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Abstract
Reservoir streamline numerical simulation, as an effective means to describe the trajectory of reservoir fluid and evaluate 
the flow size of different regions, has been widely used in various oil fields. To reflect the quantitative description of the 
streamline field in different development states, taking the different spatial positions and streamline attributes as the evaluation 
index, the reservoir flow field was clustered and evaluated combined with an artificial intelligence algorithm. The cluster-
ing results of different streamline clusters were evaluated using an evaluation coefficient. Finally, a quantitative evaluation 
method of reservoir streamline field simulation was formed. The results show that the peak density algorithm based on the 
evaluation coefficient can run efficiently in the reservoir streamline field and can quickly determine the optimal clustering 
number. The evaluation method was applied to the Nm3-4-1 layer of the Gang Dong oilfield. The current streamline field 
was divided into 14 grades. The average oil–water mobility ratio of the first kind of streamline cluster was much higher than 
that of the 14th kind of streamline cluster. After adjusting the streamline field, the optimal number of clusters was calculated 
by the evaluation coefficient again, and the number of streamline clusters was changed into seven groups, which indicated 
that the whole reservoir driving energy was more balanced, and the utilization degree of the reservoir was clearly improved.

Keywords  Artificial intelligence algorithm · Evaluation coefficient · Streamline field · Streamline numerical simulation · 
Streamline cluster · Clustering analysis

Introduction

Streamline numerical simulation is widely used as an impor-
tant means to characterize fluid flow paths and describe the 
intensity of the flow field during the development of an oil 
field. By establishing the pressure equation on the grid and 
quadrature of the streamline, we can get the corresponding 
pressure equipotential surface and establish a natural migra-
tion network. The fluid moves along the streamline, so as to 
track the migration of oil, gas, and water in the reservoir. 
Compared with the traditional finite difference numerical 

simulation method, modern reservoir streamline simulation 
in many aspects has achieved great breakthroughs, such as 
the Pollock streamline tracing method (Jackson et al. 1988), 
data transfer method between the network and grid (Batycky 
et al. 1997), and the history matching method based on 
streamline simulation (Wang 2002). Thiele and Batycky 
(2003) established water injection optimization model by 
streamline numerical simulation technology. Cheng et al. 
(2007) established the historical fitting method of streamline 
field numerical simulation through three-dimensional three-
phase reservoir streamline simulation. Zhao et al. (2016) 
predicted the connectivity between oil and water wells based 
on the interwell connectivity inversion model. Wang et al. 
(2017) characterized the water drive flow field through the 
water drive characteristic curve and the interwell connectiv-
ity model. However, the current streamline field simulation 
can only qualitatively judge the distribution of the current 
flow field by the streamline density in each area of the res-
ervoir; it cannot quantitatively evaluate the streamline field. 
Therefore, we need to explore a method for quantitative 
evaluation of reservoir streamline field.
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Clustering analysis is an important statistical method in 
research on classification; one clustering method classifies 
the data through unsupervised ways and tests the similarity 
and difference between data. In the end, classification results 
of the large similarity in each cluster and large differences 
between clusters are formed (Agarwal et al. 1999). With the 
development of data mining technology, clustering methods 
have been used to analyze data sets with multiple attrib-
utes and complex distribution structures (Grabmeier and 
Rudolph 2002). In recent years, quantum clustering, spec-
tral clustering, granularity clustering, probabilistic graph 
clustering, and synchronous clustering have also become 
popular. Aminzadeh et al. (2013) used tomographic inver-
sion, fuzzy clustering, and shear wave splitting to obtain reli-
able characteristics about fractured areas; it can be used to 
optimize drilling targets or stimulation jobs to reduce costs 
and maximize production. Tan et al. (2016) introduced the 
application of data miming to petroleum exploration and 
development to obtain high-performance predictive models 
and optimal classifications of geology, reservoirs, reservoir 
beds, and fluid properties. Aliyarov and Ramazanov (2016) 
used fuzzy clustering to predict reservoir rock properties. 
However, under the influence of the difficulty in extract-
ing the streamline data of the reservoir, there is no relevant 
literature to introduce the clustering evaluation method of 
streamline field based on reservoir numerical simulation 
at present. How to extract and cluster streamline data and 
determine the optimal number of clusters is the focus of 
this study.

In this paper, the data of the streamline field were 
extracted, and the streamline field was evaluated by the peak 
density clustering algorithm. An evaluation coefficient was 
used to evaluate the clustering effect of different streamline 
cluster numbers, and ultimately we achieved the purpose of 
streamline grading optimization. The results show that, for 
the current streamline field of the Nm3-4-1 layer in the Gang 
dong oil field, when the evaluation coefficient we specified is 
the minimum, the clustering result is the best. The grading 
results clearly show the distribution of displacing efficiency 
at the present time of reservoir streamline field. The new 
method provides a way to regulate the streamline field and 
enhance oil recovery.

The establishment of the peak density 
algorithm model

Rodriguez and Laio (2014) published “Machine learning. 
Clustering by fast search and find of density peaks” in the 
magazine “Science”. Their peak density algorithm provided 
a new way for clustering evaluation. They considered that 
the cluster centers should have the characteristics of high 
density and far away from the data point that is larger than it 

is. The difference between density-based and distance-based 
clustering algorithms is that the density-based clustering 
algorithm determines clusters of arbitrary shapes, while the 
distance-based clustering algorithm determines a spherical 
cluster. This plays an important role in the evaluation of data 
sets with noise points and density differences.

The calculation flow of the peak density algorithm is 
shown in Fig. 1. The basic principle is to measure sample 
density based on the number of similar samples. Select the 
maximum density sample of the local area as the clustering 
center, and ensure that the distance between the sample and 
other samples with a larger density is large enough.

The specific steps for the peak density algorithm are:

1.	 Standardize data sets to eliminate the effects of different 
data units.

2.	 Determine the local density and separation distance of 
each sample separately.

3.	 The product of local density and separation distance is 
used as the evaluation value, and the sample evaluation 
values are arranged in descending order. The samples 
with the top rank are selected as the clustering centers.

4.	 Assign the remaining points to the higher density clus-
ters that are adjacent to it.

In the calculation process, the formula for calculating the 
local density of item i is:

where �i is the local density of sample i, dij is the distance 
between sample i and sample j, dc is the cut-off distance, and 
n is the total sample size.

To ensure a large separation distance between sample i 
and larger density samples, we need to evaluate the separa-
tion distance of the sample. The expression is:

where �qi is the separation distance of samples and dqiqj is the 

distance between sample qi and sample qj.
For a cluster center, it should have two attributes with 

larger local density in its own interior and larger separation 
distance from other cluster centers. Therefore, the cluster 
center evaluation formula for the samples i can be deter-
mined as follows:

where �i is the cluster center evaluation value of samples i.
Assume that the total data are divided into n group of 

cluster center, we can descend the � calculated by all the 
data, and the former n sample point is the cluster center 

(1)�i =
∑

j

(dij − dc) i = 1, 2, 3… n,

(2)𝛿qi = min
qj,j<i

dqiqj ,

(3)�i = �i ⋅ �qi ,
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point; then the cluster can be determined according to the 
control range which the user set up at the density center 
point.

The peak density algorithm has strong ability to dis-
tinguish data sets. When the reservoir reaches the high 
water cut stage, the distribution of streamline field is 
complex, the streamline attributes are different in density, 
and so we choose the peak density algorithm to evaluate 
the streamline field on the basis of density distribution 
difference.

Determination of evaluation index 
for clustering effect

The peak density algorithm is used to classify the reservoir 
streamline field, which can quickly determine the collection 
of the same kind of streamline. However, the quality of the 
clustering effect can directly affect the evaluation result. Too 
many or too few streamline clusters are meaningless; it is nec-
essary to evaluate the effectiveness of the clustering results. 
Many scholars put forward different algorithms to evaluate 

Fig. 1   Calculation flow chart of 
peak density algorithm
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the clustering effect from the compactness and separation 
degree of the cluster. Compactness is a measure of whether 
a set of samples is compact enough through the average dis-
tance, variance, and other parameters of the cluster center, 
while the degree of separation is to measure whether the dis-
tance between one cluster and another cluster is far enough.

Calinski determined the effectiveness of the clustering 
effect by evaluating the square sum coefficient between differ-
ent clusters in 1974. When Calinski–Harabasz index reaches 
the maximum, clustering is the best (Caliński and Harabasz 
1974). Its expression is:

In the above expressions, ni is the number of objects in Ci ; 
d(x, y): distance between x and y; ci is the center of Ci ; NC is 
the clusters number; n is the number of objects in sample set; 
Ci is the i-th cluster; i is the code for different cluster clusters.

Dunn (1974) used the minimum distance between different 
clusters as the evaluation of the internal separation degree, 
and the maximum diameter between different clusters was 
used to evaluate the compactness of the cluster. When Dunn 
index reaches the maximum, clustering is the best. The specific 
expression is as follows:

where j is the code for different cluster clusters.
In 1985, Hubert proposed to evaluate the clustering effect 

by calculating the inconsistencies between different cluster 
data. The Modified Hubert coefficients corresponding to dif-
ferent clusters are numerically plotted; when the inflection 
point appears in the curve, the corresponding number of clus-
ters is the best (Hubert and Arabie 1985). The expression is:

where D is the data sets; n is the number of objects in D; 
ci, cj is the center of Ci,Cj , respectively.

Rousseeuw and Sihouettes (1987) defined the contour coef-
ficient, which is based on the distance difference between and 
within the cluster to evaluate the clustering effect. When the 
contour coefficient value is the largest, the corresponding num-
ber of clusters is the best.

(4)

Calinski − Harabasz index ∶

∑

i nid
2(ci, c)∕(NC − 1)

∑

i

∑

x∈Ci
d2(x, ci)∕(n − NC)

.

(5)

Dunn index ∶ mini

{

minj

(

minx∈Ci,y∈Cjd(x,y)

maxk
{

maxx,y∈Ck
d(x, y)

}

)}

,

(6)

ModifiedHubert coefficient ∶

2

n(n − 1)

∑

x∈D

∑

y∈D

d(x, y) dx ∈ Ci, dy ∈ Cj(ci, cj),

(7)

Contour coefficient ∶
1

NC

∑

i

{

1

ni

∑

x∈Ci

b(x) − a(x)

max[b(x), a(x)]

}

,

where a(x) =
1

ni−1

∑

y∈Ci,y≠x
d(x, y) and b(x) = minj,j≠i

�

1

nj

∑

y∈Cj
d(x, y)

�

.

In 1996, Mark Marcucci proposed the method of root-
mean-square standard deviation to evaluate the clustering 
effect. It mainly measured the uniformity of the cluster. 
When the curve formed by the numerical connection of dif-
ferent clustering numbers occurs at inflection point, the cor-
responding clustering number is the best (Marcucci 1996). 
The expression is:

In the above expressions, P is the attributes number of D 
(in this streamline clustering evaluation process, the value 
of P is 4, including centers X and Y, and oil/water phase 
velocities).

The SD index method is based on the concept of the aver-
age scattering and the total separation of the clusters. The 
concept of average scattering is based on variance clustering 
of an object to calculate the compactness, while the total 
separation is calculated according to the distance between 
different cluster centers. The value of SD index is the sum-
mation of these two terms. When the index reaches mini-
mum, the corresponding cluster number is the best (Halkidi 
et al. 2000), and the expression is:

where  Scat(NC) =
1

NC

∑

i

�(Ci)∕�(D) and  Dis(NC) =

maxi,jd(ci,cj)

mini,jd(ci,cj)

∑

i

�

∑

j

d(ci, cj)

�−1

.

In the above expressions, �(Ci) is the variance vector of 
Ci ; �(D) is the variance vector of D ; NCmax is the maximum 
clustering number.

The R-squared index is the ratio of the sum of squares 
between clusters to the total sum of squares of the whole 
data set. It is used to measure the degree of difference 
between clusters. When the index is the largest, the number 
of clusters corresponding to it is the best. Its expression is:

The basic idea of the S_Dbw coefficient is that there is at 
least one point in all cluster centers whose density is larger 
than the density of their midpoint. Then, the SD algorithm is 
used to determine the clustering effect (Halkidi et al. 2000). 
When the S_Dbw coefficient is the smallest, the number of 

(8)

Root-mean-square standard deviation ∶

{

∑

i

∑

x∈C
i

x − c
i

2

/[

P

∑

i

(n
i
− 1)

]}
1

2

.

(9)SD index ∶ Dis(NCmax)Scat(NC) + Dis(NC),

(10)

R-squared index ∶
∑

x∈D

x − c2 −
∑

i

∑

x∈ci

x − ci
2∕

∑

x∈D

x − c2.
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clusters corresponding to it is the best. The expression of 
the S_Dbw coefficient is:Publisher’s Note Springer Nature 
remains neutral with regard tojurisdictional claims in pub-
lished maps and institutional affiliations.

where Dens_bw(NC) = 1

NC(1−NC)

∑

i

�

∑

j,j≠i

∑

x∈Ci ∪ Cj
d(x,ui,j)

max

�

∑

x∈Ci
d(x,ci),

∑

x∈Cj
d(x,cj)

�

�

.

Maulik defined I index in 2002 to determine the best num-
ber of clusters. It represents the degree of separation by the 
maximum distance between cluster centers; when I index 
reaches the minimum, the number of clusters corresponding to 
it is the best (Maulik and Bandyopadhyay 2002). The expres-
sion is as follows:

In the high water cut stage, the distribution of stream-
line field is complex, and the data are greatly influenced by 

(11)S_Dbw coefficient ∶ Scat(NC) + Dens_bw(NC),

(12)I index ∶

�

1

NC
⋅

∑

x∈D d(x, c)
∑

i

∑

x∈Ci
d(x, ci)

⋅maxi,jd(ci, cj)

�P

.

streamline density. Different clustering validation algorithms 
may lead to differences in prediction accuracy.

The peak density algorithm was applied to two-dimen-
sional data sets as shown in Figs. 2, 3, 4, 5, 6, 7 and 8; 
clusters were formed respectively. The effectiveness of dif-
ferent clustering groups was evaluated by the above cluster-
ing validation method. As we can see, judging by the naked 
eye, the data set can be roughly divided into three clusters, 
and the density of each cluster is different, which will also 
result in different verifying results from different verifica-
tion methods. Through the above verification method, the 
clustering effects of different cluster numbers were evalu-
ated as shown in Table 1. The data in bold font in each 
line were the best number of clusters for each verification 
method. We can see that the various verification methods 
are different in determining the optimal number of clusters. 
The conclusions obtained by several validation methods are 
inaccurate. The verification methods that can get the cor-
rect conclusions are Calinski–Harabasz index, Dunn index, 
contour coefficient, SD index and S_Dbw coefficient. The 
S_Dbw coefficient considers the density factor of the data 
set as the evaluation criterion of the clustering separation 
degree, and the evaluation is accurate. Therefore, the S_
Dbw coefficient was used as the criterion to evaluate the 
number of clusters in the streamline field.

The procedure of applying artificial 
intelligence algorithm to analyze 
the streamline field

The current commercial numerical simulation software 
can only determine the streamline field intensity of the 
reservoir by the density of the streamlines in the various 
regions, and the corresponding oil–water saturation attrib-
ute and flow velocity attribute on the streamline cannot 
be classified; these can all lead to the failure to evaluate 
the streamline field quantitatively. Making full use of the 
spatial position of each streamline coordinate point and 
its corresponding oil and water attribute parameters, we Fig. 2   2-D sample data set

Table 1   Comparison of 
clustering effect verification 
methods under different 
numbers of clusters

Number of clusters 2 3 4 5 6 7 8

Calinski–Harabasz index 1152 1177 1103 916 797 722 646
Dunn index 0.0485 0.0751 0.0047 0.0048 0.0048 0.0026 0.0025
Modified Hubert coefficient 2922 3704 3939 4268 4269 4270 4272
Contour coefficient 0.577 0.635 0.455 0.366 0.307 0.273 0.24
Root-mean-square standard deviation 28.012 20.45 14.577 3.147 3.029 2.907 2.786
SD index 0.693 0.365 0.661 0.68 0.936 1.172 1.084
R-squared index 0.616 0.787 0.884 0.977 0.978 0.979 0.979
S_Dbw coefficient 0.593 0.27 0.394 0.361 0.307 0.293 0.286
I index 118.1 102.5 91.9 77.3 58.9 55.1 44
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used the peak density algorithm to classify the rank of the 
streamline cluster and determined the optimal number of 
clusters by the S_Dbw coefficient. The basic process is 

shown in Fig. 3. Based on the peak density algorithm and 
the S_Dbw coefficient evaluation method, the reservoir 
streamline field evaluation software was developed. The 
Petrel_RE-based streamline field evaluation plug-in was 
formed. The software can effectively access the software of 
the commercial reservoir numerical simulation and provide 
technical support for the analysis of the streamline field 
of the reservoir by the peak density clustering algorithm. 
Here we described the following key steps in the whole 
evaluation process.

Data optimization and extraction of reservoir 
streamline field

The extraction of streamline data is mainly to obtain the 
spatial coordinates of the streamline data and their corre-
sponding attribute data, thus applying these data to the clus-
ter analysis. Because the commercial numerical simulation 
software cannot directly derive the relevant parameters of 
the streamline, this study has developed the relevant soft-
ware through the ocean platform of the Schlumberger Com-
pany. The X and Y spatial coordinates and corresponding 
water phase flow velocity and oil phase flow velocity data 
were extracted from the target block streamlines. The spa-
tial coordinate data were to reflect streamline clusters with 
similar positions in space, and the water phase and oil phase 
flow velocities were to ensure that the streamline clusters 
obtained by clustering not only had similar positions, but 
also had similar flow capacity.

Fig. 3   Application of the peak density clustering algorithm to evalu-
ate the streamline field

Fig. 4   Location map of study 
area in Gang dong oil field, 
China
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Standardization of the streamline data

Because all kinds of streamline attributes have different 
data ranges, if they are not standardized, the weight of some 
attributes will be reduced or increased, which will affect the 
clustering results. After standardization of streamline coor-
dinates and attributes, the distribution of various parameters 
can be reflected reasonably. In this study, the location of 
the X and Y coordinates at the middle point, the oil phase 
flow velocity and the water phase flow velocity of one single 
streamline were obtained, and the standard deviation was 
used to standardize the data. The method of obtaining each 
parameter is shown as follows:

X coordinates of the middle point position of the 
streamline:

Fig. 5   Streamline distribution of 
the Nm3-4-1 layer in the Gang 
Dong oil field
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Y coordinates of the middle point position of the 
streamline:

Average water phase flow velocity on a streamline:

Average oil phase flow velocity on a streamline:

(13)Xa =

na
∑

1

xi∕na.

(14)Ya =

na
∑

1

yi∕na.

(15)Vo =

na
∑

1

voi∕na.

(16)Vw =

na
∑

1

vwi∕na.

In all the above expressions, Xa is the X-axis coordi-
nates of the middle point position of a single streamline. 
xi is the x coordinates of a single coordinate point on a 
streamline. na is the total number of data points on a single 
streamline. Ya is the Y-axis coordinates of the middle point 
position of a single streamline. yi is the y coordinates of a 
single coordinate point on a streamline.Vo is the average 
oil phase velocity of a single streamline. voi is the oil phase 
velocity of a single coordinate point on a streamline. Vw is 
the average water phase velocity of a single streamline.vwi 
is the water phase velocity of a single coordinate point on 
a streamline.

Cluster evaluation of reservoir streamline field

We can evaluate the spatial coordinates and the oil–water 
flow ratio of the streamline field through the peak den-
sity algorithm mentioned in “The establishment of the 

Fig. 7   Gradational evaluation of 
Nm3-4-1 layer streamline field 
in the Gang Dong oil field
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peak density algorithm model”. The optimal streamline 
clustering number is determined by the S_Dbw coeffi-
cient mentioned in “Determination of evaluation index 
for clustering effect”. On the basis of characteristic analy-
sis of clustering results, the reservoir streamline grada-
tional evaluation map is formed. The core content of this 
study is how to extract the effective information of the 
streamline field and form the best method of clustering 
and evaluation.

Example application

The Gang Dong oil field, as shown in Fig. 4, is located 
in the middle part of the Huang Hua depression. Its 
main oil-bearing formations are Minghua formation 
and Guantao formation. The average permeability is 
800 × 10− 3 μm2, which corresponds to a typical medium 
high-permeability reservoir. To date, the comprehensive 
water cut has reached 95.68%, and the recovery degree 
has reached 43.18%. At present, there are serious prob-
lems such as invalid reservoir water circulation and dif-
ficulty in subsequent development. The distribution of 
streamline field is complex, and it is hard to improve oil 
recovery. In this paper, the applicability of the grada-
tional optimization of the streamline field was discussed 
through the example of the Nm3-4-1 layer of the Gang 
Dong oil field.

Analysis of the distribution of the streamline field 
in the Nm3‑4‑1 layer

According to the streamline field corresponding to the oil 
saturation property of Fig. 5, it can be seen that the overall 
oil saturation of the Nm3-4-1 layer is close to the residual 
oil saturation. Only the edge of the reservoir has some 
areas with high oil saturation. For such low-potential res-
ervoirs with high water cut, an important reason for the 
difficulty of tapping is that the distribution of the stream-
line field is complex and unclear. Therefore, it is necessary 
to apply the method of peak density clustering to optimize 
the streamline field of the reservoir.

Extraction and evaluation of the reservoir 
streamline field

Extracting the spatial coordinates, and the oil and water 
flow ratio of each position point in the Nm3-4-1 layer of 
the Gang Dong oil field as the parameters of the clus-
ter analysis, after standardization, the parameters were 

evaluated by the peak density clustering method, and 
4–20 groups of streamline cluster number were formed. 
The S_Dbw coefficient was used to evaluate the clus-
tering effect of different streamline cluster number, as 
shown in Fig. 6. With the increase of the streamline clus-
ter number, the S_Dbw coefficient first decreased, indi-
cating that the effect of clustering was gradually changed. 
When the number of cluster was 14, the S_Dbw coef-
ficient was the smallest, and its value was 0.04, then the 
S_Dbw coefficient began to increase. So the best number 
of streamline cluster was 14 and we chose to divide the 
current streamline field of the Nm3-4-1 layer into 14 sets 
of streamline cluster.

Analysis of clustering characteristics 
of the streamline field

The Nm3-4-1 layer streamline field was divided into 14 
types using the peak density clustering algorithm, as shown 
in Fig. 7. Different classifications represent the rank of 
streamline clusters, of which the first type of streamline 
clusters indicates that the oil–water flow ratio of the group 
is the largest and the development potential is the maximum. 
In contrast, the 14th class of streamline clusters represents 
the minimum oil–water flow ratio and the least development 
potential. Sorting the different streamline cluster regions, 
the smallest oil–water flow ratio area is distributed between 
Lq7-8 and Lq8-8 wells. In contrast, the largest oil–water 
flow ratio area is located near the northern Lq2-15 well area. 
The grade of streamline in the middle of the oil reservoir 
is obviously higher than the streamline at the edge of the 
reservoir.

Comparison of the different types of streamline attrib-
utes in the 14 clusters is shown in Table 2. In the first types 
of streamline clusters, the average oil saturation, the flow 
rate of oil phase fluid, and the oil–water flow ratio are much 
higher than that of the 14th type of streamline cluster. The 
above parameters decrease with the increase of streamline 
classification. The average water saturation and the flow 
rate of water phase fluid in different streamline clusters 
increase with the increase of streamline classification. We 
can accurately determine the optimal number of stream-
line clusters using the S_Dbw coefficient. Meanwhile, the 
streamline field evaluation by the peak density clustering 
algorithm can well reflect the current development status 
of the reservoir.

When a medium–high-permeability reservoir reaches the 
high water cut stage, the potential of residual oil in the layer 
is small, but this does not mean that there is no potential in 
the target layer. Through the evaluation of the streamline 
field, we can get the fluid flow path at the current time. At 
the same time, based on the streamline attribute clustering 
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method, we can classify the streamlines on different flow 
trajectories, which can reflect the current flow state of the 
reservoir and determine the potential of different regions. All 
these provide the basis for the adjustment of the streamline 
field in the high water cut period.

Optimization of the reservoir streamline field

According to the current streamline field distribution of 
the Nm3-4-1 layer, the streamline field was adjusted to 
weaken the flow intensity between Lq7-8 and Lq8-8 wells, 
and enhance the flow intensity in the Lq2-15 well area. 
The other areas were adjusted according to the level of 
different streamline clusters. We varied the production 
and injection rates in each well and the equilibrium dis-
placement was achieved according to the classification of 
the streamline field. The streamline field distribution of 
the adjustment scheme was predicted after 10 years, and 
the cluster evaluation and effectiveness verification were 
carried out again. The new streamline field was formed 
as shown in Fig. 8. After adjustment, the optimal clus-
tering number for the streamline field was seven groups. 
Compared with 14 groups of streamline clusters before 
adjustment, the reduction of the number of new streamline 
clusters after adjustment meant that the internal differ-
ences of the whole streamline field were weakened after 
the new cluster evaluation and effect verification, and the 
displacement energy in each region was more balanced. 
By comparing the development indicators before and 
after adjustment in Table 3, the variation coefficient of 
oil–water mobility ratio was reduced by 0.33, the water 

cut was reduced by 3.8%, the cumulative oil production 
was increased by 95,000 tons, the remaining oil satura-
tion changed from 0.42 before adjustment to 0.35 after 
adjustment, and the development effect was improved 
significantly.

Conclusions

We used the peak density clustering algorithm to classify 
the streamline field and determined the best streamline 
cluster number by the S_Dbw coefficient. These methods 
take full account of the internal attributes of streamline 
data, reduce the human factors of qualitative evaluation 
of reservoir streamline field and determine the direction 
for remaining oil potential in the high water cut stage. The 
new streamline field grading method classifies the displace-
ment energy according to the streamline spatial coordinates 
and the oil and water flow ratio, and clearly indicates the 
distribution position of the weak drive streamline and the 
strong drive streamline, making the streamline numerical 
simulation not only relying on the streamline density to 
determine the flow intensity qualitatively, but can reach the 
quantitative evaluation. The Nm3-4-1 layer of the Gang 
Dong oilfield is in the late stage of high water cut develop-
ment. The distribution of the streamline field is complex. 
By adjusting the streamline field in time, the flow strength 
between Lq7-8 and Lq8-8 wells is decreased. The stream-
line field distribution is more uniform, and the development 
effect is improved.

Table 2   Streamline attribute 
statistics with different levels

Streamline 
cluster levels

Average oil 
saturation

Fluid flow rate in 
oil phase

Average water 
saturation

Fluid flow rate in 
water phase

Oil–water 
flow ratio

1 0.39 244.44 0.61 54.03 3.32
2 0.37 792.62 0.63 248.24 2.92
3 0.33 226.33 0.67 92.39 1.91
4 0.32 80.65 0.68 40.44 1.77
5 0.32 86.48 0.68 56.74 1.43
6 0.31 395.95 0.69 461.32 0.82
7 0.28 132.76 0.72 175.41 0.75
8 0.28 167.29 0.72 214.77 0.40
9 0.27 72.62 0.73 297.78 0.20
10 0.26 10.00 0.74 34.53 0.14
11 0.24 19.72 0.76 82.19 0.07
12 0.26 75.72 0.74 482.82 0.05
13 0.23 30.05 0.77 247.24 0.07
14 0.21 12.10 0.79 428.74 0.01
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Fig. 8   Gang Dong oilfield 
Nm3-4-1 layer streamline field 
gradational evaluation after 
adjustment

Table 3   Comparison of parameters before and after adjustment of the Nm3-4-1 layer streamline field

Water cut, % Accumulation of the oil production, Million tons

Before adjustment After adjustment Before adjustment After adjustment

95.3 91.5 49.1 58.6

Residual oil saturation, decimal Variation coefficient of the oil and water flow ratio, decimal

Before adjustment After adjustment Before adjustment After adjustment

0.42 0.35 0.96 0.63
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