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Abstract
At least in the last 10 years, considerable effort has been given to studying the dynamics of fluid flow in porous media. The 
phenomena is widely applicable in many areas of science and engineering. In many cases, the effect of capillary pressure 
and discontinuities in the two-phase flow dynamics is not fully clear, especially in petroleum reservoirs. In this paper, we 
introduce a new method based on the Chebyshev wavelets collocation method and the so-called operational matrices of 
integration. The method was implemented specifically for an oil–water-phase flow in heterogeneous reservoir using different 
capillary pressure treatments. Convergence and accuracy of this method were established and used to simulate the partial 
differential equations governing the two-phase model. The method incorporates the various conditions of the complex gov-
erning equations as a single system. The system is subsequently reduced into a simple set of algebraic equations making 
the problem easier to solve. Numerical results showed that the method is able to account for the expected discontinuities 
occurring in the flow process. It was also found that these discontinuities or jumps in the two-phase flow are caused by the 
capillary pressure as expected physically.

Keywords Two-phase flow · Chebyshev wavelets · Operational matrices

Introduction

In the past decade, considerable effort has been made in 
studying the dynamics of fluid flow in porous media due 
to its applicability in many areas of science and engineer-
ing (Soulaine et al. 2013; Pasquier et al. 2017; Ahammad 
and Alam 2017), like hydrology, ground water remedia-
tion, membrane separation, polymer filtration, and oil and 
gas recovery from reservoirs (Epshteyn and Riviere 2006; 
Peaceman 1977; Zhong et al. 2013; Al-Rbeawi 2017). In 
petroleum reservoirs, the process is studied to predict their 
future performance and also optimize recovery processes in 
the reservoirs (Ahammad and Alam 2017; Begum 2009). 
This has led to the modification and proposition of models 
and methods for numerical reservoir simulation. According 
to Ewing (1983), reservoir simulation is a standard tool for 

predicting the flow of fluids through porous media under 
various operating conditions.

Oil industries, for instance, are interested in improving 
numerical methods to simulate the recovery of oil to exploit 
the reservoirs in an optimal way (Pasquier et al. 2017). 
Fluids such as water or gas are mostly injected into the oil 
reservoir to improve the recovery of oil from the medium, 
changing the dynamics of the flow in the reservoir. Detailed 
study of fluid flow in porous media is challenging even in 
the case of the single-phase flow (Mozolevski and Schuh 
2013). Flow simulation in reservoirs has been studied using 
finite-difference methods, finite-element methods, and finite-
volume methods among others over the past years (El-Amin 
et al. 2015; Foroozesh et al. 2008; Sun and Yuan 2015; Yuan 
et al. 2015). The challenge is that these methods are either 
chosen based on the nature of the problem and the problem 
dynamics, or in some cases, the methods for simulation are 
changed anytime the dynamics of the process changes. Par-
ticularly, in heterogeneous porous media, most methods can-
not clearly capture the expected reservoir properties due to 
the consistent changing dynamics in heterogeneous media. 
It appears that methods that can adapt to such changes are 
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well suited to solve flow problems in heterogeneous porous 
media.

The two-phase flow in a reservoir has been investi-
gated by some authors (Amaziane and Jurak 2007; Hoteit 
and Firoozabadi 2008b; Zhong et al. 2013; Pasquier et al. 
2017). The models describing flow of fluids in a reservoir 
are mostly nonlinear or coupled partial differential equations 
with its solution providing insight into the dynamics of the 
flow process. The simultaneous flow of fluids in a reservoir 
and many other porous media is a highly complex phenom-
ena (Alam 2017; Szymkiewicz 2007). Numerical simulation 
of two-phase flow through a reservoir remains very challeng-
ing (Ahammad and Alam 2017; de la Cruz and Monsivais 
2013). The effect of capillary pressure, permeabilities and 
heterogeneity significantly influences the flow path of the 
fluids (Kou and Sun 2010; El-Amin et al. 2015).

Wavelets have numerous applications and have been 
extensively used for numerical approximations in relevant 
literature over the past few decades. it is important to note 
that wavelet methods have gained great popularity for find-
ing numerical solutions to many forms of differential and 
integral equations (Araghi et al. 2012; Epshteyn and Riviere 
2006; Heydari et al. 2012; Hooshmandasl et al. 2012; Lepik 
2011; Li 2010; Alam 2017) due to its high level of accuracy, 
speed, and efficiency in estimating the solutions. Different 
wavelet families were applied in various studies examples 
of which are Haar, Daubechies, Chebyshev, Legendre, and 
B-spline wavelets. The hallmark of wavelets is their ability 
to study the function at different scale features (Daubechies 
1992).

Chebyshev wavelets are the types of wavelets constructed 
from Chebyshev polynomials as their basis functions. They 
have very excellent interpolating properties and gives bet-
ter accuracy for numerical approximations (Heydari et al. 
2014). Our purpose in this paper is to propose the Cheby-
shev wavelet collocation method for computing oil–water 
two-phase fluid flow in a reservoir. The present work is a 
continuation of the earlier work of same authors, Amoako-
Yirenkyi et al. (2016) in which the Chebyshev wavelet col-
location method was used for the numerical simulation of 
the single-phase flow in a reservoir.

In this paper, Chebyshev wavelet collocation method is 
used mutually with the operational matrix of integration to 
simulate the two-phase flow process in a reservoir with dif-
ferent capillary pressures. This paper is outlined as follows: 
in “Two-phase flow model”, the two-phase flow model is 
reviewed. In “First kind Chebyshev wavelets and its proper-
ties”, we describe the Chebyshev wavelets and its properties 
as the solution scheme. In “Chebyshev wavelet formulation 
of two-phase flow model”, we present the wavelet formula-
tion of the two-phase flow model. The approximate solu-
tion to the flow problem is discussed in “Numerical results”. 
Finally, we conclude in “Conclusions”.

Two‑phase flow model

The two-phase flow of fluids in a reservoir is governed by 
nonlinear or coupled partial differential equation. This flow 
model consists of the conservation of mass equations and 
the Darcy’s law (Peaceman 1977). The conservation of mass 
equation is given by Epshteyn and Riviere (2006) and Peace-
man (1977)

where � represents the fluid phase (water being the wetting 
phase denoted by w and oil, the non-wetting phase denoted 
by o), � is the porosity, q� is the injection or production rate 
per unit volume at phase � (1/s), S� is the saturation at phase 
� , and u� represents the Darcy’s velocity (m/s). The Darcy’s 
law defines a linear relationship between the velocity of the 
fluid and the gradient of phase pressure P� (Pa):

where K is the absolute permeability, (m2) , kr� is the relative 
permeability (–) of phase � , �� (kg∕m3) , and �� , (Pa s) are 
density and viscosity of phase � , respectively. Water and 
oil are assumed to fill the entire pore space in the medium. 
That is

The pressure in the non-wetting fluid is mostly higher than 
the pressure of the wetting fluid and the pressure difference 
gives the capillary pressure Pc which is a function of satura-
tion (Peaceman 1977):

The coupled equations are decoupled into pressure-satu-
ration equations which are solved simultaneously for the 
model. Substituting Eq. (2) into Eq. (1) and expanding in 
terms of the wetting and non-wetting phases, we have

The constraints from Eqs.  (3) and (4) give the satura-
tion of oil to be So = 1 − Sw and pressure of water to be 
Pw = Po − Pc are then substituted into Eqs. (5) and (6). The 
resulting expressions are

(1)
�

�t
(�S�) + ∇ ⋅ u� = q� , � = w, o,

(2)u� = −K
kr�

��

(∇P� + ��g∇Z), � = w, o,

(3)So + Sw = 1.

(4)Pc(Sw) = Po − Pw.

(5)
�

�t
(�Sw) + ∇ ⋅

(
−K

krw

�w

(∇Pw + �wg∇Z)

)
= qw,

(6)
�

�t
(�So) + ∇ ⋅

(
−K

kro

�o

(∇Po + �og∇Z)

)
= qo.

(7)

�

�t
(�Sw) + ∇ ⋅

(
−K

krw

�w

(
∇(Po − Pc) + �wg∇Z

))
= qw,
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Based on the assumption that the porosity is constant, the 
pressure equation was obtained from Eqs. (7) and (8) as

Let �� = kr�∕�� be the mobility of phase � , then Eq. (9) 
becomes

This equation is solved for the pressure of oil phase which 
can be used in estimating the pressure of water from Eq. (4). 
The Darcy velocity for water is then computed from the 
pressure distribution. The saturation equation is given as

That is, the pressure-saturation equations governing two-
phase flow in reservoirs are given by Eqs. (10) and (11), 
respectively. Let the boundary �Ω of the computational 
domain Ω be decomposed into the Dirichlet part ΓD and 
Neumann part ΓN , where �Ω = ΓD

⋃
ΓN and ΓD

⋂
ΓN = { } . 

The boundary conditions associated with the governing 
equations (10) and (11) are given as

and the initial saturation of the non-wetting phase is given by

First kind Chebyshev wavelets and its 
properties

Wavelets are a class of functions constructed from a dilation 
and translation of a single function called the mother wavelet. 
If both dilation parameter, a, and translation parameter, b, are 
allowed to vary continuously, we obtain a family of continu-
ous wavelets as

(8)
�

�t
�(1 − Sw) + ∇ ⋅

(
−K

kro

�o

(
∇Po + �og∇Z

))
= qo.

(9)

∇ ⋅

(
−K

(
krw

�w

+
kro

�o

)
∇Po

)

+ ∇ ⋅

(
−Kg

(
krw

�w

�w +
kro

�o

�o

)
∇Z

)

+ ∇ ⋅

(
K
krw

�w

∇Pc

)
= qw + qo.

(10)

∇ ⋅
(
−K

(
�w + �o

)
∇Po

)
+ ∇ ⋅

(
−Kg

(
�w�w + �o�o

)
∇Z

)
+ ∇ ⋅

(
K�w∇Pc

)
= qw + qo.

(11)
�

�t
(�Sw) + ∇ ⋅ uw = qw.

(12)Po (or Pw) = PD on ΓD,

(13)u� ⋅ n = uN
�

on ΓN,

(14)Sw = SN on ΓN,

(15)Sw = S0
w
.

(16)�a,b(t) = |a|− 1

2�

(
t − b

a

)
, a, b ∈ ℝ, a ≠ 0.

Restricting the parameters a and b to assume discrete values 
as a = a−n

0
 and b = mb0a

−n
0

 , where a0 > 1, b0 > 0 , with n and 
m being positive integers, gives a family of discrete wavelets

which form a wavelets basis in L2(ℝ) . These basis are ortho-
normal basis of the function space when a0 = 2 and b0 = 1.

For any positive integer k, the first kind Chebyshev wavelets 
family is defined on the interval [0, 1] as

constructed as a function of four arguments 
( �n,m(t) = �(n,m, k, t) ), where n = 1, 2,… , 2k−1 , m is the 
degree of the first kind Chebyshev polynomials, t is the nor-
malized time and

Here, Tm(t) are the Chebyshev polynomials of order m 
defined on the interval [−1, 1] . The coefficients in Eq. (19) 
are to ensure orthonormality of the constructed wavelets. 
The Chebyshev polynomials are generally calculated recur-
sively from the set of equations:

where M is a fixed positive integer greater than 2. The set of 
Chebyshev Polynomials are orthogonal with respect to the 
weight function (Heydari et al. 2014):

To ensure orthogonality in dealing with the Chebyshev 
wavelets, the weight function w(t) must be dilated and trans-
lated (Araghi et al. 2012; Heydari et al. 2014) as

Any arbitrary function f(t) defined on the interval [0, 1) 
which is squared integrable can be expanded by the Cheby-
shev wavelets family as

(17)�n,m(t) = |a0|
n

2�(an
0
t − mb0), n,m ∈ ℤ

(18)�n,m(t) =

{
2k∕2m(2kt − 2n + 1),

n−1

2k−1
≤ t ≤ n

2k−1

0, otherwise

(19)m(t) =
⎧⎪⎨⎪⎩

1√
𝜋
, m = 0�
2

𝜋
Tm(t), m > 0.

(20)T0(t) = 1, T1(t) = t,

(21)Tm(t) = 2tTm−1 − Tm−2; m = 2, 3,… ,M − 1.

(22)w(t) =
1√
1 − t2

.

(23)wn(t) = w(2kt − 2n + 1).

(24)f (t) =

∞∑
n=1

∞∑
m=0

cnm�nm(t),
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where cnm = ⟨f (t),�nm(t)⟩L2
w
[0,1) and ⟨, ⟩L2

w
[0,1) represents the 

inner product in L2[0, 1) with respect to weight function, 
defined as

For approximations with the Chebyshev wavelets, the above 
series may be truncated as

where C, Ψ(t) are 2k−1M column vectors given by

Likewise, a two variable function f(x,  t) defined on the 
square [0, 1) × [0, 1) may be expanded using the Chebyshev 
wavelets basis as

where dn,n∗,m,m∗ = ⟨f (x, t),�n,m(x)�n∗,m∗ (t)⟩L2
w
([0,1)×[0,1)) . If the 

infinite series representation of f(x, t) in Eq. (29) is trun-
cated, then we have

where Dnm and Ψ(t) are 2k−1M column vectors which can 
be seen as

(25)cnm = ⟨f (t),�nm(t)⟩L2
w
[0,1) = ∫

1

0

f (t)�nm(t)wn(t) dt.

(26)f (t) ≅

2k−1∑
n=1

M−1∑
m=0

cnm�nm(t) = CTΨ(t),

(27)

C = [c1,0, c1,1,… , c1,M−1, c2,0, c2,1 ⋯ , c2,M−1,… , c2k−1,0,

c2k−1,1,… , c2k−1M−1]
T

(28)

Ψ(t) = [�1,0(t),�1,1(t),… ,�1,M−1,�2,0,�2,1 ⋯ ,�2M−1(t),… ,

�2k−10(t),… ,�2k−1M−1(t)]
T.

(29)f (x, t) =

∞∑
n=1

∞∑
n∗=1

∞∑
m=0

∞∑
m∗=0

dn,n∗,m,m∗�n,m(x)�n∗,m∗ (t),

(30)f (x, t) ≅

2k−1∑
n=1

2k−1∑
n∗=1

M−1∑
m=0

M−1∑
m∗=0

dn,n∗,m,m∗�n,m(x)�n∗,m∗ (t),

(31)=

2k−1�
n=1

M−1�
m=0

�n,m(x)

⎛⎜⎜⎝

2k−1�
n∗=1

M−1�
m∗=0

dn,n∗,m,m∗�n∗,m∗ (t)

⎞⎟⎟⎠

(32)=

2k−1∑
n=1

M−1∑
m=0

�n,m(x)D
T
nm
Ψ(t),

(33)
Dnm = [dn,1,m,0, dn,1,m,1,… , dn,1,m,M−1,… , dn,2k−1,m,0,

dn,2k−1,m,1,… , dn,2k−1m,M−1]
T

In like manner, we can write Eq. (34) as

where D is a 2k−1M × 2k−1M matrix.

Convergence analysis

Let

where �n,m(t) form the wavelet basis of L2(ℝ) . Interesting to 
note, when a0 = 2 and b0 = 1 , �n,m(t) forms an orthonormal 
basis for L2(ℝ) . Theorems 3.1 and 3.2 give the convergence 
of the first kind Chebyshev wavelets expansion of a func-
tion f(t).

Theorem 3.1 If the Chebyshev wavelet expansion of a con-
tinuous function f(t) converges uniformly, then the Cheby-
shev wavelet expansion converges to the function f(t) (Adibi 
and Assari 2010).

Proof Let

where cnm = ⟨f (t),�nm(t)⟩wk
 . When both sides of Eq. (37) by 

�pq(t)wk(t) , we have

where p and q are fixed and evaluating the integral term wise 
which is justified by uniform convergence on [0, 1]

(34)

Ψ(t) = [�1,0(t),�1,1(t),… ,�1,M−1,�2,0,�2,1 ⋯ ,�2M−1(t),… ,

�2k−10(t),… ,�2k−1M−1(t)]
T.

(35)f (x, t) ≅

2k−1∑
n=1

M−1∑
m=0

�n,m(x)D
T
nm
Ψ(t) = ΨT(x)DΨ(t),

(36)�n,m(t) = |a0|
n

2�
(
an
0
t − mb0

)
, n,m ∈ ℤ,

(37)g(t) =

∞∑
n=1

∞∑
m=0

cnm�nm(t),

(38)
∫

1

0

g(t)�pq(t)wk(t) dt

= ∫
1

0

∞∑
n=1

∞∑
m=0

cnm�nm(t)�pq(t)wk(t) dt,

(39)
∫

1

0

g(t)�pq(t)wk(t) dt

=

∞∑
n=1

∞∑
m=0

cnm ∫
1

0

�nm(t)�pq(t)wk(t) dt
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Thus, ⟨g(t),�nm(t)⟩wk
= cnm for n = 1, 2,… and m = 0, 1,… . 

This implies by consequence that f and g have the same 
Fourier expansion based on the Chebyshev wavelets. We, 
therefore, conclude that f (t) = g(t) for t ∈ [0, 1].

Theorem 3.2 If a function f (t) ∈ L2([0, 1]), with bounded 
second order derivative |f ��(t)| ≤  can be expanded as a 
sum of infinite Chebyshev wavelets:

then

which implies the Chebyshev wavelets expansion converges 
uniformly to f(t).

Proof It follows from the definition:

that

Let cos(�) be substituted into Eq. (44) for 2kt − 2n + 1 for 
m > 1 yields

Using integration by parts, we obtain

(40)= cpq.

(41)f (t) =

∞∑
n=1

∞∑
m=0

cnm�nm(t),

(42)�cnm� ≤
√
2�

(2n)
5

2 (m2 − 1)
,

(43)cnm = ⟨f (t),�nm(t)⟩wk
,

(44)

cnm =�
1

0

f (t)�nm(t)wk(t)dt,

=�
n∕2k−1

(n−1)∕2k−1
2k∕2f (t)m(2kt − 2n + 1)w(2kt − 2n + 1).

(45)cnm =

√
2

2k∕2
√
� ∫

�

0

f

�
cos(�) + 2n − 1

2k

�
cos(m�) d�.

(46)

cnm =

√
2

2k∕2
√
�
f

�
cos(�) + 2n − 1

2k

��
sin(m�)

m

������

�

0

+

√
2

23k∕2m
√
2�

∫
�

0

f �
�
cos(�) + 2n − 1

2k

�
sin(m�) sin(�) d�

where

Evaluating the above integral, we have

Taking the magnitude of both sides

However

Hence

(47)

=
1

23k∕2m
√
2�

f �
�
cos(�) + 2n − 1

2k

�

×

�
sin(m − 1)�

m − 1
−

sin(m + 1)�

m + 1

������

�

0

+
1

25k∕2m
√
2�

∫
�

0

f ��
�
cos(�) + 2n − 1

2k

�
sin(�)H(�) d�,

(48)H(�) =
sin(m − 1)�

m − 1
−

sin(m + 1)�

m + 1
.

(49)

cnm =
1

25k∕2m
√
2�

∫
�

0

f ��
�
cos(�) + 2n − 1

2k

�
sin(�)H(�) d�.

(50)

�cnm� =
������

1

25k∕2m
√
2�

∫
�

0

f ��
�
cos(�) + 2n − 1

2k

�
sin(�)H(�) d�

������

(51)

≤ 1

25k∕2m
√
2�

�
�

0

�����
f ��
�
cos(�) + 2n − 1

2k

�
sin(�)H(�)

�����
d�

(52)≤ 
25k∕2m

√
2�

�
�

0

�sin(�)H(�)� d�.

(53)
∫

�

0

|sin(�)H(�)| d�

= ∫
�

0

||| sin(�)
(
sin(m − 1)�

m − 1
−

sin(m + 1)�

m + 1

)||| d�

(54)≤ �
�

0

|||
sin(�) sin(m − 1)�

m − 1

||| +
|||
sin(�) sin(m + 1)�

m + 1

||| d�

(55)≤ 2m�

(m2 − 1)
.
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By rationalizing and simplifying the expression to the right 
of Eq. (56), it can be seen that

Since n ≤ 2k−1 , we have inequality (57) becoming

Therefore, the wavelets expansion 
∑∞

n=1

∑∞

m=0
cnm�nm(t) con-

verges to f(t) uniformly supported by Theorem 3.1.

Error analysis

Error function, Et , can be computed for a function f(t) 
approximated by the Chebyshev wavelets series as

where the absolute error values can be obtained for t = tj , for 
every tj ∈ [0, 1] based on Eq. (59).

Assume the Chebyshev wavelets basis has P vanishing 
moments, then the wavelets coefficients are bounded. That is

where  is a constant. Associated error approximations by 
the Chebyshev wavelets is established in Theorem 3.3.

Theorem 3.3 Suppose CT�(t) =
∑2k−1

n=1

∑M−1

m=0
cnm�nm is the 

Chebyshev wavelets approximation to a function f(t) in the 
function space, then the error is bounded by the expression:

Proof In the use of the Chebyshev wavelets, the interval 
[0, 1] is divided into 2k−1 subintervals In = [

n−1

2k−1
,

n

2k−1
] on 

which the function f(t) is approximated.
The norm as defined by the inner product space for the 

function Et is given as

(56)�cnm� ≤ 
25k∕2m

√
2�

�
2m�

m2 − 1

�
.

(57)�cnm� ≤
√
2�

25k∕2(m2 − 1)
.

(58)�cnm� <
√
2𝜋

(2n)5∕2(m2 − 1)
.

(59)Et =

||||||
f (t) −

2k−1∑
n=1

M−1∑
m=0

cnm�nm

||||||
,

(60)|cnm| ≤ 2−n(P+1∕2) max
�∈[0, 1]

|f (P)(�)|,

(61)‖Et‖ ≤ 1

P!2p(k−1)
max
�∈[0, 1]

�f (P)(�)�.

where SP(t) is any polynomial of degree P that interpolates 
f(t) on the subintervals with the error bound being

Hence

Accuracy analysis

The evaluation of the accuracy of a numerical method is 
crucial to describing the performance and applicability to 
solving problems. Theorem 3.4 shows the accuracy of the 
Chebyshev wavelets representation of a function in the func-
tion space.

Theorem 3.4 Given the second-order derivative square-
integrable function f(t) defined on the interval [0, 1) with 
bounded second-order derivative for some constant , say 
|f ��(t)| ≤ , then

where

(62)

‖Et‖2 = ‖f (t) − CT�(t)‖2

=�
1

0

W(t)(f (t) − CT�(t))2 dt

=

2k−1�
n=1

�
n

2k−1

n−1
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W(t)(f (t) − CT�(t))2 dt

≤
2k−1�
n=1

�
n

2k−1

n−1

2k−1

W(t)(f (t) − SP(t))
2 dt,

(63)|f (t) − SP(t)| ≤ 1

P!2p(k−1)
max
�n∈In

|f (P)(�n)|.

‖Et‖2 ≤
2k−1�
n=1

�
n

2k−1

n−1

2k−1

Wn(t)

�
1

P!2p(k−1)
max
�n∈In

�f (P)(�n)�
�2

dt

≤
2k−1�
n=1

�
n

2k−1

n−1

2k−1

Wn(t)

�
1

P!2p(k−1)
max
�∈[0, 1]

�f (P)(�)�
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dt

=�
1

0

Wn(t)

�
1
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�f (P)(�)�
�2

dt

=
����

1
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max
�∈[0, 1]

�f (P)(�)�����
2

.

(64)𝜎k,M <

√
𝜋
22

�
∞�

n=2k−1+1

∞�
m=M

1

n5(m2 − 1)2

� 1

2

(65)�k,M =

⎛⎜⎜⎝∫
1

0

���f (t) −
2k−1�
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M−1�
m=0

cnm�nm
���
2

wn(t)dt

⎞⎟⎟⎠

1

2

.
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Proof Since

From this Eq. (66), we observe that

From the orthonormality property of �nm(t) , we get

Using the findings from Eq. (58)

Hence

which completes the proof.

Chebyshev wavelet operational matrix 
of integration

The derivation of the integral of the first kind Chebyshev 
wavelets is presented in this section. This integrals constitute 
the operational matrix of integration which play a major role 
in dealing with the problem of the flow equations. For M = 3 
and k = 2 , the six Chebyshev basis functions

(66)�2
k,M

= ∫
1

0

||||||
f (t) −
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n=1
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m=0

cnm�nm(t)

||||||

2

wn(t) dt.

(67)�2
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1

0

||||||
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||||||
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wn(t)dt
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∞∑
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1
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|cnm�nm(t)|2wn(t)dt

(69)=

∞∑
n=2k−1+1

∞∑
m=M

|cnm|2 ∫
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on the interval 0 ≤ t <
1

2
 and

on the interval 1
2
≤ t ≤ 1 , can be integrated from 0 to t giving 

rise to the following results:
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Thus

where

The operational matrix 6×6 can be seen as a block matrix 
given as

In general,  is a 2k−1M × 2k−1M given by

Chebyshev wavelet formulation 
of two‑phase flow model

In this section, the Chebyshev wavelet method together with 
the operational matrix of integration is used to represent the 
two-phase flow equations. The wavelet representation of the 
pressure function, P(x, t), is formulated from the pressure 
equation by letting

The relation is integrated twice with respect to x for Po(x, t):

Evaluating the above integral, the operational matrix of inte-
gration is used to evaluate the expression on the right, which 
is given as

This results to

(76)�
t

0

Ψ6(s) ds = 6×6Ψ6(t),

(77)6×6 =
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.

6×6 =
1

4

(
L3×3 F3×3

03×3 L3×3

)

(78) =
1

2k

⎛
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(79)∇ ⋅ ∇Po(x, t) = ΨT(x)CΨ(t).

(80)
∫

x

0 ∫
x

0

∇ ⋅ ∇Po(�, t)d�d� = ∫
x

0 ∫
x

0

ΨT(�)CΨ(t)d�d�.

(81)�
x

0

∇Po(�, t) − ∇Po(0, t)d� = ΨT(x)(2)TCΨ(t).

Let x = 1 , then based on the boundary conditions governing 
the flow we obtain an expression for ∇Po(0, t) as

Hence, the wavelet formulation of the pressure function for 
the saturation of oil phase in the reservoir is given as

From the saturation equation, we let

Equation (85) is integrated once with respect to t to obtain 
the wavelet formulation of water saturation in the medium:

Employing the operational matrix of integration, the integral 
evaluates to

The known functions qw , qo , Pc , and Z are also decomposed 
with the Chebyshev wavelets basis as

Note that ⟨Ψ(x), ⟨∗∗,Ψ(t)⟩⟩ is used to evaluate the wavelet 
coefficients, and ∗∗ in the inner product accepts the various 
functions as input to evaluate the respective wavelet coeffi-
cients. Substituting the wavelet representation of the various 
functions into Eqs. (10) and (11), the wavelet formulation of 
the two-phase flow model was obtained as

Since A, B, E, and H are known, the two equations are solved 
simultaneously for C and D. The solution to Po(x, t) and 
Sw(x, t) can be reconstructed from their wavelet coefficients 
C and D, respectively, using Eqs. (84) and (87).

(82)Po(x, t) − Po(0, t) − x∇Po(0, t) = ΨT(x)(2)TCΨ(t).

(83)∇Po(0, t) = Po(1, t) − Po(0, t) − ΨT(1)(2)TCΨ(t).

(84)
Po(x, t) =Ψ

T(x)(2)TCΨ(t) − xΨT(1)(2)TCΨ(t)

+ (1 − x)Po(0, t) + xPo(1, t).

(85)
�Sw

�t
= Ψ(x)DΨ(t).

(86)∫
t

0

�Sw

��
d� = ∫

t

0

Ψ(x)DΨ(�) d�.

(87)Sw(x, t) = Sw(x, 0) + Ψ(x)DΨ(t).

(88)qw = ΨT(x)AΨ(t),

(89)qo = ΨT(x)BΨ(t),

(90)∇ ⋅ ∇Pc = ΨT(x)EΨ(t),

(91)∇ ⋅ ∇Z = ΨT(x)HΨ(t).

(92)
− K

(
�w + �o

)
Ψ(x)CΨ(t)

− Kg
(
�w�w + �o�o

)
Ψ(x)HΨ(t)

+ K�wΨ(x)EΨ(t) = Ψ(x)AΨ(t) + Ψ(x)BΨ(t)

(93)�Ψ(x)DΨ(t) + K�wΨ(x)CΨ(t) = ΨT(x)AΨ(t).
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Numerical results

The study considered a reservoir saturated with two com-
pletely immiscible fluid phases: water and oil. The veloc-
ity of the flow is estimated based on the extended Darcy’s 
law which considers the effect of gravitational force on the 
process. Relevant data for the simulation of the formulated 
problem is presented in Table 1.

In this section, the results for the numerical simulation of 
flow equations formulated based on the proposed Chebyshev 
wavelet method is presented. Different test cases were con-
sidered for flow of fluids in the reservoir based on different 
treatment of the capillary pressure, ( Pc ). The capillary func-
tion (Hoteit and Firoozabadi 2008a)

was adapted for the study taking Bc which is a positive 
parameter to be 25 as explained by Kou and Sun (2010) and 
Se is the normalized saturation given as

where Sro and Srw are the residual saturations of oil and 
water, respectively. Figure 1 shows correlation between 
the capillary pressure and the wetting phase, indicating a 
decrease in capillary pressure with increase in the saturation 
of wetting phase in the reservoir.

The function employed for the evaluation of the relative 
permeabilities for both fluid phases is

and � is a positive integer. Simulation for the study was 
carried out for � = 4 . The effect of the residual saturations 
was also taken into account for the fluid phases. For an 
oil–water system, flow of the oil is possible when the fluid 
phase saturation is greater than the residual oil saturation. 
In one instance, both the residual saturations of the fluid 

(94)Pc(Sw) = −
Bc√
k
log(Se)

(95)Se =
Sw − Srw

1 − Srw − Sro
,

(96)krw = S�
e
,

(97)kro = (1 − Se)
� ,

phases were considered to be zero (Kou and Sun 2010). The 
other instance considered the residual saturation of the oil 
Sro = 0.2 , Hoteit and Firoozabadi (2008a), as presented in 
Table 1.

Figure 2 shows the distribution of the saturation for the 
oil–water reservoir system limited by the saturation con-
straint of the flow. The saturation of the water is noted to 
increase with time during the production process of the oil, 
while the saturation of the oil decreases. Results are in nor-
mal units of both temporal and spatial variable. Some dis-
continuity as observed from the results and according to Kou 
and Sun (2010) may be due to the continuity in the treatment 
of the capillary pressure. Corresponding profile showing the 
distribution of the oil and water in the reservoir is presented 
in Fig. 3. The saturations profiles in all the cases obey the 
constraint in the saturation (Eq. (3)).

The capillary pressure is responsible for the difference in 
the pressure of the two fluids. According to Eq. (4), neglect-
ing the capillary pressure results to same pressure in both 
fluid phases. The evidence of this is shown in Fig. 4. This 
pressure of the fluids flowing in the reservoir is observed 
to decrease with time but higher with increase in the depth 
of the reservoir. The pressure dynamics in the fluids follow 
similar pattern for all instances with difference in pressure 
due to capillary treatment.

When gravity is ignored, the saturation of the oil rather 
increased, whereas that of the water decreased with time, 
as shown in Fig. 5. The distribution of the two fluids for 
this scenario is presented in Fig. 6. However, the dynam-
ics changes with the inclusion of the capillary pressure, as 
shown in Fig. 7. In all the cases discussed so far, the residual 
saturation had been neglected. The saturation profile is pre-
sented in Fig. 8 for the two-phase flow with the residual 

Table 1  Relevant data for the oil–water reservoir simulation

Relevant data

Porosity � = 0.2

Absolute permeability k = 1

Water viscosity �w = 1 cP

Oil viscosity �o = 0.25 cP

Density of water �w = 1000 kg∕m3

Density of oil �o = 1000 kg∕m3

Residual saturations Srw = Sro = 0∕Srw = 0, Sro = 0.2

Fig. 1  Correlation between capillary pressure and saturation of water
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saturation of the oil taken to be Sro = 0.2 . As is observed, 
capillary pressure has a great influence on the flow pattern 
of the fluids in the reservoir.

In Fig. 9, the density of the wetting phase was kept at 
1000 kg∕m3 as in the previous cases, but that of the non-
wetting phase is 660 kg∕m3 . All the other parameter val-
ues are maintained including the force of gravity. Unlike 

the earlier results, where the distribution of the satura-
tion had some discontinuity, varying the density of the 
fluids completely eliminates the discontinuity. Interest-
ingly, the dynamics of the fluid dispersion in the medium 
is maintained.

Fig. 2  Saturation of fluids in the reservoir when the residual saturations are neglected

Fig. 3  Distribution of fluids 
in the reservoir with neglected 
residual saturations

Fig. 4  Pressure distribution in the reservoir
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Conclusions

The proposed Chebyshev wavelets method has been suc-
cessfully implemented in studying the two-phase slightly 
compressible flow in combination with their operational 
matrix of integration. This method was developed based on 
the first kind Chebyshev polynomial. The corresponding 

algorithm converges quite well, stable, and adapts to 
changing dynamics. Key to this study is the inclusion and 
treatment of the capillary pressure. The fluid dispersion 
in the reservoir displayed some discontinuities which in 
the literature may be due to the continuity of the capillary 
treatment. The study also revealed that the other properties 

Fig. 5  Fluid saturation in the reservoir in the absence of gravity

Fig. 6  Saturation profile in the 
reservoir considering capil-
lary pressure in the absence of 
gravity

Fig. 7  Fluid saturation in the reservoir with capillary pressure in the presence of gravity
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of the process such as density could completely eliminate 
the discontinuity in saturation of the fluids.
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