) techniques are employed to estimate the concentration of cuttings present 
in the wellbore. The purpose of this study is to indirectly measure the hole-cleaning efficiency in order to predict the cut-
ting concentration from drilling parameters using artificial intelligence techniques. The study is based on 116 experimental 
data records from the studies. Two AI techniques were selected, namely artificial neural network (ANN) and support vector 
machine (SVM), to estimate the cutting concentration in the wellbore. The input parameters comprise mud density and mud 
rheological properties (yield point and plastic viscosity) in addition to drilling parameters including the hole inclination angle, 
pipe eccentricity (i.e. location of the drill pipe from the axis of the well), the rate of penetration (ROP), flow rate (GPM), 
drill pipe rotary speed (RPM) and temperature. The results obtained show the ability of the two employed techniques to 
accurately predict the cutting concentration in the wellbore with average absolute errors (AAE) less than 5% and correlation 
coefficients (R) higher than 0.9. Comparison of these results with a literature model showed that the AI techniques provide 
better predictions of cutting concentration and higher accuracy than that model. Applying the developed AI technique will 
help the drilling engineers to assess the hole cleaning in a real time.

Keywords Cutting transportation · Hole cleaning · Artificial intelligence · Horizontal wells
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Introduction

Oil and gas drilling operations include the process that 
is aimed at penetrating the earth surface to a subsurface 
hydrocarbon reservoir through a bore hole called wellbore 
or well. During this process, small rock fragments are pro-
duced and more of these fragments are generated as the 
hole gets deeper and deeper. Therefore, removing the rock 
cutting from the wellbore, drilling fluids, also referred to 
as drilling mud, is used. Drilling fluid basically is a mix-
ture of a continuous phase (either oil or water), weight-
ing agents (e.g. barite) and some viscosifying agents (e.g. 
bentonite). The ability of the drilling fluid to lift the drilled 
cuttings off the wellbore is governed by several factors. 
These factors are related to both the properties of the mud 
itself such as the mud density (mud weight), mud rheology 
and to some drilling parameters such as the hole inclina-
tion angle, drill pipe eccentricity (i.e. location of the drill 
pipe from the axis of the well), rate of penetration (ROP), 
pipe rotary speed (RPM) and more. Inefficient removal 
of the drilled cuttings may lead to many problems. These 
problems are costly and may include low ROP, early bit 
wear and, in some severe cases, a complete loss of the 
well due to stuck pipe. Therefore, it is very important to 
put the hole-cleaning efficiency into consideration during 
the drilling process.

Many studies have been conducted to understand the 
factors that affect the hole-cleaning efficiency. The first 
study on cutting transport was by Pigott (1941) in which 
the parameters affecting the carrying capacity of mud were 
identified. The first study trying to estimate the least pos-
sible annular velocity necessary to remove the cuttings 
from the hole was conducted by Williams and Bruce (Wil-
liams and Bruce 1951). After that, a series of experimental 
studies were conducted trying to understand and identify 
the parameters that influence the hole-cleaning efficiency. 
Other studies were conducted trying to model or corre-
late the cutting transport during drilling operations. Some 
studies used computer built-in models and simulators to 
simulate the drilling operations and monitor the cutting 
transport. Finally, Nazari et al. (2010) presented a com-
prehensive review of cutting transport.

Applications of artificial intelligence 
in petroleum industry

Artificial intelligence (AI) techniques have been widely 
used in the oil and gas industry. AI techniques have been 
applied in reservoir characterization, drilling and pro-
duction processes. For example, a model to identify the 

flow regimes in the wellbores was developed by El-Sayed 
(Osman 2004) using the artificial neural networks. Abdul-
raheem et al. (2007) used the fuzzy logic (FL) for estimat-
ing the Middle East permeability. The AI was also used by 
Al-Shammari (2011) to predict the pressure’s drop in the 
bottom-hole and tubing head in two-phase flow systems in 
an oil-producing well. In 2012, Al-Marhoun et al. (2012) 
presented an AI model for predicting crude oil viscosity. 
Alakbari et al. (2016) also used different artificial intel-
ligence techniques for the prediction of bubble-point pres-
sure  (Pbp-).

Elkatatny et al. (2016) used the ANN technique for 
real-time prediction of drilling fluid rheological proper-
ties. Elkatatny (2017a) also used the same technique for 
drill-in fluids, which is used to drill the reservoir section. 
It has been also demonstrated that, based on drilling fluid 
properties and the drilling mechanical properties, the ANN 
technique can be used to determine the ROP with a high 
accuracy (Elkatatny 2017b). Elkatatny (2017b), Elkatatny 
et al. (2017, 2018a) developed a new empirical correlation 
based on ANN for predicting porosity and permeability 
based on well log data and showed that the black box of 
the ANN can be changed to a white box by developing this 
empirical correlation. A new correlation for permeabil-
ity determination from well logs has been also developed 
based on the same technique, Moussa et al. (2018). Abdul-
hameed et al. (Mahmoud et al. 2017) predicted the total 
organic carbon based on conventional well log data using 
ANN. The ANN was also used to predict the bubble-point 
pressure  (Pbp-) and oil formation volume factor  (Bo-) with 
a high accuracy based on surface measurements (Elka-
tatny and Mahmoud 2018a, b). In reservoir geomechan-
ics, ANN has also been applied successfully to estimate 
the geomechanical parameters based on well logs data. 
For example, Elkatatny et al. (2018b) implemented ANN 
with high accuracy to predict the static Young’s modulus 
based on well log data. Static Poisson’s ratio was predicted 
for the first time using ANN by Elkatatny (2018). Finally, 
Elkatatny et al. (2018c) developed a mathematical model 
for the prediction of the compressional and shear sonic 
times using ANN from log data including gamma ray, bulk 
density and neutron porosity.

Nevertheless, few researchers have used the AI techniques 
for studying the hole cleaning during drilling operations. 
The first AI study on hole cleaning was done by Ozbayoglu 
et al. (2002) in which they used the feed-forward neural net-
works with back-propagation learning algorithm (BPNN) 
to investigate the cutting bed height in horizontal and high-
angle wells. In their study, they used Reynolds number 
 (NRe), Froude number  (NFr) and cutting concentration  (CC) 
as the input parameters, whereas the cutting bed height was 
the output parameters. These dimensionless numbers are 
functions of inclination angle, feed cutting concentration, 
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fluid density, fluid viscosity, average velocity, pipes dimen-
sions and the wellbore.

Rooki et al. (2014) and Rooki and Rakhshkhorshid (2017) 
used the BPNN and the radial basis neural networks (RBFN) 
for hole-cleaning prediction in foam drilling. In both studies, 
the authors used experimental data containing the foam qual-
ity, foam velocity, eccentricity, pipe rotational speed (RPM) 
and subsurface conditions (e.g. pressure and temperature) as 
the input parameters, whereas the cutting concentration was 
the target (output) parameter.

Al-Azani et al. (2018) concluded that SVM can be used 
to predict the cutting concentration in the wellbore with high 
accuracy. The purpose of this study is to develop artificial 
neural networks (ANN) model to indirectly predict the hole-
cleaning efficiency by estimating the cutting concentration 
in the wellbore from other drilling parameters and compare 
the results with the SVM which was developed by Al-Azani 
et al. (2018). In addition, the results from these techniques 
(ANN, SVM) will be compared to a correlation presented 
in the literature.

The parameters affecting hole‑cleaning efficiency

The following subsections show how the different param-
eters affect the cutting transport efficiency. These observa-
tions were taken from the literature in which experimental 
studies were conducted to understand these parameters and 
their influence on the hole-cleaning efficiency.

Effect of wellbore inclination

Tomren et  al. (1986) in their experimental work, and 
depending on several conditions, showed that there is no 
significant difference in the cutting concentration when the 
tests were conducted at  10° of inclination than those con-
ducted in vertical holes. They also showed that at wellbore 
inclinations, between  10° and  30°, the formation of cutting 
bed is induced mainly at low flow rates. The tendency for 
the cuttings bed to slide downwards was observed at inclina-
tions of  40° and  50°. Finally, at higher angles, the build-up of 
cuttings on one side of the annulus was observed due to the 
drill pipe rotation which caused the tangential “sway” of the 
cuttings bed. Moreover, various degrees of cuttings build-up 
are resulted at higher angles of inclinations. This leads to the 
need for higher flow rates than those recommended for safely 
cleaning the vertical holes. Finally, the cuttings bed is more 
likely to slide downwards for 35–50 degrees of inclination 
(Tomren et al. 1986).

Effects of pipe/hole eccentricity

It was observed that in vertical holes, the behaviour of the 
cuttings was almost the same for different eccentricities. 

However, for inclined drill section, it was observed that cut-
ting build-up was least when the inner pipe was co-cantered 
(i.e. zero eccentricity) with the outer pipe (Tomren et al. 
1986).

Effect of mud rheology and density

Experimental investigations on the effect of the mud rhe-
ology on the hole cleaning by Hussaini and Azar (1983), 
Okranji and Azar (1986) showed that the carrying capacity 
of the mud increases by increasing the ratio between the 
yield point (YP) and the plastic viscosity (μp). They also 
showed that the lower the viscosity of the mud, the more 
effective hole cleaning is. Moreover, the lower the mud vis-
cosity is, the higher the tendency of the cuttings to roll, Ford 
et al. (1990).

Effect of flow rate

The works of Tomren et al. (1986), Li and Walker (1999), 
Cho et al. (2001) and Ravi and Hemphill (2006) showed that 
the cuttings beds height decreases by increasing the flow rate 
and, hence, the annular velocity.

Effect of pipe rotation (rpm) and rate of penetration 
(ROP)

It has been shown that the rotation speed (RPM) is more 
effective in high-angle wells than vertical wells. The hydrau-
lic requirements for effective cleaning also increase with 
increasing the ROP (Tomren et al. 1986) and Sanchez et al. 
(1999).

Overview of the implemented AI techniques

Artificial neural networks (ANN)

The artificial neural network is an information-processing 
system that tries to mimic the performance characteristics 
of human nervous system. The system is adapted as a com-
puter model that can develop associations, transformations 
or mappings between objects or data. ANN is also the most 
popular AI technique for recognizing patterns of data. Fur-
thermore, any ANN is built-up of basic elements called neu-
rons; that is, the ANN is collection neurons with specifically 
arranged formations. What is more, correlations that depend 
on large number of inputs can be found using the ANN. In 
this technique, set of operations in which the outputs and the 
inputs are combined are made by the essential parts of the 
network, which are the neurons. Nonlinear equations are also 
used to obtain the results for prediction problems.
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There are different ANN models. These include the feed-
forward neural networks with the back-propagation (BPNN) 
learning algorithm and the radial basis functional networks 
(RBFN) which are implemented in this work. In the BPNN, 
the input parameters and the corresponding output parameters 
are used to train the network so that a function can be approx-
imated, and a specific output is associated with a specific 
input(s) or a classification is made as assigned by the user. In 
this technique, and depending on the type of the problem, sev-
eral activation functions are used for solving the problem. The 
log-sigmoid activation function is used in this study. This func-
tion is shown in Fig. 1. In contrast, the RBFN uses the radial 
basis transfer function shown in Fig. 2. This type of network is 
useful in approximating functions and making classifications. 

In this technique, more neurons are required than those in the 
BPNN approximation (Demuth and Beale 2002).

Support vector machine (SVM)

The support vector machines were first added to the computer 
learning community in the mid-1990s, Cortes and Vapnik 
(1995). SVM is most commonly used to solve very large clas-
sification problems. It has been extended to be able to solve 
nonlinear regression problems, in which they show excellent 
performance, Zhao et al. (2010). In support vector machine, 
the basic idea of solving the problems is mapping the data into 
high dimension feature space. Then, the relationship between 
the input and the output in a new space is found. The data are 
classified by the construction of a hyper-plane in which the 
data are separated into two categories. The models of SVM 
are related to the neural networks in which the SVM uses the 
sigmoidal kernel function which is equivalent to a two-layer 
perceptron neural network.

Data description and analysis

Yu et al. (2007) conducted an experimental study of hole 
cleaning at the University of Tulsa. They conducted their 
experiment under simulated downhole conditions. The total 
number of tests were 116 in which pipe rotation (RMP), mud 
density (ρ), mud rheological properties (yield point (YP) and 
the plastic viscosity (μp)), pipe eccentricity (ε), temperature 
(T), flow rate (Q), rate of penetration (ROP) and inclination 
angle (θ) were varied to investigate their effect on cutting con-
centration  (CC). The test matrix of the experiment is illustrated 
in Table 1. Their data are used in this work.

For sensitivity analyses of the relationship between the 
input parameters and the output parameter, the correlations 
coefficients (R) between the independent (input parameters) 
and the dependent (output) parameter are shown in Table 2 
and Fig. 3, and these data were obtained using the EXCEL 
program by selecting the data analysis function. As shown in 
Fig. 3, Q, RPM, ρ, T, YP, μp, θ, ε and ROP, respectively, have 
the more negative effect on the  CC. This negative correlation 
agrees with what have been previously presented regarding the 
parameters affecting the hole-cleaning efficiency.

The data were divided into two parts in which 70% of the 
data was used for training and the remaining 30% of the data 
was used for testing. The selection of training and testing data 
was done randomly in the MATLAB code during the imple-
mentation of the techniques.

For training and testing using the SVM technique, the 
inputs parameters were normalized in the range [− 1, 1]. For 
this purpose, the following equation was used (Demuth and 
Beale 2002):

xn = 2 ×
x − xmin

xmax − xmin

− 1

Fig. 1  Plot of the log-sigmoid transfer function (Demuth and Beale 
2002)

Fig. 2  Plot of the radial basis transfer function (Demuth and Beale 
2002)
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where xn is the normalized parameter, x is the actual param-
eter, and xmin and xmax, respectively, represent the minimum 
and the maximum values of the actual parameters.

Finally, for performance evaluation, the correlation coeffi-
cient (R) and the average absolute error (AAE) are used and 
they are defined by the following equations, respectively:

where yiact represents the measured (actual) value, yipred rep-
resents the predicted (estimated) value, and N denotes the 
number of samples. Higher values of R with lower values 
of AAE indicate higher accuracy and better performance of 
prediction.

Cutting concentration estimation using BPNN

In this technique, a feed-forward neural network with back-
propagation (BPNN) learning algorithm was applied. Sev-
eral trials were applied to perform a sensitivity analysis for 
the number of the hidden layers, the number of neurons in 
the hidden layer(s) and the appropriate transfer function. 
The final network consists of three layers as follows: one 
input layer with nine input parameters, one hidden layer with 
nine neurons and the log-sig transfer function and one output 
layer with one output parameters. Figure 4 shows the ANN 
topography.

Cutting concentration estimation using RBFN

In this study, the RBFN algorithm was also used for estimat-
ing the cutting concentration. This algorithm is designed 
using newrbe code in MATLAB®. In training the RBFN, the 
proper value of spread must be determined. Therefore, dif-
ferent values of spread were tested until the minimum AAE 

R =

�����1 −

∑N

i
(yiact − yipred)

2

∑N

i
(yiact)

2 −

∑N

i
(yipred)

2

N

AAE =
1

N

∑N

i
|yiact − yipred|

Table 1  Test matrix (Yu et al. 
2007)

Testing parameter Values

Annular size 5.76ʺ casing ID × 3.5ʺ drill string OD
Rotation (RPM) 0, 80
Eccentricity, ε 0.541ʺ, 0.881ʺ offset
Mud rheology Yield point, YP

0, 20, 40 (lb/100  ft2)
Plastic viscosity, μp
1, 10, 20 (cP)

Temperature, T (oF) 80, 120, 180
Rate of penetration, ROP (ft/hr) 15, 20, 30 40
Flow rate, Q (GPM) 75, 100, 150, 200, 250
Density, ρ (ppg) 8.314, 8.33, 12
Inclination angle, θ (degree) 67, 90
Cutting concentration,  CC (%) Range Average Standard deviation

[0, 41] 11.45% 10.97%

Table 2  Correlation coefficients 
between the inputs and the 
target

Parameter Correlation 
coefficient 
(R)

ρ − 0.3162
μp − 0.1093
YP − 0.1104
T − 0.1251
ROP − 0.0189
RPM − 0.4767
Q − 0.4793
θ − 0.1036
ε − 0.0437

Fig. 3  The correlation coefficient between the input parameters and 
the cutting concentration
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and maximum R were obtained. Several trials and errors led 
to the value of 241 for the spread.

Cutting concentration estimation using SVM

Support vector machine technique was also implemented as 
a regression tool to predict the cutting concentration from 
the aforementioned input parameters. For better performance 
of the tool, a sensitivity analysis of SVM parameters was 
performed until the minimum AAE and maximum R were 
obtained.

Results and discussion

Results from BPNN model

The cutting concentration was estimated using the BPNN 
technique. In this technique, the model was trained and 
tested, and the best results are outlined and discussed here. 
Figures 5 and 6 show the plot of the actual (experimental) 
and predicted cutting concentration versus the test number 
as obtained from the training and testing stages after imple-
menting the BPNN. Figures 7 and 8 also show the regres-
sion plots for both stages between the actual and predicted 
data. The figures show the closeness of the predicted  CC to 

the actual  CC. The training correlation coefficient and the 
average absolute error (AAE) in this stage are 0.9017 and 
3.3079%, respectively. The correlation coefficient for the 
testing stage is 0.8691 with an AAE of 4.5692%. The train-
ing and testing results indicate that the model performance 
is very satisfactory. Table 3 summarizes the results obtained 
from implementing the BPNN technique for estimating cut-
ting concentration. The overall correlation coefficient is 0.89 
with an AAE of 3.686% which also indicate a satisfactory 
performance of the model.

Results from RBFN model

The cutting concentration was estimated using the RBFN 
technique. In this technique, the model was trained and 
tested, and the best results are outlined and discussed 
here. Figures 9 and 10 show the plot of the actual (experi-
mental) and predicted cutting concentration versus the 
test number as obtained from the training and testing 
stages after implementing the RBFN. Figures 11 and 12 
also show the regression plots for both stages between the 
actual and predicted data. The figures show the closeness 
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of the predicted and the actual cutting concentration. The 
training correlation coefficient and the average absolute 
error (AAE) in this stage are 0.956 and 2.335%, respec-
tively. The correlation coefficient for the testing stage is 
0.854 with an AAE of 4.344%. The training and testing 
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Fig. 6  Actual (experimental) and BPNN-predicted cutting concentra-
tion versus test number from network testing

Fig. 7  BPNN-predicted versus actual (experimental) cutting concen-
tration from network training

Fig. 8  BPNN-predicted versus actual (experimental) cutting concen-
tration from network testing

Table 3  Results of estimating 
 CC using BPNN

R AAE (%)

Training 0.9017 3.3079
Testing 0.8691 4.5692
Overall 0.8919 3.6863
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results indicate that the model performance is very sat-
isfactory. Table 4 summarizes the results obtained from 
implementing the RBFN technique for estimating cutting 
concentration. The overall correlation coefficient is 0.926 

with an AAE of 2.938% which also indicate a satisfactory 
performance of the model.

Results from SVM model

Finally, the cutting concentration was estimated using the 
SVM technique. The model was trained and tested, and the 
best results are outlined and discussed here. Figures 13 and 
14 show the plot of the actual (experimental) and predicted 
cutting concentration versus the test number as obtained 
from the training and testing stages after implementing 
the SVM. Figures 15 and 16 also show the regression plots 
for both stages between the actual and predicted data. The 
figures show the closeness of the predicted and the actual 
cutting concentration. The training correlation coefficient 
and the average absolute error (AAE) are 0.94 and 2.255%, 
respectively. The correlation coefficient for the testing stage 
is 0.93 with an AAE of 3.644%. The training and testing 
results indicate that the model performance is satisfactory. 
Table 5 summarizes the results obtained from implement-
ing the SVM technique for estimating cutting concentration. 
The overall correlation coefficient is 0.93 with an AAE of 
2.672% which also indicate a satisfactory performance of 
the model.

Comparison with literature work

Yu et  al. (2007) presented an empirical correlation for 
cutting concentration in the wellbore. This correlation is 
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Fig. 11  RBFN-predicted versus actual (experimental) cutting concen-
tration from training stage

Fig. 12  RBFN-predicted versus actual (experimental) cutting concen-
tration from testing stage

Table 4  Results of estimating 
 CC using RBFN

R AAE (%)

Training 0.96 2.335
Testing 0.85 4.344
Overall 0.93 2.938
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based on dimensional analyses and dimensionless numbers. 
Table 6 shows the correlation coefficient and the average 
absolute error obtained from their model compared to the 
results obtained from the AI techniques discussed above. 
The performance of the artificial intelligence techniques 
implemented in this study is much better than the empirical 
correlation presented in Yu et al. (2007). Figure 17 shows 
that the performance of the AI techniques implemented in 
this study is much better than the empirical correlation pre-
sented in the literature.

Conclusion

In this study, the cutting concentration in deviated and hori-
zontal well was estimated using several AI techniques. The 
first technique was the BPNN which has three layers: one 
input layer with nine parameters, one hidden layer with nine 
neurons and sig-sigmoid activation function and one output 
layer containing the target cutting concentration. In BPNN 
model, the correlation coefficients between the measured 
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Fig. 13  Actual (experimental) and SVM-predicted cutting concentra-
tion versus test number from training stage
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and the estimated values in the training and testing stages 
are 0.90 and 0.87, respectively. The AAE for both stages 
are 3.308% and 4.5698%, respectively. The overall correla-
tion coefficient and AAE from this approach were 0.89 and 
3.686%, respectively.

Moreover, the second technique used is the RBFN. This 
technique uses the same inputs and output as the previous 
technique. The radial basis function is the activation func-
tion used in this technique. In RBFN model, the correlation 
coefficients between the measured and the estimated values 
in the training and testing stages are 0.96 and 0.856, respec-
tively. The AAE for both stages are 2.3356% and 4.344%, 
respectively. The overall correlation coefficient and AAE 
from this approach were 0.93 and 2.938%, respectively.

SVM model yielded correlation coefficients between the 
measured and the predicted values in the training and testing 
stages of 0.94 and 93, respectively. The AAE for both stages 
are 2.255% and 3.644%, respectively. The overall correla-
tion coefficient and AAE from this approach were 0.93 and 
2.672%, respectively.

Amongst all the techniques implemented in this work, 
SVM gave a better prediction of the results as indicated by 
the higher overall correlation coefficient and the least overall 
prediction error. However, there is no much difference in the 
prediction between all AI methods; it is recommended to use 
SVM in field application.

A comparison of the AI model results to the results 
obtained from published empirical model shows that the 
predictions of cutting concentration from the AI techniques 
are much better than that obtained by the published one in 
terms of accuracy and simplicity of application. Applying 
the AI technique will enable the drilling engineers to evalu-
ate the hole cleaning in a real time with a high accuracy.
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