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Abstract
Seismic inversion involves extracting qualitative as well as quantitative information from seismic reflection data that can be 
analyzed to enhance geological and geophysical interpretation which is more subtle in a traditional seismic data interpreta-
tion. Among many approaches that have been made to improve interpretation of post-stack seismic data, a great effort has 
been made to use maximum likelihood (ML), sparse spike inversion (SSI) along with multi-attribute analysis (MAA) aimed 
to increase the resolution power of interpreting seismic reflection data and mapping into the subsurface lithology. These 
methods are applied to the Blackfoot seismic reflection data to estimate reservoir. The methods were first applied to the 
composite trace close to well locations and were inverted for acoustic impedance (AI). The results depict that the inverted AI 
matches very well with the well log AI. The statistical analysis demonstrates good performance of the algorithm. Thereafter, 
the entire seismic section was inverted to acoustic impedance section. The analysis of the inverted impedance section shows 
an anomaly zone in between 1060 and 1075 ms time and characterize it as reservoir. Further, the multi-attribute analysis 
is performed to estimate porosity and density in the inter-well region. The inverted porosity section shows a high porosity 
anomaly and a low density anomaly in between 1060 and 1075 ms time intervals which corroborated well with the low 
impedance zone and confirm the presence of a reservoir.

Keywords  Seismic inversion · Sparse spike inversion · Maximum-likelihood inversion · Reservoir characterization · Multi-
attribute analysis

Introduction

Seismic inversion is a procedure that helps extract the 
high-resolution subsurface model of the physical charac-
teristics of rocks and fluids from low-resolution seismic 
reflection data with the integration of well log data (Krebs 
et al. 2009). In the petroleum industry, the seismic inver-
sion techniques have been widely used as a tool to locate 
hydrocarbon-bearing strata in the subsurface from the 
seismic data (Bosch et al. 2010; Maurya and Singh 2015). 
There are many approaches available for seismic inversion 
such as pre-stack simultaneous inversion, elastic imped-
ance inversion, recursive inversion, model-based inversion, 

sparse spike inversion which includes linear programming 
and maximum-likelihood inversion, colored inversion, and 
band-limited inversion. (Russell and Hampson 1991). In the 
present study, maximum-likelihood sparse spike inversion 
(MLSSI) technique is used to estimate rock property in the 
subsurface using seismic reflection data from the Blackfoot 
field Alberta, Canada. The motivation to use MLSSI tech-
nique among others is that the technique is robust and fast 
to compute the subsurface model (Russell and Hampson 
1991; Veeken and Silva 2004; Jackiewicz 2009; Maurya 
and Sarkar 2016). Other methods like colored inversion are 
also fast techniques, but this gives an average variation of 
the rock parameters, whereas MLSSI techniques give quan-
titative variation which corroborate well with the well log 
parameters (Russell and Hampson 1991; Maurya and Sarkar 
2016).

Although the maximum-likelihood sparse spike inversion 
is very popular nowadays, this technique is not used by the 
Blackfoot datasets to characterize the reservoir. Maurya and 
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Singh (2015) used maximum-likelihood sparse spike inver-
sion along with linear programming sparse spike inversion 
technique to compare them. The present work is an extension 
of Maurya and Singh’s (2015) paper.

The maximum-likelihood sparse spike inversion tech-
nique used the theory of maximum-likelihood deconvolu-
tion (MLD) which aims to generate reflectivity series from 
the seismic data (Russell 1988; Russell and Hampson 1991; 
Maurya and Sarkar 2016; Maurya et al. 2018a, b). The 
maximum-likelihood deconvolution algorithm came into the 
existence in 1982 and published by Kormylo and Mendel 
(1983) and Chi et al. (1984). The application of the MLD 
algorithm developed by Kormylo and Mendel to the real 
data is very complex and hence a modification was given 
by Hampson and Russell in 1985 which was easy to use. 
Hampson and Russell (1985) described that the MLD could 
be used to estimate reflectivity series from the broadband 
seismic reflection data and then the reflectivity can be trans-
formed to the acoustic impedance which is more meaningful.

In the present study, the theory developed by Hampson 
and Russell (1985) is used to estimate rock property from 
the seismic reflection data. The algorithm is applied to the 
seismic section to estimate the variation of impedance and 
characterize the reservoir. Thereafter, for the confirmation 
of the reservoir, porosity and density volumes are predicted 
in the inter-well region using multi-attribute analysis tech-
nique. The theory of multi-attribute analysis was developed 
by Hampson et al. (2001). In this methodology, the aim is to 
find an operator, that is linear or nonlinear, that can predict 
well logs from neighboring seismic data. These methods 
choose to analyze not only low-resolution seismic reflection 
data but also the seismic attributes. As these attributes are 
generally nonlinear, it increases the prediction power of the 
multi-attribute analysis tool. Using this technique, porosity 
and density volumes are predicted from the seismic reflec-
tion data and used to characterize the prospective (reservoir) 
zone. The analysis is performed in Hampson Russell soft-
ware and the results are presented using Matlab program-
ming language.

The Blackfoot study area

The Blackfoot seismic survey was conducted to record data 
in two overlying patches. The first patch is targeted to the 
clastic Glauconitic channel of lower Cretaceous age which 
represents sediment-filled incised valley, while the second 
patch is targeted to the reef prone Beaver hill lake carbon-
ates (Lawton et al. 1996). In this study, the seismic data 
related to the first patch, i.e., Glauconitic channel is used 
for the analysis. The reservoir in the study area is produced 
from the Glauconitic sand formation at a depth of 1550 m 
(~ 1060 ms), where Glauconitic sandstones and shales are 

incised into the regional Mannville stratigraphy valleys 
(Maurya and Singh 2018a, b).

The Blackfoot field is located about 70 km southeast 
from the Strathmore city, Alberta, Canada (Dufour et al. 
1998). The 3C–3D (three dimensional–three component 
recording) data are recorded by Consortium for Research 
in Elastic Wave Exploration Seismology (CREWES) in 
1995. The initial aim for this survey was to evaluate the 
effectiveness of integrated PP and PS survey for improved 
hydrocarbon survey (Lawton et al. 1996). The first patch 
is about 2.7 × 3.8 km in dimension. The data is recorded 
using 708 sources and 690 receivers with 140-fold at the 
center of spread. The other recording parameters are: source 
and receiver interval is 60 m, source line interval is 210 m, 
receiver line interval is 255 m, the number of source lines 
is 12 and the total number of receiver lines is 15. The band-
width of the seismic reflection data is 12–90 Hz (Lawton 
et al. 1996; Margrave et al. 1998; Wood and John 1992).

The primary target of the survey was to see the ampli-
tude changes caused by the Glauconitic Member of the Man-
nville Group. The Glauconitic member consists of shales and 
sands of lacustrine (Lacustrine deposits) and channel origin 
(river stream has carried sediment into the basin). Within 
the channel, the sediments are subdivided into three units 
corresponding to three phases of valley incision with differ-
ent qualities of sand deposited. These three units may not be 
encountered everywhere in the area (Miller et al. 1995). The 
detailed stratigraphic column of the Blackfoot area is dis-
cussed in Margrave et al. (1998) (Maurya and Singh 2018b). 
Figure 1a shows the location of first and second patch and 
Fig. 1b depicts the stratigraphic division of the Blackfoot 
region, Alberta, Canada. Post-stack seismic reflection data 
and thirteen wells from the Glauconitic region are used for 
the characterization of the reservoir. Figure 2 shows the 
location of wells in the area.

Methodology

Maximum‑likelihood inversion

Maximum-likelihood sparse spike inversion is used to esti-
mate reservoir property from seismic reflection data of the 
Blackfoot field, Alberta, Canada. The workflows used in this 
study are as follows: first, a couple of seismic horizons are 
picked near to 930 and 1040 ms two-way travel time. These 
horizons serve as guides to interpolate well log property in 
inter-well regions (Kormylo and Mendel 2014; Zhang and 
Castagna 2011). Thereafter, wavelet is extracted from the 
seismic as well as well log data. The steps are as follows: 
(i) extract the analysis window in the seismic data/well log 
data, (ii) taper the start and end of the window with a taper 
length, (iii) calculate the autocorrelation of the data window, 
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(iv) calculate the amplitude spectrum of the autocorrelation, 
(v) take the square root of the autocorrelation spectrum. This 
approximates the amplitude spectrum of the wavelet, (vi) 
add manually the desired phase, (vii) take the inverse FFT 
(fast Fourier transform) to produce the wavelet, (viii) sum 
this with other wavelets calculated from other traces in the 
analysis window (Maurya and Singh 2018a, b). This desired 
wavelet is used to generate synthetic seismograms from the 
well log data which is used for well correlation. Further, time 
to depth conversion is performed. These can be done in one 
of two ways, first, using check shot data (if available) and 
second, manually. In the present study, check shot data is not 
available, hence the time to depth conversion is performed 
manually. This manual conversion is performed for all the 
available wells. For this, one particular well is selected and 
synthetic seismograms are generated by the convolution of 

extracted wavelet and Earth’s reflectivity series from the 
well log data (Krebs et al. 2009). Thereafter, these synthetic 
traces are plotted along with the seismic traces near to that 
well and the matching of higher amplitudes is noticed. The 
seismic amplitudes are stretched and squeezed to match 
them properly. The condition when all the major amplitudes 
match, gives the relation between time and depth which is 
used to convert well log data into time domain (Helgesen 
et al. 2000). This is repeated for all the wells. The process of 
time to depth conversion is important, since it improves the 
correlation of events on the well log data and the events on 
the seismic data. Thereafter, initial impedance model of low 
frequency is generated. This low-frequency model is impor-
tant, because the seismic data have limited bandwidth and 
does not contain lower frequency band, hence to get broad-
band spectrum of the inverted results, this low-frequency 
model is added to the inverted acoustic impedance results 
(Li and Speed 2004; Banihasan et al. 2006; Maurya and 
Singh 2015). After pre-processing, seismic inversion can 
be performed to estimate subsurface rock properties such as 
impedance, density, and porosity velocity.

Inversion is performed in two steps. In the first step, 
maximum-likelihood deconvolution is employed to esti-
mated reflectivity series from the seismic reflection data. 
The maximum-likelihood deconvolution assumes that the 
Earth’s reflectivity series are a combination of large spikes 
superimposed with smaller Gaussian events in the back-
ground (Russell and Hampson 1991; Mendel 2012). These 
large spikes are geologically indicating the depositional gap 
and hence they are important.

Fig. 1   a Location of Blackfoot field, Alberta, Canada and b stratigraphy of the Blackfoot field

Fig. 2   Location of wells in the study area
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The objective function can be written for reflectivity and 
noise which may be minimized to produce the reflectiv-
ity and wavelet combination consistent with the statistical 
assumption (Russell 1988; Li and Speed 2004). The objec-
tive function E is given as

where r
k
 is reflection coefficient at the kth interface, m is the 

total number of reflections, L is the total number of samples 
presents, N  is the square root of noise variance, n

k
 is the 

noise at kth sample/interface, � is likelihood that a given 
sample has reflection and R is the square root of reflectivity 
variance.

In the second step, the reflectivity series are transformed 
into the acoustic impedance which is more meaningful com-
pared to the reflectivity series. This can be achieved using 
two approaches, the first approach is that the acoustic imped-
ances can be estimated using the direct relationship between 
reflectivity and impedance (Velis 2006, 2007; Maurya and 
Sarkar 2016). However, this relationship has a limitation, 
i.e., if the data contains significant noise, then the trans-
formation cannot be performed properly as the relationship 
does not include the noise component. A second approach 
is used in this study to generate acoustic impedance model 
from the reflectivity section which included the noise com-
ponent and hence gives complete spectrum (Russell 1988; 
Wang et al. 2006; Zhang et al. 2016). The equation is as 
follows:

where �(i) is the known impedance trend, r(i) is Earth’s 
reflectivity series, n(i) is the noise in the input trend, i is the 
location of sample points and H(i) is a factor that would be

The inversion is first tested to the one composite trace 
close to the well location and cross verified by the well log 
parameters. After getting satisfactory results, the entire seis-
mic volume is inverted for acoustic impedance. Thereaf-
ter, porosity and density are estimated using multi-attribute 
analysis technique which analyzes a number of attributes 
generated directly/indirectly from the seismic data.

Multi‑attribute analysis

There are numerous approaches available to estimate porosity 
in the inter-well region such as Cokriging (Doyen 1988; Doyen 
et al. 1996), single attribute analysis (Maurya et al. 2018a, b), 
multi-attribute analysis (Maurya et al. 2018a, b), probabilistic 
neural network (Maurya et al. 2018a, b), relationship derived 

(1)E =

L∑
k=1

r
2

k

R2
+

L∑
k=1

n
2

k

N2
− 2m ln(�) − 2(L − m) ln(�),

(2)ln �(i) = 2H(i) ∗ r(i) + n(i),

(3)H(i) =

{
1, i < 0

0, i > 0
.

from the well logs (Maurya and Singh 2018a, b), multilayer 
feed forward neural network (Leite and Vidal 2011), and fuzzy 
logic (Kadkhodaie-Ilkhchi et al. 2009), but the multi-attribute 
analysis is very simple, easy to use and has a fast computation 
process (Doyen 1988). Hence, we selected it in this study to 
estimate the porosity and the density.

The multi-attribute analysis has more than one attribute at 
a time to estimate the relationship. The multi-attribute analy-
sis uses internal attributes which are estimated directly from 
the seismic data and external attribute which is derived from 
the seismic inversion technique (Haas and Dubrule 1994; 
Eskandari et al. 2004). The best attributes are selected on the 
basis of their correlation with the target logs. Thereafter, the 
selected attributes are cross-plotted corresponding to the well 
log property at a particular time sample to estimate the rela-
tionship between attributes and target well log property which 
is used to estimate porosity and density at that time sample 
(Russell et al. 1997; Hampson et al. 2001). The same process 
has been repeated at each time sample and porosity and den-
sity is estimated (Pramanik et al. 2004). Figure 3 shows the 
flow chart of the maximum-likelihood inversion and multi-
attribute analysis technique. This can be shown mathematically 
as follows.

Let three attributes A1, A2 and A3 be the best for the predic-
tion of porosity which shows low error and high correlation 
coefficient with well log porosity. A cross-plot has been gener-
ated between these attributes and well log porosity. Further, a 
straight line may fit the regression which can be represented as

where w0, w1, w2 and w3 are weights and � is desired poros-
ity. These weights can be estimated by minimizing the mean 

(4)�(t) = w0 + w1A1(t) + w2A2(t) + w3A3(t),

Fig. 3   Flowchart of seismic inversion and multi-attribute analysis 
methods
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squared prediction error between attributes and target log, 
i.e., porosity (Hampson et al. 2001; Leiphart and Hart 2001)

The solution of four weights can be written (Hampson et al. 
2001) as:

where i is the location of sample point. The mean squared 
error (Eq. 5) calculated using the derived weights (Eq. 6) 
constitutes goodness-of-fit measure for the transform 
(Hampson et al. 2001). A similar expression can be derived 
for prediction of density in inter-well region.

(5)

E
2 =

1

N

N∑
i=1

(
�(t) − w0 − w1A1(t) − w2A2(t) − w3A3(t)

)
.
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Results and discussion

Seismic inversion

In this study, seismic inversion is performed to estimate 
rock property from seismic reflection data with integration 

Fig. 4   Comparison of inverted acoustic impedance (red) with the actual impedance (black) for the a well 01–17, b well 08–08, c well 16–08, and 
d well 12–16

Fig. 5   Cross-plot of inverted impedance with the actual impedance 
for all the well logs. The distribution of scatter points depicts perfor-
mance of the algorithm
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of well log data to characterize reservoir from the Blackfoot 
field, Canada and the results are shown in Figs. 4, 5, 6, 7 
and 8. Figure 4 shows the inversion results for the com-
posite trace near to the well locations. In Fig. 4, the black 

solid curve depicts well log acoustic impedance, whereas the 
inverted acoustic impedances are shown in blue solid color. 
The analysis is performed for all the composite traces near to 
well locations, but the results are shown for four wells only 

Fig. 6   Variation of a correlation 
coefficient, b synthetic relative 
error, and c root-mean-square 
error versus wells

Fig. 7   Cross-section of inverted 
impedance for inline 118. The 
special features are highlighted

Fig. 8   Comparison of amplitude 
spectrum from the Blackfoot 
seismic and inverted synthetic 
section
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for simplicity. From Fig. 4, it is noticed that the inverted 
impedances are agreeing well (average correlation > 0.93) 
with the well log impedances. The well log data are not 
recorded from surface to bottom in all wells and hence in 
some wells, the data are only available between 1000 and 
1100 ms time intervals, e.g., Fig. 4c.

Thereafter, a cross-plot of the inverted impedance with 
actual impedance from all the wells are generated and shown 
in Fig. 5. The distribution of scatter points shows the qual-
ity check of inversion results and hence the performance 
of the algorithm. It is noticed that the inverted data points 
are very close ( r2 = 0.59 ) to the best fit curve and hence 
depicts a good performance of the algorithm. However, for 
quantitative comparison, the error between inverted and 
actual impedance is estimated and shown graphically in 
Fig. 6. Figure 6a shows variation of correlation coefficient, 
whereas Fig. 6b depicts synthetic relative error (SRE) and 
Fig. 6c shows variation of root-mean-square (RMS) error 
with wells. It is noticed that the correlation coefficients vary 
from 0.91 to 0.94 with a mean value of 0.93, SRE varies 
from 0.19 to 0.23 with a mean value of 0.21 and RMS error 
varies from 1000 to 2100 m/s*g/cc with a mean value of 
1300 m/s*g/cc. These values indicate that the algorithm suc-
cessfully searched the optimum solution.

Thereafter, the algorithm is applied to the post-stack 
seismic data from the Blackfoot field, Alberta, Canada 
with the aim of characterizing reservoir. The seismic sec-
tion is inverted for acoustic impedance and shown in 
Fig. 7 (inline 118). The special features are highlighted in 
the inverted impedance section. The analysis of inverted 
impedance section shows a low impedance anomaly ranging 

6000–9000 m/s*g/cc within 1060–1075 ms time interval 
which may be due to the presence of reservoir.

Further, the amplitude spectrum of inverted synthetic and 
Blackfoot seismic is compared and shown in Fig. 8 to see 
the frequency match between them. The figure depicts that 
for a lesser frequency, the amplitude is matching accurately 
with the seismic amplitude, whereas for a larger frequency 
(> 80 Hz), the amplitude spectrum shows a small deviation 
from the seismic amplitude, however, the overall correlation 
is good (~ 96%) between them. Thus, it can be concluded 
that the MLSSI algorithm distorts the amplitude spectrum 
particularly for larger frequency during its implementation, 
however, the amount of distortion is small.

Multi‑attribute analysis

For the confirmation of reservoir, the other important petro-
physical parameters, i.e., porosity and density is predicted in 
the inter-well region using multi-attribute analysis (MAA) 
technique and using MLSSI-derived impedance as an exter-
nal attribute and seismic-derived attributes as internal and 
important results are shown in Figs. 9, 10, 11 and 12.

Figure 9 shows the result of multi-attribute analysis to 
predict porosity and density from composite trace near to 
well locations. Figure 9a, b depicts comparison of predicted 
and actual porosity values for traces near to well 01–17 and 
well 08–08, respectively, whereas Fig. 9c, d depicts com-
parison of predicted density with actual density for traces 
near to well 01–17 and 08–08, respectively. From Fig. 9, 
it is noticed that the predicted porosity and density agree 
well with the actual porosity and density, respectively. The 

Fig. 9   Comparison of predicted 
porosity (blue) and actual poros-
ity (black) for the a well 01–17, 
b well 08–08, and comparison 
of predicted density (green) 
with actual density (red) for c 
well 01–17, and d well 08–08
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correlation coefficients are estimated to be 0.82 and 0.86 for 
porosity and density case, respectively, which indicate good 
values and hence a good performance of the algorithm.

A cross-plot of the predicted values with the actual values 
from the well log is generated to see the quality check of the 
predicted results and is shown in Fig. 10. Figure 10a shows 
the cross-plot of predicted porosity versus actual porosity, 

whereas Fig. 10b shows cross-plot of predicted density ver-
sus actual density for all the 13 wells available in the study 
area. It is noticed that the distribution of scatter points is 
very close to the best fit line for both cases and depicts that 
the inverted results are very close to the actual values and 
hence it point towards a good performance of the algorithm. 
This can be also verified by the r2 values which is estimated 
for both the cases (porosity and density) and found to be 0.56 
and 0.58, respectively.

The validation error is estimated for porosity and density 
case and shown in Fig. 11. It is noticed that the validation 
error varies from 1.4 to 6% for both the cases which indicate 
good prediction results.

After getting satisfactory results from the composite 
trace, the entire seismic section is inverted first for porosity 
and then for density sections. Figure 12a depicts predicted 
porosity section, whereas Fig. 12b depicts predicted den-
sity section at inline 118 only for simplicity. Although the 
entire seismic volumes are inverted for impedance, poros-
ity and density, the inline 118 is shown here for simplic-
ity. It is noticed that there is a high porosity anomaly rang-
ing 15–20% and a low density anomaly ranging 2.0–2.3 g/
cc between 1060 and 1075 ms time intervals are present 
which corroborated well with the low impedance anomaly 
and confirm the presence of reservoir. The reservoir zone 
is highlighted by the ellipse in both (porosity and density) 
the sections.

Further, a cross-plot among inverted impedance, porosity 
and density volumes is generated and shown in Fig. 13. This 
cross-plot helps to derive a relationship among the inverted 
parameters which can be used for quick estimation of these 
parameters in the Blackfoot region. Figure 13a depicts cross-
plot of predicted porosity versus predicted density with color 
bar as inverted impedances, whereas Fig. 13b depicts cross-
plot of inverted impedance versus predicted density with 
color bar as predicted porosity and Fig. 13c depicts cross-
plot of inverted impedance versus predicted porosity with 
color bar as predicted density. The reservoir zone is charac-
terized by low acoustic impedance (6000–9000 m/s*g/cc), 
low density value (2–2.35 g/cc), and high porosity (15–20%) 
and highlighted by ellipse in Fig. 13. The relations among 

Fig. 10   Cross-plot of a predicted porosity versus actual porosity and 
b predicted density versus actual density from all the wells. The dis-
tribution of scatter points indicates the performance of MAA tech-
niques

Fig. 11   Variation of validation 
error with wells for porosity and 
density case
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the impedance, density and porosity are shown on the top of 
respective figures. They are as follows: 

(7)� = 0.00028 �2 − 0.017 � + 2.63,

(8)� = − 2.4 × 10−9AI
2 + 7.48 × 10−5AI + 1.99,

(9)� = 1.23 × 10−7AI
2 − 0.0042 AI + 39.7,

where ρ is the density, AI is the acoustic impedance and ϕ 
is the porosity. These relations can be used to estimate of 
density, porosity and/or acoustic impedances if any of these 
quantities are known. The highlighted zone in the cross-plots 
are mapped into the seismic sections and shown in Fig. 14. 
Figure 14a highlights the low impedance zone, Fig. 14b 
highlights the high porosity zone and Fig. 14c highlights the 
low density zone in between 1060 and 1075 ms time interval 

Fig. 12   Cross-section of a predicted porosity and b predicted density for inline 118. The special features are highlighted
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in the seismic section at inline 118. These zones correspond 
to the reservoir. The predicted reservoir is also noticeable 
from the well log data at same location and strengthens the 
prediction results. The location of same reservoir is also 
interpreted by Maurya and Sarkar (2016), Maurya et al. 
(2018). The reservoir varies from NE to SW direction in 
the subsurface.

Conclusions

The maximum-likelihood sparse spike inversion (MLSSI) 
technique is utilized in the present study to estimate the 
reservoir zone from the seismic reflection data from the 
Blackfoot field, Alberta, Canada. The aim of this study is to 
transfer invisible information from the band-limited seismic 

Fig. 13   Cross-plot of a pre-
dicted porosity versus predicted 
density, b predicted density 
versus inverted impedance, 
and c predicted porosity versus 
inverted impedance seismic 
section centered 1065 ms with 
100 ms width. The reservoir 
zone is highlighted by the 
ellipse. The relationships 
between inverted properties are 
shown on top of the respective 
figures
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reflection data to the blocky structure of the subsurface and 
hence characterize the reservoir. Thereafter, the density and 
porosity volumes are estimated in inter-well region using 
multi-attribute analysis (MAA) technique for the confirma-
tion of reservoir zone. In the first step, MLSSI technique 
is applied to the composite trace near to well locations and 
inverted for acoustic impedances. The results depict that the 
inverted impedance is agreeing very well with the actual 
impedance for almost all wells. The correlation is estimated 
to be 0.93, RMS error is 1220 m/s*g/cc and SRE is 0.35 
which reveals the good performance of the algorithm. There-
after, in the second step, MLSSI technique is applied to the 
entire seismic section to estimate distribution of acoustic 
impedance in the subsurface. A low impedance zone rang-
ing 6000–9000 m/s*g/cc is noticed in between 1060 and 
1075 ms two-way travel time and interpreted as the reservoir 
zone. In the third step, multi-attribute analysis is employed 
and porosity along with density distributions in the subsur-
face are estimated for composite trace near to well locations. 
The results show good agreement with the actual values 
from well logs. The correlation coefficients are estimated to 
be 0.82 and 0.86 for porosity and density case, respectively, 
which indicate good values and hence good performance 
of the algorithm. Thereafter, in the fourth step, the MAA 
technique is applied to the entire seismic volume to esti-
mate porosity and density volumes of the region. The pre-
dicted porosity section shows high porosity anomaly ranging 
15–20% in between 1060 and 1075 ms and inverted density 
section shows low density anomaly ranging 2.0–2.235 g/cc 
in between 1060 and 1075 ms two-way travel time and con-
firm the presence of reservoir zone. These anomaly zones 

are well corroborated with low impedance zone. We can 
not determine if the reservoir zone is productive or not from 
this analysis, as only 10–20% gas in the reservoir shows 
tremendous change in the seismic pattern and hence in the 
inverted sections. The reservoir varies from North–East to 
South–West direction in the subsurface.
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