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Abstract
From a visual point of view, volumetric information about reservoir portioning and communication such as sweep, flow 
patterns, and drainage zones are longer better interpreted and pictured when presented by an average volumetric flux cal-
culation. To this hand, finite volume discretization can be used to substitute streamline simulation-based finite difference 
to assess flow diagnostic information. Herein, we use finite volume-based flow diagnostics to optimize waterflooding. In 
particular, we discretize in finite volume the flow equation from Darcy’s law single-phase incompressible flow steady state 
combining with two auxiliary flow equations, time of flight and stationary tracers using the two-point flux approximation 
to describe fluid particles motion and flow lines. In addition, with the estimation of dynamic heterogeneity, we compute the 
Lorenz coefficient to highlight the reservoir flow and storage capacity characterization. To optimize waterflooding rates, we 
first, use an objective function the equalized Lorenz coefficient got through the evaluation of average travel time in cells to 
increase sweep efficiency and decrease the dynamic heterogeneity coefficient. Second, following the same target, we use the 
flow diagnostic interactive tools to study the volumetric sweep displacement front and harmonize the flooding breakthrough. 
In this work, our conceptual approach is to see the reservoir initially filled with oil; then, optimizing the Lorenz coefficient 
leads us to an oil recovery improvement. To be pragmatic, we apply our waterflooding performance optimization model 
on two case studies, the ninth SPE comparative solution project, a reexamination of black-oil (synthetic case) and ZHNBA 
Chinese oilfield (real field dataset).

Keywords  Flow diagnostics · Waterflooding · Finite volume · Optimization · Dynamic heterogeneity · Volumetric sweep

List of symbols
K	� Absolute permeability, md
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g	� Gravity acceleration, m/s2

Z	� Depth vector function (x, y, z)
t	� Time, s
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V 	� Discrete volume, m3

�	� Fluid viscosity, cP
�⃗u	� Darcy’s velocity, m/s
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cr	� Rock compressibility
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�f	� Thermal expansion
ct	� Total compressibility
�	� Total mobility
T 	� Transmissibility
u	� Flux
�	� Time of flight (TOF)
�	� Porosity
�	� Storage capacity
Lc	� Lorenz coefficient
F	� Flow capacity
TPFA	� Two-point flux approximation
MRST	� MATLAB Reservoir simulation toolbox
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Introduction

The road toward strategies for recovery improvement 
of hydrocarbon resources compulsory goes through res-
ervoir rock characterization and the study of fluids flow 
in porous media. Herein, reservoir modeling is taken as 
an investigation of the interactive motion of fluid parti-
cles, depicting the physics and mathematical equations 
involved. This means disassembling the partial differential 
equations describing the fluid behaviors in the reservoir 
and then looking for numerical solutions and implementa-
tion. Thereby, the flow diagnostics workflow module from 
MATLAB Reservoir Simulation Toolbox (MRST) is the 
perfect modeling tool that can be used as a waterflooding 
project processor to provide a reservoir model to estab-
lish connections and quickly procure a qualitative picture 
of the flow patterns. Flow diagnostics are the result of 
flow field analysis properties, and they are the study of 
well responses and fluid displacement front distribution to 
understand the flow paths and communication patterns in 
reservoir models. Howsoever, flow diagnostics-based finite 
volume discretization can be used to measure and optimize 
the dynamic heterogeneity, and increase well volumetric 
sweep efficiency. Flow diagnostic with the interactive 
tools can be used to manage the flooding breakthrough, 
and forecast an optimal injection well rates configuration.

The study and use of flow diagnostic tools have been the 
purpose of several types of research. Authors have mostly 
involved flow diagnostics to develop strategies for hydro-
carbon resources optimal recovery. However, we have 
distinguished two main approaches, the streamline-based 
finite difference, and finite volume-based flow diagnostics.

Streamline-based flow diagnostics has received atten-
tion these last years; it is a simulation method based on the 
finite-difference discretization. This started with modeling 
reservoir geostatistical realizations based on the study of 
time flight equations by Idrobo et al. (2000), and then 
Thiele and Batycky (2003) with an automatic method for 
waterflooding and well rates optimization. Then, later the 
same year, Ates et al. (2003) ranked and up-scaled geosta-
tistical reservoir models, and then Akhil Datta-Gupta and 
King (2007) stated the features of streamline technology 
and complement to conventional finite-difference simula-
tion. Batycky et al. (2005) revisited class flood surveil-
lance methods applied to injection production data, and 
Park and Datta-Gupta (2011) worked on the workflow for 
waterflood rate optimization using streamline-based flood 
sufficiency maps. Lastly, Haegland et al. (2019) simulated 
fluid flow and transport in porous media.

Streamline-finite difference-based method has been 
efficient for these above purposes, but it has limitations in 
terms of computational complexity in its extensibility to 

irregular computational domains like complex geological 
structures such as faults. However, reservoir drainage and 
volumetric sweep information can be well-interpreted and 
pictured when presented by an average volumetric flux 
calculation.

Recently, finite volume discretization has been explored 
as a mathematical ground for reservoir simulation meth-
ods. In the waterflooding framework, we can quote Shook 
and Mitchell (2009) for their work on the new method for 
estimating heterogeneity in the earth model using time of 
flight and volumetric flow rate information. Then, Shahvali 
et al. (2011) proposed finite volume method as an alterna-
tive to streamline for obtaining flow diagnostic information. 
Finally, Møyner et al. (2015) proxied flow diagnostics for 
reservoir optimal management workflows.

This work is purposed to decrease the impact of reservoir 
rock dynamic heterogeneity known as one of the unfavorable 
factors affecting waterflooding overall sweep efficiency. The 
dynamic heterogeneity can be represented as the imbalance 
permeability distribution in the reservoir leading to an early 
breakthrough in high permeability zones and stagnant region 
in low permeability zones. Our work will be to find ways to 
equalize the measure of dynamic heterogeneity by comput-
ing its values using grid cells volumetric average approxi-
mation. The resulting target at the end of this work will be:

•	 Having dynamic heterogeneity volumetric grid cells aver-
age values (optimal values)

•	 Harmonizing the flooding breakthrough
•	 Optimizing the water injection well rates
•	 Optimizing the waterflooding performance

Mathematical model

Here, we simply present the governing equations sustain-
ing this work. We first start by developing the single-phase 
incompressible steady-state flow equation from Darcy’s law.

where p is the pressure of the fluid, � is the density of the 
fluid, g is the acceleration from gravity, Z the depth is a vec-
tor function of (x, y, z) which has the g direction. However, 
K is shown to be the absolute permeability tensor measured 
in Darcy’s units the equivalence of length squared in the 
mathematics of reservoir simulation, Ewing (1983). In most 
reservoir simulation using Darcy’s law, the permeability ( K ) 
is considered as a special diagonal tensor.

(1)u =
Q

A
= −

K

�
(∇p − �g∇Z)
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with Kx , Ky and Kz as the permeability in the (x, y, z) direc-
tions. For Kx = Ky = Kz , isotropic medium; otherwise, 
anisotropic.

The mathematical model for the incompressible single-
phase flow is derived by the fusion of the conservation of 
mass, Darcy’s law on steady state and the state equation 
on a control volume ( v ) shown by Lie 2016. The mass 
conservation implies that the mass accumulated in v equals 
the mass flow across the boundary of v plus the mass 
injected into v via wells with � , the fraction of volume, 
v available for flow, � the fluid density per unit volume, 
�v the computational domain with normal vector n⃗ , u⃗ the 
macroscopic Darcy’s velocity and q the mass flow rate or 
fluid sources or sinks (inflow, outflow) per volume unit at 
certain locations.

The mass conservation equation is given as:

By using the Gauss divergence theorem, we get the fol-
lowing transformation:

This equation is valid for any volume ( v ) and also must 
satisfy the continuity equation

To continue our process, we have to introduce consti-
tutive equations which are the link between two different 
states (pressure, volume, temperature) of the system at 
specific physical given conditions. Herein, in our work, we 
can take an example, Darcy’s law equation, which links the 
velocity ( ⃗u ) to the fluid pressure ( p ). Herein, a variation 
in density will cause a pressure and temperature variation; 
in thermodynamics, those variations can be considered 
as a change in volume ( v ) for a fixed number of particles.

T and p are the indication that the above process takes place 
at constant pressure and temperature. Also, we can notice 
that for a fixed number of particles, �v can only be con-
stant, d�v = �dv ; then, the last equation can be rewritten as 
follows:

(2)K =

⎛
⎜⎜⎝

Kx 0 0

0 Ky 0

0 0 Kz

⎞
⎟⎟⎠

(3)
𝜕

𝜕t ∫
v

𝜙𝜌dx⃗ + ∫
𝜕v

𝜌u⃗ ⋅ n⃗ds = ∫
v

𝜌qdx⃗

(4)∫
v

[
𝜕

𝜕t
𝜙𝜌 + ∇ ⋅ (𝜌u⃗)

]
dx = ∫

v

𝜌qdx

(5)
𝜕

𝜕t
𝜙𝜌 + ∇ ⋅ (𝜌u⃗) = 𝜌q

(6)
dv

v
=

1

v

(
�v

�p

)

T

dp +
1

v

(
�v

�T

)
p
dT

Herein, cf is the isothermal compressibility and �f is the 
thermal expansion coefficient. Many subsurfaces keep the 
density almost constant which makes the conduction to 
maintain the temperature constant that situation drives us to 
the following simplification.

cf , the isothermal compressibility, is a nonnegative factor 
and depends on pressure and temperature, cf(p,T).

Reintroducing Darcy’s law and rock and fluid com-
pressibility in the continuity in Eq. (5), we get a parabolic 
equation described as follows:

Herein, ct = cr + cf , the total compressibility, the para-
bolic equation is nonlinear because � and ct depend on p . 
In the case of incompressible flow, we have to make the 
assumption that ct = 0 , and then we get an elliptic equation 
with variable coefficients which represent the single-phase 
incompressible flow equation.

When bringing the fluid potential � = (p − g�z) , the sin-
gle-phase incompressible flow equation can become the 
generalized Poisson equation: −∇K∇� = q or when there 
is no source, neither sink can become Laplace equation: 
−∇K∇� = 0 , all for steady-state flow.

Secondly, we introduce the flow transport auxiliary 
equations: the time of flight and tracer equations. We des-
ignate, as time of flight, the time a particle takes to travel 
from a source or a sink to a particular point in the reser-
voir; it is the time a fluid particle takes to travel a distance 
(a) in the interstitial velocity u⃗

𝜙
 . The time of flight is an 

auxiliary equation which describes the fluid flow lines in 
the reservoir, and it is an important equation for the visu-
alization and analysis and can be written as follows:

Here, τ is the time of flight; therefore, using directional 
derivative, we can write:

(7)
d�

�
=

1

�

(
��

�p

)

T

dp +
1

�

(
��

�T

)

p

dT = cfdp + �fdT

(8)cf =
1

�

d�

dp
=

d ln(�)

dp

(9)ct��
�p

�t
− ∇ ⋅

[
�K

�
(∇p − g�∇z)

]
= �q

(10)−∇ ⋅

[
K

�
∇(p − g�z)

]
= q

(11)𝜏(a) =

a

∫
0

𝜙(x⃗)

u⃗(x⃗)
ds
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From this last expression (12), we can write the time of 
flight equation as follows:

We also introduce a set of tracer equations that charac-
terized neutral particles that passively flow with the fluid 
without changing the flow properties. The reservoir tracer 
concentrations are expressed by the following continuity 
equation:

Then, by simulating the evolution of non-diffusive trac-
ers that keep constant values during the fluid expansion or 
compression, we get the communication between patterns. 
From this point, we set at certain inflow boundary part tracer 
concentration that equals one, and we compute the solution 
from the non-conservative equation steady-state conditions:

The resulting tracer distribution from the last equation 
defines the reservoir portion which will be influenced by a 
coming inflow boundary flow. By reversing the flow field 
sign, we can identify the reservoir portion that will be influ-
enced by an outflow boundary or sink. Going further by 
stretching this method to all parts of source flow, we can 
compute the instantaneous flow field.

Numerical model: discretization 
of equations using the two‑point flux 
approximation (TPFA)‑based finite volume

TPFA of the single‑phase incompressible flow 
equation steady state

We start the discretization by rewriting the steady-state 
equation by its integral form which is the simple form of 
Eq. (3), where � and � have been removed because they are 
dependent on time.

The next step of our discretization is to compute the flux 
which goes through each face of the cells. Here, we are talk-
ing about our two neighbor cells ( �i , �c ). We assume that 
both grid cells are supposed to match, and then we assign the 

(12)
d𝜏

da
=

𝜙

||u⃗||
=

u⃗
||u⃗||

⋅ ∇𝜏

(13)u⃗ ⋅ ∇𝜏 = 𝜙

(14)
𝜕(𝜙C)

𝜕t
+ ∇ ⋅ (u⃗C) = qC With C = quantity

(15)u⃗ ⋅ ∇C = qC C|inflow = 1

(16)∇u⃗ = q u⃗ = −K∇p in, 𝛺 ∈ ℝ
d

(17)∫
𝜕𝛺i

u⃗⋅n⃗ds = ∫
𝛺i

qdx⃗

face �i,c as half face of the grid cell �i that associates with the 
normal vector n⃗i,c , and we can write as follows:

Since the grids are assumed matching, the half face �i,c 
has his twin �i,c and the area Ai,c = Ac.i , but n⃗i,c = −n⃗i,c oppo-
site normal vector. Now, using Darcy’s law and the mid-point 
approximation, we can derive the flux as:

where x⃗i,c is the centroid on �i,c . Using the finite volume 
method makes us assume that the pressure is linear or con-
stant inside each cell because finite volume discretization 
is the approximation of the average quantities inside cells; 
then, we get:

We can see in this last equation the introduction of Ti,c 
which is one-side transmissibility or half transmissibility that 
links the flux across a cell precisely between the cell center 
and the edge. Finally, let us apply the flux continuity through 
all faces as follows.

ui,c = −uc,i = uic also the continuity of the pressure of edge 
faces �i,c = �c,i = �ic . Then, we get:

When we remove the interface �ic , we get the two-point flux 
approximation (TPFA)

Here, Tic is the transmissibility between both cells ( �i , �c ). 
TPFA is a method that uses the average pressure of two cells 
through an interface to approximate the flux across those 
cells. To conclude, we clearly see that TPFA satisfies the 
equation ∇ ⋅ u⃗ = q as follows:

TPFA of time of flight and tracer equations

By combining the time of flight and tracer equations, we can 
write the flow transport equation (Lie 2016):

(18)ui,c = ∫
𝛤i,c

u⃗ ⋅ n⃗ds, with 𝛤i,c = 𝜕(𝛺i ∩𝛺c)

(19)ui,c = Ai,cu⃗(x⃗i,c) ⋅ n⃗i,c = −Ai,c(K∇p)(x⃗i,c) ⋅ n⃗i,c

(20)ui,c = Ai,cKi

(pi − 𝜋i)b⃗i,c

|||b⃗i,c
|||
2

= Ti,c(pi − 𝜋i)

(21)T−1
i,c
uic = pi − �ic; − T−1

c,i
uic = pc − �ic

(22)uic =
[
T−1
i,c

+ T−1
c,i

]−1
(pi − pc) = Tic(pi − pc)

(23)
∑
c

Tic(pi − pc) = qi ∀�i ∈ �

(24)∇ ⋅ (vu⃗) = h(u⃗, v)
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Here ,  v = 𝜏, h = h = 𝜙 + 𝜏∇u⃗  ( t ime  o f  f l igh t ) , 
v = C, h = qC + C∇u⃗ (tracer). We can then start to discre-
tize our steady-state flow transport equation by applying the 
Gauss divergence theorem over a grid cell �i.

In the TPFA section, we described the discretization of an 
interface flux �ic between �i and �c with v ≡ 1 . In this case, 
we can find an approximation value of vic on �ic to write the 
interface flux as follows:

For the reason of scheme stability avoiding oscillations, 
we need to define the upwind value of vic

Then, we can end the discretization by writing the dis-
crete form of Eq. (24)

By expressing (v) for each face f  using Eq. (17) with f 
f ∈ Sf , we get:

Flow diagnostics impact of dynamic 
heterogeneity on flooding sweep

One of the best ways to characterize a reservoir rock 
capacity to store and transmit fluids goes through the 
deep investigation of its intrinsic properties. Heterogene-
ity developed by Shook and Mitchell 2009 is the variety of 
constituent particles encountered in porous rock. In other 

(25)∫
𝜕𝛺i

u⃗v ⋅ n⃗ds = ∫⃗
ui

h(x⃗, v(x⃗))dx⃗

(26)∫
𝛤 ic

u⃗v ⋅ n⃗ds = vicuic

(27)vic =

{
vi, if vij ≥ 0

vc otherwise

(28)div(vu) = h(v)

(29)

(vu)[f ] = vvw[f ]grad(P)[f ]

with, (vu)[f ] =

{
v[N1(f )], if grad(p) > 0

v[N2(f )], otherwise

words, it is the property that defines the reservoir rock per-
meability and porosity. Studies on the measure of hetero-
geneity have converged on two models. The first static het-
erogeneity is all about the rock storage and transmissibility 
distribution of fluid. Therefore, high static heterogeneity 
may conduct to a rock good capacity to store and trans-
mit fluid. On the other hand, the dynamic heterogeneity 
focuses on the measurement of interconnected void space. 
It describes fluid motion and flow-path connections, thus, 
a high dynamic heterogeneity may cause a large residence 
time (time a particle takes to travel from an injector well 
to a producer well) value.

The measure of dynamic heterogeneity is described 
by the reservoir flow capacity and storage capacity dia-
gram precisely, and it is expressed by the computation of 
the residence time (sum of backward and forward time of 
flight). This method has appeared for decades in reservoir 
engineering, but recently used and upgraded by (Lie 2016). 
The theory consists to consider the reservoir as a collec-
tion of N permeable stream-tube layers. Each layer has no 
volumetric communication with others; for a flow rate qi , a 
volume Vi , we can define a residence time �i = Vi∕qi . Lay-
ers are arranged to make their residence time being ascend-
ing, �1 ≤ �2 ≤ �3 ⋯ ≤ �N , and we assume the displacement 
within every layer piston types. We can describe the nor-
malized storage capacity �i and flow capacity Fi as follows.

where �i represents the portion of stream-tube layers 
which have broken through at the residence time �i , and Fi 
describes the corresponding volumetric flow portion, and 
it represents the fraction of the produced injected fluid. We 
can plot these both data �i and Fi to get the flow capacity and 
storage capacity F–ϕ diagram (Fig. 1).

The left plot represents the volume Vi , plotted as a func-
tion of the flow rate qi ; the blue curve describes a hetero-
geneous fluid motion and the green shows a homogeneous 
displacement. On the other hand, the right plot presents the 
F–ϕ diagrams, where the flow rate and volume have been 
normalized.

(30)�i =

i∑
j=1

Vj∕

N∑
j=1

Vj Fi =

i∑
j=1

qj∕

N∑
j=1

qj

Fig. 1   F–ϕ diagram construc-
tion
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Lorenz coefficient

The characterization of fluid motion between injection and 
production wells highly implies a perfect knowledge of res-
ervoir dynamic heterogeneity. Used to approximate how 
much reservoir oil volume can be displaced and extracted 
from the oilfield. However, the Lorenz coefficient is one of 
the most popular measures of dynamic heterogeneity, cal-
culated from the F–ϕ diagram. It is the difference in flow 
capacity from which a piston-type displacement has been 
applied, defined as follows (Fig. 2).

Graphically, the Lorenz coefficient is two times the area 
bounded by the F (ϕ) curve (blue) and the F = ϕ line (green) 
and has a value from (0) to (1). A Lorenz coefficient of 0 falls 

(31)Lc = 2

1

∫
0

(F(�) −�)d�

along the F = ϕ line; green line describes a homogenous fluid 
motion with an equal volumetric displacement front, and the 
breakthroughs occur at the same residence times 100% sweep. 
A value of (1) describes an infinitely heterogeneous fluid 
motion blue line on the F–ϕ diagram, and the breakthroughs 
occur at different residence times and lead to stagnant regions.

Flow diagnostics on case studies: SPE9 
(Killough 1995) and ZHNBA China oilfield

SPE9 case study

SPE9 reservoir model setup

Here, the reservoir setup consists of eight wells in total, 
six producers and two injectors forming a repetitive well 

Fig. 2   Graphical definition of Lorenz coefficient, the gray area

Fig. 3   Left—the plot of the inhomogeneous and anisotropic SPE9 grids permeability; the vertical distribution represents the 1/10th of the hori-
zontal values plotted using a log10 transform for a better contrast view and right—the multi-layers porosity

Fig. 4   SPE9 wells setup plots on the reservoir grids permeability and 
porosity distribution
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five spots scheme. All wells are controlled by flow rate, for 
the producers we set 70 m3∕day and injectors 280 m3∕day . 
We consider our reservoir initially filled with oil and no 
active aquifer; then, we set the initial single fluid with 
the following parameters, � = 1 cP and � = 1014 Kg/m3 
(Figs. 3 and 4).

SPE9 dynamic heterogeneity and sweep efficiency

After getting the flow field we need for diagnostics, we can 
compute the F–ϕ quantities and plot the diagram F versus 
ϕ heterogeneity developed by Shook and Mitchell 2009 to 
get the dynamic heterogeneity expression. We note that for 
a homogeneous displacement, the F–ϕ gives a straight line; 
all flow paths breakthrough at the same time and gives a 
Lorenz coefficient of value zero. On the other hand, for a 
heterogeneous flow motion, F–ϕ plot gives a concave curve 
with the steep initial slope that denotes the high flow regions 

giving early breakthrough and the flat regions that corre-
spond to the low flow or stagnant regions where there is a 
breakthrough delay. The Lorenz coefficient takes the values 
nonzero to one. In the case of SPE9, the Lorenz coefficient 
is equal to 0.5340. Stepping further, we can define the sweep 
efficiency diagram which is the measure of the injected fluid 
volumetric effectiveness. It is the ratio of oil contracted by 
water at a time (t) and an infinite time (Fig. 5).

SPE9 flow model and volumetric connections

The sum of the backward and forward time of flight gives 
the residence time, which is the total travel time of particle 
from an injector well to a producer. This quantity is used to 
determine high flow zones with small residence time and 
low flow or stagnant zones with high residence time. The 
next step of this part after computing the time of flight is 
the study of the reservoir volumetric sweep. The addition of 

Fig. 5   Left—the SPE9 F versus ϕ curve and right—the sweep efficiency curve

Fig. 6   SPE9 forward (left), backward (right) time of flight and the residence time (extreme right)
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injector tracers gives the flooded regions, also amassing the 
majority of the vote overall tracers, we determine that I2 is 
the injector that contributes the most (Figs. 6 and 7).

By associating all producer tracers, we can determine 
the drainage regions, and using the majority of the vote, 
we determine that P6 is the producer that contributes the 
most. In addition by combining the flood and the drainage 
regions, we get the well pair regions. Finally, after studying 
the drainage and tracer partitions, we can get well pairs and 
compute the pore volume of regions that are linked with 
them (Fig. 8).

ZHNBA China oilfield case study

ZHNBA reservoir model setup

Here, the reservoir setup consists of eleven wells, eight 
producers and three injectors forming a repetitive well five 
spots scheme. All wells are controlled by flow rate, for the 
producers we set 100 m3∕day and injectors 175 m3∕day . We 
consider the reservoir initially filled with oil and no active 
aquifer; then, we set the initial single fluid with the fol-
lowing parameters, � = 1 cP and � = 1014 Kg/m3 . Before 

Fig. 7   SPE9 volumetric tracers from I1 and I2 sweep regions and flooded regions (extreme right)

Fig. 8   SPE9 drainage region (left), well pair regions (right) and well pairs (extreme right)

Fig. 9   ZHNBA whole grid model (left) and active model (right)
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going straight to the computation of rock properties, we 
first inspect the whole model. We plot the model outlines 
and identify all faults in red color. Then, we distinguish the 
active and the inactive reservoir zones. We can see the active 
part appearing in yellow; we create a new unstructured grid 
with a non-active part removed. This active model is the 
basic grid structure we will use for our study (Fig. 9).

Then, we can compute and plot the rock properties, 
porosity, permeability and wells (Fig. 10).

ZHNBA measure of dynamic heterogeneity and sweep 
efficiency

We start our flow diagnostics study by computing the F–ϕ 
diagram for the measure of dynamic heterogeneity, and 

Fig. 10   ZHNBA porosity, permeability and well models

Fig. 11   ZHNBA F versus ϕ curve (left) and the sweep efficiency curve (right)

Fig. 12   ZHNBA flooded volumes (left), drainage volume-refined partition well regions and well pairs (extreme right)
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we get the Lorenz coefficient evaluation. From the Lorenz 
coefficient computation, we get Lc = 0.6623 ; this shows 
that ZHNBA is a highly heterogeneous reservoir (Fig. 11).

ZHNBA flow model and volumetric connections

We compute the sweep region to distinguish the zones in 
the reservoir which are going to be affected by the injector 
wells. After identifying the sweep regions, we can compute 
the drainage to see the zones which are going to be affected 
by each producer well. We refine partitions by using major-
ity vote to get the sweep and drainage region interactions, 
and we blend in gray, the zones influenced by a sweep and 
drainage combined. Also, we compute the well pairs which 
are the connection between each injection, tracer partitions 
and pore volumes of regions associated (Fig. 12).

Waterflooding optimization models

Generally, the way to optimize waterflooding requires math-
ematical methods with several forward simulations; these 
kind of full and rigorous simulations are costly. Here in this 
work, we will first present a framework that can be used as 
a waterflooding optimization proxy. Then secondly, we will 
optimize the wells flow rate by using flow diagnostics inter-
active tools. The idea behind the first method is to use flow 
diagnostics to design a simple and lightweight algorithm 
easy to implement for waterflooding optimization. On the 
other hand, the second method is based on the instant TOF 
snapshot studying. Here, we will see how flow diagnostics 
with low-cost tools can iteratively improve water injection 
configurations.

Optimization by using the objective function

In this part inspired by Møyner et al. 2015, our reservoir 
model is based on the flow field and time of flight (TOF); in 
the aim to derive a full discretization, we write all the model 
equations in the residual form:

In the above equation, we have the time of flight ( � ), Dar-
cy’s velocity ( ⃗u ) and the pressure ( p ) as unknown. The full 
flow diagnostics is practically one part based on forward and 
backward time of flight equations; the other part on tracer 
equations, but in this work, we will precisely examine the 
forward time of flight equation and simply consider the treat-
ment of the tracer equations as it is analogous.

(32)
p(q, u⃗) = ∇ × u⃗ − q = 0

v(p, u⃗) = u⃗ + k𝜆∇p = 0

T(𝜏, u⃗) = u⃗ × ∇𝜏 − 𝜙 = 0

To create fluid motion within the reservoir, we set nbh 
wells to operate with bottom hole pressure (bhp) and nr wells 
operate with rate; from there, we can assume nw = nbh + nr 
been the total wells having npf perforations. Our well model 
is constructed following the Peaceman standard well model 
per perforated cell; we will have to define the well-perfo-
rated fluxes qpf and the bottom hole pressure pbh , and we let 
nw(j) being the well index of perforation j . npf(k) represents 
the indices of perforations of well k , and wj

pf
 represents the 

Peaceman well index belongings to perforation j ; finally, we 
can define the well model through the following equation for 
each perforated cell

We need to give precision for each pressure and rate con-
trolled wells

Furthermore, to continue our waterflooding optimiza-
tion, we need to discretize the Lorenz coefficient equation 
using the standard two-point flux approximation with the 
aim to get a reservoir simulation model. Herein, the con-
tinuous expression of pressure p and the time of flight � 
are changed by vectors p and τ which with their values 
determined in the center of each cell, and u⃗ is replaced by 
the vector fluxes across all cell faces u. Then, p(q, u⃗) = 0 
becomes Ph(�,�) = 0 , with Ph the expression of the discre-
tized system. Since in this work, we will only work with the 
discretized fluid flow equations; we can drop h on the Ph , and 
then we can introduce the discrete model equations as rep-
resentation of an implicit system which has his linearization 
coming from the Newton linearized system. Our system will 
not be constructed explicitly because the pressure and time 
of flight equations are linked and will be solved sequentially; 
the system is written as follows:

Our approach to obtain an optimal water injection is 
based on the conception of getting an ideal piston-like dis-
placement that carries us to deeply focus or observe the 
Lorenz heterogeneity coefficient. The Lorenz coefficient 
highlights the fluid flow capacity and storage capacity based 
on piston-like fluid motion; this makes us considering the 

(33)
Qj(qpf, pbh, p) = q

j

pf
− wi

pf
�[p

nw(j)

bh
− p] = 0

j = 1,… , npf

(34)
cbh = uk

bh
− pk

bh
= 0 cr = uk

r
−

∑
j∈npf(k)

q
j

pf
= 0

k = 1,… , nbh k = nbh + 1,… , nw

(35)

⎡⎢⎢⎢⎢⎢⎣

0 �uP �qP 0 0

�PV �uV 0 0 0

�PQ 0 �qQ �PbhQ 0

0 0 �qC �PbhC 0

0 �uT 0 0 ��T

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�p

�u

�q

�pbh
��

⎤
⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎣

P(q, u)

V(p, u)

Q(p, q, pbh)

C(q, pbh)

T(u, �)

⎤⎥⎥⎥⎥⎥⎦



953Journal of Petroleum Exploration and Production Technology (2020) 10:943–957	

1 3

optimized Lorenz coefficient as our objective function to 
improve waterflooding performance. Herein, the optimized 
Lorenz coefficient will seek to equalize the total travel time 
through the standard two-point flux approximation in all 
cells and then improve the sweep.

Solution strategy and rate optimization

To optimize waterflooding by using the equalized Lorenz 
coefficient, we need to focus down on the time of flight and 
tracers; in particular, we need to solve Eq. (35) and compute 
the objective function gradient. To this hand, we can start 
by assuming that we have zero pressure and fluxes because 
all equations are linear and no iterations are required. We 
design our solution to aim with the minimum computational 
workload by solving Eq. (35) in sub-steps. We first assemble 
the pressure equation and solve it, and then set that the total 
mobility � in Eq. (32) is constant; then, the following linear 
system after using the two-point flux approximation for the 
spatial discretization is obtained as follows:

The next step after all fluxes computed is the time of 
flight equations become linear, and then we set �0 = 0 but 
knowing from Eq. (35) that � = �� , we can get the following 
simplification

Following the same steps, expression (37) can be 
extended to tracers if required. When we finish with the 
computation of all forward equations, we then start looking 
for the objective function gradient, and to carry this inves-
tigation, we can use two ways, applying a numerical differ-
entiation or adjoint method.

In this work, we use the adjoint method although its appli-
cation requires alteration of the model equations; it is more 
efficient than a numerical differentiation which is simple 
to implement and non-intrusive but can be computationally 
costly because all forward equations need to be solved on 
each perturbation.

We begin the adjoint model by introducing the equations 
derivation tool the stacked vector of solution quantities 
×T = (pT, uT, �T, qT, pT

bh
) ; here, each value depends on the 

control w which is the target value of BHP or target rate of 
each well as expressed by Eqs. (34). Our objective function 
is formulated as follows: G[×(w)] and stands as a function 
for solution equation quantities. The target here is to find a 
set of constraints g[×(w),w] = 0 that represent the reservoir 

(36)

⎡⎢⎢⎢⎢⎣

0 �uP �qP 0

�pV �uV 0 0

�pQ 0 �qQ �pbhQ

0 0 �qC �pbhC

⎤
⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

p

u

q

pbh

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎦

(37)��T� = �

model equation based on Eqs. (32) and (34). To this hand, 
we define the Lagrange function to describe our problem 
function that has the similitude values with our objective 
function and written as:

Since we aim to find our objective function derivative, we 
can differentiate to get:

The simplification of the last equation can be done by 
elimination of all terms which contain d×

dw
 and defining (solv-

ing) � by the adjoint equation:

We can furthermore simplify if we consider a state x that 
makes g[×(w),w] = 0 , and then we get:

Going deeply, our objective function will not depend on 
the control w exclusively but on state variable x ; in particu-
lar, the term �G

�w
 can disappear. We can conclude this solu-

tion strategy study by highlighting the most important steps 
which are first, solving the forward system Eq. (35) using 
the block-wise approach explained previously to get state 
variables and upwind directions, and secondly solving the 
backward problem Eq. (40) with the same approach to get 
the objective function sensitivities.

After designing our equations solutions, we set a pathway 
to optimize well rates by using the steepest descent algo-
rithm to get an optimal control; herein, our rate optimization 
experiment is assimilated to the control variable w which 
precisely represents well rates. In our approach production 
wells are not designed to become injectors and vice versa, 
also the injection rate is kept constant. All these require-
ments are sustained by the following equation:

Here, � represent the step size. Our target in the last equa-
tion is to describe a stationary point in the aim to get the 
gradient equal zero. To switch our rate optimization, we pro-
ceed iteration in the steepest descent algorithm to evaluate 
the objective function for the update controls; in the case 
we have no improvement, we reduce the step size � until 
we get an improvement. When the projected gradient small 
enough and the objective function improvement between 

(38)G� = G[×(w),w] + �Tg[×(w),w]

(39)
dG�

dw
=

�G

�w
+

(
�G

�×
+ �T

�g

�×

)
d×

dw
+ �T

�g

�w
+ gT

d�

dw

(40)
(
�g

�×

)T

� = JT� = −
(
�G

�×

)T

(41)dG�

dw
=

�G

�w
+ �T

�g

�w

(42)w ← w − p
(
�
dG�

dw

)T
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two iterations is smaller than the prescribed tolerance, the 
algorithm stops.

Application on SPE9

We first define the objective function which is computed 
based on the grid cells, the rock properties (permeability 
and porosity) and the equalized Lorenz coefficient. Then, 
we deduct the minimum rate for each cell and launch the 
algorithm that targets to improve the time of flight and trac-
ers, and the waterflooding well rate (Fig. 13).

We compute the optimized Lorenz coefficient and plot 
the new F–� diagram and the reservoir sweep efficiency 
(Fig. 14).

In Tables 1 and 2, we observe the initial and the opti-
mized well configuration. Here, we can clearly notice the 
change in injector rate which in the optimized well configu-
ration appeared with their optimal values. We convert these 
values from the flow field unity to cubic meter per day and 
put them in a table with the initial and optimized Lorenz 
coefficient (Table 3).

Fig. 13   SPE9 flooding rate optimization objective function and optimized time of flight

Fig. 14   SPE9 optimized storage/capacity and sweep efficiency dia-
grams

Table 1   SPE9 initial well 
configurations ‘I1’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 0.003241 ‘rate’

‘I2’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 0.003241 ‘rate’
‘P1’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P2’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P3’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P4’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P5’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P6’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
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Optimization by using the interactive flow 
diagnostic tools

The interactive flow diagnostic tools are powerful visu-
alization routines provide by MATLAB and MRST (Lie 
2016) to make the user interacting with the input param-
eters and simulate the results. These tools are particularly 
differenced with the objective function on the control abil-
ity, and they give access through the input screen. Using 
the interactive tools is controlling the flow diagnostics 
basic quantities, the backward and forward time of flight 
and tracers, having the option of plotting the Lorenz coef-
ficient, sweep efficient and more. The flow diagnostics 
quantities which govern the interactive are computed fol-
lowing the standard two-point flux approximation-based 
finite volume discretization.

Study of volumetric sweep displacement front 
snapshot

Optimizing waterflooding using the interactive tool is look-
ing for the harmonization of water breakthrough in produc-
tion wells. It is searching for a suitable well control con-
figuration to improve the volumetric sweep through manual 
modifications. The first step in this method is to investigate 
the fluid displacement front propagation when the flow 
field control values are kept constant. In the reservoir, 
the displacement front moves following Darcy’s velocity 
obtained from the flux field; then, swept region at a time 
t  is assimilated to grid cells where �f ≤ t . The idea behind 
on the one hand is to study every sweep displacement front 
steps and notifying different breakthrough, and on the other 
hand, investigating the drainage instant displacement then, 

Table 2   SPE9 optimized well 
configurations ‘I1’ 15 ×  1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 7.96E−09 ‘rate’

‘I2’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 0.006481 ‘rate’
‘P1’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P2’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P3’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P4’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P5’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’
‘P6’ 15 × 1 double 15 × 1 double 15 × 1 double 15 × 1 char 0.1 − 0.00081 ‘rate’

Table 3   SPE9 initial and 
optimal Lorenz and rate values

I1 I2 P1 P2 P3 P4 P5 P6 Lorenz coefficient

Initial 280 280 70 70 70 70 70 70 0.5340
Optimized 6.9647e−04 568.7500 70 70 70 70 70 70 0.3328

Fig. 15   ZHNBA flow diagnostic interactive tools
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modifying the well controls in the aim to decrease the Lor-
enz coefficient value.

Application on ZHNBA China oilfield

Before starting the waterflooding optimization process, we 
first launch the calling algorithm of our flow diagnostic 
interactive tools named GUI, and it appears with its input 
control screen and plot compartment showing our reservoir 
model (Fig. 15).

We start the waterflooding optimization experiment 
by watching every displacement front snapshot of flood-
ing volumes based on residence time flow from injection 
wells. We set as base case our ZHNBA initial setup; all 
eleven wells are controlled by rate as follows: the three 
injectors 175 m3∕day and producers 100 m3∕day . We run 
the base case injectors displacement front simulation to 
notify early breakthroughs in producer wells; then, we 

rank and optimize the injection well rates in the aim to 
equalize all producer breakthroughs. In our flow experi-
ment study at the base case, the producers ranking break-
through is identified as follows (Fig. 16):

•	 The producer P6 records the earliest water breakthrough 
from the injector I1

•	 Following by the producers, P8 and P7 get their break-
through from I3

•	 The remaining producer water breakthroughs are consid-
ered as late; then, they are not recorded including those 
coming from the injector I2.

From this flow experiment, we can elaborate our water-
flooding optimization strategy to harmonize the producer 
breakthroughs, and then decreasing the Lorenz coefficient 
and optimizing the sweep. To this hand, we first increase 
the rate of I2 from 175 to 250 m3∕day keeping the other 
well rates at the base case setup. We run the flow diagnos-
tics simulation and compute the Lorenz coefficient which is 
decreasing; we call this step case one. Case 2: we increase 
again all the injector rates; we assign I1 to 200 m3∕day , I2 
to 300 m3∕day and I3 to 200 m3∕day ; we run the simulation 
and compute the Lorenz coefficient. Then, we restart the 
same process for the last time in case 3; we increase the rate 
of injector I1 to 210 m3∕day and injector I3 to 250 m3∕day ; 
we run the simulation and compute the Lorenz coefficient. 
We end the optimization process by plotting all flow capac-
ity and storage capacity diagrams and arranging in a table 
the injector wells optimal rates (Table 4 and Fig. 17).

Fig. 16   ZHNBA flood volume breakthrough in producer wells

Table 4   ZHNBA flooding rate 
optimization experiment

I1 I2 I3 P1 P2 P3 P4 P5 P6 P7 P8 Lorenz-C

Base case 175 175 175 100 100 100 100 100 100 100 100 0.6623
Case 1 175 250 175 100 100 100 100 100 100 100 100 0.5763
Case 2 200 300 200 100 100 100 100 100 100 100 100 0.4930
Case 3 210 300 250 100 100 100 100 100 100 100 100 0.4590

Fig. 17   ZHNBA optimized F–ϕ curves
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Conclusion and summary

Waterflooding is one of the best methods used to improve 
oil recovery and has sown its efficiency in many applica-
tions. However, herein, we have presented a pathway to 
improve its performance using finite volume discretization-
based flow diagnostics simulation. By drawing its sweep 
efficiency improvement scheme based on the optimization 
of the dynamic heterogeneity Lorenz coefficient, we harmo-
nized the flooding breakthroughs. Designing a waterflooding 
optimization performance framework using flow diagnos-
tics-based finite volume method is having the reservoir flow 
quantities fluxes computed on volumetric average portion-
ing. In this work, the finite volume discretization showed 
its perfect ability to handle both Cartesian and unstructured 
grids, when flow diagnostic tools deepen our understanding 
of reservoir flow characterization summarized in two parts: 
firstly, the solution of the incompressible steady-state flow 
equation through the standard two-point flux approxima-
tion to get the fluid bulk motion. Secondly, the solution of 
the mixture time of flight and tracer equations to split the 
reservoir into volumetric flow and describing the flow path 
regions.
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