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Abstract
Wavelet holds an essential role in seismic data processing and characterization, for examples deconvolution and seismic inver-
sion. Unfortunately, wavelet is an unknown data. Several existing methods attempt to estimate and extract the wavelet from 
seismic data. However, the methods give only a single wavelet from one seismic trace. When seismic data are non-stationer, 
single wavelet usage will cause a problem, that is raising the error. This paper proposes a time-varying wavelet estimation 
method to accommodate this problem. It uses matrix diagonalization to estimate a set of wavelets. Next, the time-varying 
wavelet is applied to deconvolution and seismic inversion. The experiment shows that time-varying wavelet improves the 
results in both deconvolution and seismic inversion. The errors decreased and spectrum bandwidth broadened.
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Introduction

Wavelet estimation holds an important process in seismic 
processing and inversion. Several methods were proposed 
to obtain the best-estimated wavelet (Ricker 1953; Walden 
and White 1998; Cui and Margrave 2014). In the prior pub-
lications, seismic frequency analysis is required to extract 
a wavelet because seismic spectrum represents the wave-
let spectrum. The simple method of wavelet estimation is 
by using the mathematical equation, for example, Ricker’s 
wavelet (Ricker 1953) and bandpass or Ormsby wavelet 
(Ryan 1994) equations. However, these methods achieve a 
good result when the shape of seismic spectrum is similar 
to the mathematical wavelet spectrum. Besides the math-
ematical equation, there are wide-known methods: statis-
tical wavelet estimation and spectral smoothing (Cui and 
Margrave 2014). These two methods are more flexible to 
any seismic conditions.

All listed wavelet estimation methods above are aimed 
for a stationary signal. In reality, our seismic data are non-
stationary. When the seismic data are non-stationary, the 

explained methods will produce the most optimum single 
wavelet. This single wavelet may have no negative effect on 
the next processing stage if the non-stationarity of the signal 
is weak. However, if the non-stationarity is strong enough, it 
may cause several problems, for example, the raise of higher 
error in the next processing stage. Prior researches in time-
varying wavelets were published to solve this problem, espe-
cially in deconvolution, either explicitly (van der Baan 2008) 
or implicitly (Clarke 1968; Margrave et al. 2011). In this 
paper, it will be introduced a proposed method of wavelet 
estimation in the time domain. This method estimates a set 
of wavelets which varies over time. Therefore, it can com-
pensate for the non-stationarity of the signal. Moreover, it 
will be explained applications of this proposed method not 
only in deconvolution but also in seismic inversion.

Theory and methods

Square root of a matrix

Given m × m square matrices � and � where

Then, � is called the square root of � . To get � is not as 
directly as by taking a square root of the matrix elements of � . 
There is a method which uses matrix diagonalization to extract 
� when � is the only known information (Levinger 1980).
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If � is diagonalizable, then

where matrix � is the diagonalized matrix � . � is composed 
by eigenvalues, while � by eigenvectors. This process can be 
computed if and only if the eigenvectors are linearly inde-
pendent. The concept of matrix square root is based on sim-
pleness to take the square root of the diagonal matrix. Since 
diagonalized � is known, diagonalized � can be derived by 
taking the square root of the elements of diagonalized � . 
Then, � can be reconstructed by

Time‑varying wavelet estimation

There is a method of wavelet estimation from signal s(t) 
which uses autocorrelation in its process,

This method attempts to reconstruct the form of the wave-
let (Hampson-Russel Software 1999; Cui and Margrave 
2014). However, although signal A(t) resembles zero-phase 
wavelet (Fig. 1c, d), it may not be considered as a wavelet. 
The autocorrelation process in Eq. 4 makes the spectrum of 
A(t) to be quadratic form,

To solve this problem, we can take the square root of the 
spectrum (Hampson-Russel Software 1999). Similar to this 
method, we can run the process entirely in the time domain 
by using matrix operation. Autocorrelation, as shown in 
Eq. 4, can be represented in matrix operation as

(2)�−1�� = �

(3)� ≡ ��1∕2�−1

(4)A(t) = s(t)⊗ s(t) =

∞

∫
−∞

s(t)s(t + 𝜏)d𝜏.

(5)|A(f )| = |s(f )||s(f )| = |s(f )|2

where � is the result of autocorrelation of � and � is moving 
matrix of s(t) in the form,

We make an assumption that autocorrelation of the signal 
will approximate the result of autocorrelation of its wavelet, 
as shown in Fig. 1c and d. This assumption is expressed by

where � is moving matrix of a wavelet.
The autocorrelation process will always result in zero-

phase signal, and it does not depend on the input’s phase. 
Therefore, the phase of the signal that is contained in matrix 
� in Eq. 8 is zero phase. To obtain � from � , we have to 
take another assumption that � is composed by zero-phase 
wavelet. By taking this assumption, � becomes a symmetric 
matrix that follows

where now � is moving matrix of a zero-phase wavelet in 
the form

(6)� = ��T

(7)� =

⎡
⎢⎢⎢⎢⎢⎣

s(0) 0 ⋯ 0 0

s(1) s(0) ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

s(N − 1) s(N − 2) ⋯ s(0) 0

s(N) s(N − 1) ⋯ s(1) s(0)

⎤
⎥⎥⎥⎥⎥⎦

(8)� = ��T ≡ ��T

(9)� = �T

(10)� =

⎡
⎢⎢⎢⎢⎢⎣

w(0) w(1) ⋯ w(N − 1) w(N)

w(1) w(0) ⋯ w(N − 2) w(N − 1)

⋮ ⋮ ⋱ ⋮ ⋮

w(N − 1) w(N − 2) ⋯ w(0) 0

w(N) w(N − 1) ⋯ w(1) w(0)

⎤
⎥⎥⎥⎥⎥⎦

.

Fig. 1  Comparison between 
wavelet, seismogram, and their 
autocorrelation results in the 
time domain. a Wavelet, b 
seismogram, c autocorrelation 
of the wavelet, and d autocor-
relation of seismogram tapered 
by the Gaussian window
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Based on the matrix’s properties in Eq. 9, Eq. 8 can be modi-
fied to be

It can be seen that � is the square root of � , so � is 
obtained directly by

where � is diagonalized matrix of � . To render matrix � to 
W(t) , the following equation will be used

where m is the size of � and ⌈⌉ is ceiling function.

Time‑varying wavelet estimation

The concept of Short-Time Fourier Transform (Schafer 
and Rabiner 1973; Allen 1977) is adapted to estimate time-
varying wavelet. This method divides the input signal into 
several parts,

where T(t) is the input signal, s(t, �) is the short term of T(t) , 
and x(t − �) is the shifted window. Next, each s(t, �) will be 
processed as an independent signal. The time-varying wave-
lets are estimated by autocorrelating s(t, �) , so

In this step, we can adjust our desired wavelet length by 
determining the length (or time lag) of A(t, �) . After wavelet 
length has been adjusted, the process can be followed by 
estimating the wavelet. By transforming A(t, �) to be mov-
ing matrix A , the methods in Eqs. 12 and 13 can be applied 
to A in order to estimate W . If the input signal bears noise 
(additive random or band-limited), we can apply taper to 
the A(t, �) . Application of taper window has beneficial to 
suppress the presence of noise in estimated wavelet. We can 
obtain W(t, �) , the estimated wavelet each time, by using 
Eq. 13. Then, the time-varying wavelets matrix is composed 
by arranging W(t, �) according to time.

Time‑varying wavelet’s applications

Time-varying deconvolution For time-varying deconvolu-
tion, a time-varying wavelet is aimed to build deconvolu-
tion operators, so we do not need to have wavelet’s phase 
information. The deconvolution operators are intended to 
transform the wavelets to be spike series (represented by 
identity matrix). It is defined as

(11)� ≡ ��.

(12)� ≡ ��1∕2�−1

(13)W(t) = ��,� =
{
cj
}
, cj =

{
0, j ≠ m∕2

1, j = m∕2

(14)s(�, t) = T(t)x(t − �)

(15)A(t, 𝜏) = s(𝜏, t)⊗ s(𝜏, t)

(16)WO = I

where O is the matrix of time-varying deconvolution opera-
tors and I is an identity matrix. In the case the signal has 
additive random noise, Eq. 16 can be modified to be

This modification of Eq. 17 is adapted from Wiener 
Deconvolution (Wiener 1949). Based on Eq. 17, the decon-
volution is obtained by using least-square inversion,

where � is pre-whitening.
Pre-whitening is the key factor to determine how smooth the 

result of deconvolution will be and handle the random noise. 
Higher pre-whitening indicates a smoother result. Smaller � 
may enhance the resolution of the signal better, but as a con-
sequence, it can enhance the noise. Lastly, time-varying decon-
volution is matrix multiplication between deconvolution opera-
tors and the signal in matrix form which is given by

where T is a column matrix of the original input signal and 
T  is a column matrix of the enhanced (or deconvolved) sig-
nal. As explained above, both W and I contain no phase 
information (or we can say it as zero phase). As a conse-
quence, the deconvolution operators, represented by matrix 
O , are zero-phase signals and the deconvolved signal’s phase 
will be unaltered after deconvolution.

Model-based inversion Model-based inversion is one of 
seismic inversion methods. This inversion results P-Imped-
ance as the final result. Model-based inversion is started 
from a low-frequency model. Then, the model is perturbed 
each iteration to get the final inversion result. The process 
of model-based inversion is based on a mathematical model 
in the following equation (Hampson-Russel Software 1999; 
Hampson et al. 2005),

or it can be written in the equation form,

where � is seismic trace, � is a wavelet matrix, and � is the 
natural logarithm of P-Impedance. Equation (21) is the case 
of under-determined in linear inversion. Therefore, to get 
P-Impedance, we can apply least-square inversion for the 
under-determined case,

(17)(WW)O = WI

(18)O =
[(
WW + �2I

)]−1
W.

(19)T = OT

(20)

⎡⎢⎢⎢⎢⎣

S0
S1
S2
⋮

SN

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

w0 w−1 w−2 ⋯ w−N

w1 w0 w−1 ⋱ w−(N−1)

w2 w1 w0 ⋱ w−(N−2)

⋮ ⋱ ⋱ ⋱ ⋮

wN wN−1 wN−2 ⋯ w0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−0.5 0.5 0 ⋯ 0

0 −0.5 0.5 ⋱ 0

0 0 −0.5 ⋱ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 0 ⋯ 0.5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

L0

L1

L2

⋮

LN

⎤⎥⎥⎥⎥⎦

(21)� = ���

(22)
�
i
= �

i−1 + ����
(
������ + ��

)−1
×
(
� −���

i−1

)
, i = 1, 2,… ,m
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where Li is model at i th iteration and m is a number of itera-
tion. Generally, it is used as a low-frequency model from 
well data as L0 . Equations 20–22 assume that wavelet does 
not change over time. To accommodate non-stationarity, we 
can replace matrix W to be a matrix of time-varying wavelet 
(denoted by W ), so

To estimate the wavelet phase, we can use phase correction 
by doing well to seismic tie (White and Simm 2003) or using 
statistical prediction (van der Baan 2008; Fomel and van der 
Baan 2014). Then, time-varying wavelet becomes,

(23)
�
i
= �

i−1 + ��
W

�
(
W���

W
� + ��

)−1
×
(
� −W��

i−1

)
, i = 1, 2,… ,m

where � is wavelet phase rotation and H(W) is Hilbert trans-
form of matrix W.

Results and discussion

I applied the proposed method to synthetic data to know its 
effectiveness in enhancing resolution. I generated a synthetic 
seismogram as an input data (Fig. 2, below) by convolving 
reflectivity series (Fig. 2, above) and time-varying Ricker’s 
wavelet. The wavelets were varied exponentially from peak 

(24)W ← W cos� +H(W) sin�

Fig. 2  Reflectivity series 
(above) and synthetic seismo-
gram (below) as input data

Fig. 3  Expected (left) and estimated (right) sets of time-varying wavelets
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frequency 40–15 Hz to construct non-stationary synthetic 
seismogram.

Firstly, I estimated time-varying wavelet (Fig. 3) from the 
input signal to acquire a set of time-variant deconvolution 
operators. Then, this operator was applied to the input signal 
to result in the enhanced signal. Figure 4 displays the abil-
ity of this method to enhance the non-stationary signal with 
� = 0.05 . In the time domain (Fig. 4, left), it can be seen 

that several events at deconvolved data are resolved after 
the deconvolution process. Simultaneously, time-varying 
deconvolution also broadens the signal’s bandwidth in the 
frequency domain (Fig. 4, right).

Figure 5 displays the correlation between the seismo-
gram and reflectivity series as the desired output. Reflec-
tivity series is filtered by low-pass filter 100 Hz to make 
analysis easier. It can be seen after deconvolution that the 

Fig. 4  Comparison between 
seismic trace before deconvolu-
tion (top left) and its spectrum 
(top right) and deconvolved 
seismogram (bottom right) and 
its spectrum (bottom right). Red 
line is the reflectivity series

Fig. 5  Cross plot between 
original seismogram and filtered 
reflectivity series (left) and 
deconvolved seismogram and 
filtered reflectivity series (right)

Fig. 6  Synthetic seismogram 
with additive noise
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data become less scatter from the straight line. The straight 
line is an indicator of the similarity between the result and 
the desired output. RMS error after deconvolution also 
decreases from 0.08 to 0.055. Moreover, the coefficient cor-
relation increases from 0.66 to 0.78.

In this paper, the time-varying deconvolution is also 
performed to noisy synthetic data (Fig. 6). The additive 
random noise is added to the seismogram. In advance of 
the deconvolution process, a bandpass filter is applied to 
the noisy seismogram to get the best deconvolution result. 
Figure 7 illustrates how noise can affect the deconvolution 
results. Moreover, Table 1 shows how quantitatively pre-
whitening affects error and coefficient correlation between 
the deconvolved seismogram and filtered reflectivity. The 
best pre-whitening depends on the noise. In this case, pre-
whitening 0.2 is the best choice because it results in high 
coefficient correlation even though the RMS error is not the 

Fig. 7  Comparison of the 
results of deconvolution with a 
λ = 0.1, b λ = 0.2, and c λ = 0.3

Table 1  Pre-whitening effect to RMS error and coefficient correlation

Pre-whitening, � RMS error Coeff. correlation

0.1 0.0616 0.7245
0.2 0.0643 0.7343
0.3 0.0665 0.7279

Fig. 8  Comparison between 
results of different deconvolu-
tion methods. Before decon-
volution (top), time-varying 
Wiener deconvolution (middle), 
and the proposed method (bot-
tom)
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least. In practice, validation with well data or corridor stack 
is required to decide the pre-whitening value to use.

As a comparison to the existing method, vertical resolu-
tion enhancement is selected by using time-varying Wiener 
deconvolution (TV-WD). TV-WD uses several windows 
and spiking deconvolution operators, which vary over time 
(Yilmaz 2001; van der Baan 2008). Figure 8 displays the 
comparison between the input signal, the deconvolved sig-
nal by using TV-WD, and the proposed method. TV-WD 
also performs enhancement in the non-stationary signal. 
However, the proposed approach results in a broader band-
width than TV-WD. Spiking deconvolution performs better 

if the wavelet is minimum-phase (Yilmaz 2001), while this 
research uses zero-phase wavelet.

Another application of time-varying wavelet is for seis-
mic inversion. In this paper, Model-based inversion is cho-
sen to analyze how time-varying wavelet influences acoustic 
impedance inversion. Figure 9 shows the inversion result if 
it uses one estimated wavelet, that is Ricker wavelet. From 
the result, there are several mispredicted inverted imped-
ance values, for example at 910 ms and 1180 ms. Figure 10 
displays how time-varying wavelet improves the inversion 
result. The impedance RMS error decreases from 345 to 
286 m/s*g/cc or about 17%. Moreover, the seismogram 
RMS error decreases significantly by approximately 81%. 

Fig. 9  Seismic inversion result 
by using single wavelet

Fig. 10  Seismic inversion result 
using time-varying wavelet
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Figure 11 also illustrates that time-varying inversion gives 
a less deviated result from straight line.

Conclusion

Square of a matrix by using matrix diagonalization could 
be used to estimate time-varying wavelets from a signal. 
This concept is based on wavelet estimation by using auto-
correlation. Time-varying wavelet can be applied in geo-
physical data processing for examples deconvolution and 
inversion. The time-varying wavelet is used to build a set of 
deconvolution operators to perform deconvolution. Then, 
the operators are applied to the input signal. As a result of 
deconvolution, this method enhances the non-stationer sig-
nal properly because the deconvolution operators change 
over time. Besides deconvolution, time-varying wavelets 
improve seismic inversion. A set of time-varying wavelet 
is used as a replacement of single wavelet in the inversion 
process. In the experiment, inversion error decreases by 
approximately 17%.
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