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Abstract
In this paper, a novel hybrid forecasting model combining modified group method of data handling (GMDH) and back propa-
gation (BP) is introduced for time series oilfield production forecasting. The proposed model takes advantages of both the 
modified GMDH networks in effective parameter selection and the BP network in excellent nonlinear mapping and provides 
a robust simulation ability for oilfield production with higher precision. Various production parameters of an actual oilfield 
were utilized to analyze and test the annual output predicted by proposed model (modified GMDH-BP). The performance of 
the proposed model was compared with the multiple linear regression (MLR), GMDH, modified GMDH, BP, and the hybrid 
model combining group method of data handling and back propagation (GMDH-BP) using time series annual production 
data. The relative error, correlation coefficient (R), root mean square error, mean absolute percentage of error, and scatter 
index were utilized to investigate the performance of the presented models. The evaluation results indicate that the hybrid 
model provides more accurate production forecasts compared to other models and exhibits a robust simulation ability for 
capturing the nonlinear relation of complex production time series prediction of oilfield.
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Introduction

The production of oil field is a fundamental indicator that 
providing decision-making basis for oil production investment 
and adjustment disposition. The productivity of oilfield is a 
complex nonlinear system with comprehensive characteriza-
tion gathering geological cognition, development policies, 
and production performance, which is becoming an important 
topic and generated abundant research achievements (Lia et al. 
1997; Bardi 2005; Wang et al. 2015). The forecast methods 
of oilfield production can be classified into two categories: 
the traditional approach mainly based on knowledge driven 
and the artificial intelligence algorithm presented by the data-
driven models (Samsudin et al. 2011). The traditional meth-
ods include experience formula (Tang et al. 2010), physical 
simulation (Liu and McVay DA 2009), and curve fitting (Arps 

1945; Hubbert 1980; Wang and Feng 2016) and have been 
well developed in the past decades. This method is widely 
used for the advantage of simple principle and handy calcu-
lation, but has a larger prediction error when dealing with 
complex nonlinear system.

Recent years have witnessed the vigorous development of 
the artificial neural network (ANN) and it is widely applied 
in engineering, computer science, and information science 
(Haykin 1998). Although lacking of physical interpretation 
and insight of production rules, but it can provide sufficiently 
accurate and reliable results. In the field of oil exploitation, 
the ANN models have recently accepted as an effective tool 
to predict reservoir properties such as permeability (Ahmadi 
and Shadizadeh 2012; Ahmadi et al. 2013; Ahmadi 2012; 
Ahmadi and Goudarzi 2013), minimum miscible pressure 
(Ahmadi 2012), asphaltene precipitation (Ahmadi and Gol-
shadi 2012), condensate-to-gas ratio (Zendehboudi et al. 
2012), and forecast oil flow (Jr et al. 2009; Mollaiy Berneti 
and Shahbazian 2013). Especially, for the back propagation 
(BP) neural network, which is one of the most popular algo-
rithm in ANN, has been proved with excellent advantages 
in the aspects of reservoir dynamic performance from single 
pattern recognition (Balch et al. 1999; Tapias et al. 2001) to 
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multi-factor forecasting (Yi-Bao et al. 2005; Yu et al. 2008). 
For complex nonlinear systems, the major advantage of BP 
is strong adaptive, power fault tolerance, and high fitting 
accuracy. However, this method is sensitive to the topologi-
cal construction and different types and quantities of input 
factors may lead to different results (Yu et al. 2008).

It is very difficult to describe the nonlinear system, since 
a priori knowledge is needed for system identification 
(Kashyap 1973). However, the group method of data-han-
dling (GMDH) algorithm has a automatically selection abil-
ity and higher forecast ability without any prior knowledge 
(Mori and Tsuzuki 1990). The GMDH algorithm was first 
developed by Ivakhnenko as a tool for identifying the rela-
tionship between the input layer and output layer in nonlin-
ear system. In the past decades, the GMDH model has been 
successfully applied in a widely fields such as engineering 
(Najafzadeh and Barani 2011), education (Abdel-Aal and El-
Alfy 2009), medicine (Abdel-Aal 2005), and economy (Parks 
et al. 1975). In petroleum engineering, the GMDH model 
has been paid little attention and only a few applications to 
predict oil price (Mohsen et al. 2010) and determine physi-
cal properties (Al-Ajmi et al. 2012; Ghorbani et al. 2014) 
have been carried out. However, conventional GMDH has 
shortcomings of difficulty in determining the best partition 
of data sets and elimination of effective parameters untimely, 
which induce the model precision exists subtle differences.

In this paper, the GMDH algorithm is improved by ran-
domly drawing method and original variable preservation 
method to improve the selection performance. Then, the 

optimized GMDH model is combined with the Back Propa-
gation (BP) neural network, and the effective parameters 
selected by the modified GMDH algorithm are used as the 
input neurons of the BP network. Excellent mapping mod-
eling ability of complex systems of BP network makes it 
available to accurately predict oil production.

Definition of parameters for reservoir 
production forecasting

The production of oilfield is one of the most direct indicators 
of the oilfield development which is a complicated system 
engineering with various development indexes. This paper 
makes a qualitative analysis of the factors influencing oil 
production and initially determined the representative fac-
tors based on reservoir engineering principle. In theory, the 
production of oil fields will pass through rising, stable, and 
declining periods successively during development process, 
as shown in Fig. 1a. For a particular oilfield, the actual oil 
production in recent years generally followed this rule, in 
which stable production period and decline period contrib-
uted most of the oil production (Fig. 1b). It is well known 
that the factors influencing oil reservoir production can be 
divided into geological factors and development factors. For 
a reservoir with certain reserves, the dynamic oil production 
is closely related to the development of technical policies. 
Specifically, the development technology policy involves 
exploitation method, well type, well density, injection 

(a) (b)

(c) (d)

Fig. 1   Conventional development modes of oilfield
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strength, deployment scale for new wells, and other factors, 
which has a different impact on the oil production.

The dynamic change of oil production is mainly affected 
by changes in liquid production, water injection rate, and 
reservoir water cut, which will have a lasting influence upon 
the whole life of petroleum recovery. Especially, in the later 
period of development, the amount of liquid production is 
basically maintained in a stable state and the speed of oil 
production decline keeps rising in the same time. Thus, the 
change of oil production is only affected by the change of 
water cut in this period. The production composition will 
change dramatically in the medium-later stage of oilfield 
development, which is mainly manifests in two aspects: one 
is that the proportion of new wells in oil production will 
decreased significantly with the speed of oil and water wells 
growing slower, as shown in Fig. 1c; the other is that is the 
principal strategies of oilfield development shifting from con-
trolling water cut rising too fast to seek optimizing recovery 
percent of geological reserves and oil recovery rate, as shown 
in Fig. 1d. Based on the analysis above, we have initially take 
these influence factor into consideration: the total amount of 
oil and water wells (x1), the number of active wells (x2), the 
number of new wells (x3), the injection rate of last year (x4), 
water cut (x5), the oil production rate (x6), recovery percent 
of reserves (x7), and oil production of last year (x8).

Methodology

Modified group method of data handling

The algorithm of group method of data handling (GMDH) 
is a feed forward neural network for modeling and identifi-
cation of complex systems, which was proposed by Ivakh-
nenko in the 1960s (Ivakhnenko 1971). General form of 
the network can be expressed by a complicated polynomial 
series in the form of the Volterra series, known as the Kol-
mogorov–Gabor polynomial:

where x represents the input of the system, n is the number 
of the inputs, and a is coefficient.

In general, however, the polynomial proposed above is 
used in the form of multiple binary quadratic equations in 
each layer just like

All pairs of the neurons in each layer are calculated in the 
form (2), and then, the difference between the actual out-
put y and the fitted value ȳ can be obtained. By introducing 
mean square error (MSE) as the principle of screening for 

(1)
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(2)ȳ = a1x
2
1
+ a2x

2
2
+ a3x1 + a4x2 + a5x1x2 + a6.

each layer, the difference mentioned above can be minimized 
continuously until the downtrend stopped:

Compared to the traditional neural network, the GMDH 
network has two significant benefits: (1) determine automati-
cally the number for both network layers and neurons in each 
layer, which diminish the artificiality successfully in the sim-
ulation process and (2) build the connection between the 
selected parameters and the output in the form of polynomi-
als, which differs from other neural networks with black box 
model. However, different division modes for data sets lead 
to multifarious results, which cannot get global optimum 
solution. Meanwhile, fluctuant threshold based on selection 
rules will produce the possibility that different parameters 
in each layer are eliminated untimely.

In this section, the algorithm of GMDH network was 
improved specifically in two ways. First, to avoid the case 
that different division modes of the data sets lead to vari-
ous constructed models with distinct differences, we use 
randomly drawing method to realize the division of the 
data sets into training sets and testing sets. The constructed 
model can get global optimum ultimately with higher pre-
cision than traditional partition manner. Second, the inter-
mediate polynomials in each layer only related to the upper 
layer by screening with external criterion, so the selection 
of effective variables is independent among the network lay-
ers, which lead to the circumstance that partial variables 
are estimated with less influence and eliminated untimely 
in some layers. Point to this situation, we introduced origi-
nal variable preservation method to optimize the selection 
of variables establishing the GMDH network. More details 
of the optimum method were presented in the lecture (Guo 
et al. 2017). In this investigation, the function of the modi-
fied GMDH algorithm was set to provide effective variables 
as the input of the back propagation.

Hybrid modified GMDH‑BP algorithm

The modified GMDH network is good at estimating the 
relationship between the effective variables and the output 
in higher precision, and the back propagation network has 
great advantages in regression problems. In this section, the 
combination of the modified group method of data handling 
(GMDH) and back propagation (BP) as a hybrid model is 
proposed to improve the precision of oil production, which 
overcomes the shortcomings of back propagation for vari-
able selection problems. First, the input parameters are 
selected by the function of the modified GMDH network, 
which has been enhanced the ability of screening variables 

(3)MSE =
1

N

N∑

i=1

(yi − ŷi)
2.
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by the improved algorithm. Then, based on the selected 
variables, the BP network is used to forecast the output of 
oilfield. The whole procedure of the proposed hybrid model 
can be described in the following manner:

Step 1: The original data sets are normalized first and 
then separated into the training sets and testing sets with the 
randomly drawing sample method.

Step 2: With the input variables {x1, x2,… , xm} , each two 
of them are generated and the number of the combination are 
C2
m
=

m(m−1)

2
 . Compare the value ȳ calculated by the formula 

(2) with the true value y and determine new input variables 
{x11, x12,… , x1j} for next layer.

Step 3: Merge the new input variables {x11, x12,… , x1j} 
and the original variables{x1, x2,… , xm} into a new pair of 
input variables and repeat step 2. Sort the MSE of all pairs 
of the neurons in each layer and select the variables with 
fewer error into next layer.

Step 4: The iteration stops when the smallest MSE of 
each layer cannot keep decreasing and record the MSE of 
the last layer. Return to the step 1, repeat steps 1–4 until the 
number of iterations reach the upper limit or the required 
precision of MSE is obtained.

Step 5: The process of the modified GMDH network ends 
and export the selected effective variables {x1, x2,… , xn} 
to the BP network. The whole structure of the network is 
designed as single-hidden layer and the number of hidden 
nodes is computed based on the actual situation.

Step 6: The input variables are propagated forward 
through the designed network in each layer; when it reached 
the output layer, the difference between the output and the 

true value are calculated by a loss function. Then, the error 
is propagated from the output layer back through the same 
network and completes the weight update. The configuration 
of the proposed hybrid model is shown in Fig. 2.

Application of hybrid algorithm based 
on modified GMDH and BP networks

Data collection

The data sets provided by Guo (2009) were utilized in this 
study, which present the dynamic process of a low permea-
bility reservoir development with a time span of 1980–2006. 
Based on the research conducted by Wang et al. for using 
multiple linear regression (MLR) to predict the output of 
oilfield, Guo built an improved MLR model for predicting 
annual output of oilfield by analyzing the statistics and the 
important information from the regression parameters. The 
detailed data sets are shown in Table 1; meanwhile, the per-
formance of the MLR model is shown in Table 2.

Effective parameter selection based 
on the GMDH‑type algorithm

After the normalization procedure, the data sets were used 
in the proposed hybrid model discussed above. The modified 
GMDH algorithm was used to perform effective parameter 
selection, and the corresponding polynomials of oilfield 
dynamic output for selective parameters are as follows:

…

…

…

…
… … …

… …

… … … … …

Fig. 2   Proposed structure of the hybrid model for predicting oil production
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Table 1   Original data sets 
of parameters for production 
forecasting of oilfield

Year Ntotal Nact Nnew qinj fw V R Qlast Q
X1 X2 X3 X4 X5 X6 X7 X8 Y

1980 379 309 136 119.18 35.6 1.87 7.05 126.39 136.75
1981 455 403 157 161.83 38.4 1.68 8.49 136.75 139.63
1982 569 495 207 184.56 39.4 1.77 9.61 139.63 142.19
1983 689 612 311 237.59 41.8 1.45 9.07 142.19 144.28
1984 855 720 351 230.5 42.33 1.53 9.54 144.28 141.72
1985 1028 874 426 276.59 42.93 1.6 9.49 141.72 146.61
1986 1268 1087 472 330.64 46.21 1.55 10.25 146.61 145.45
1987 1446 1197 652 398.14 45.8 1.49 9.35 145.45 148.94
1988 1705 1417 486 455.1 47.8 1.43 9.08 148.94 155.92
1989 1892 1524 458 526.91 49.3 1.31 9.31 155.92 165.23
1990 2113 1761 473 602.04 52.15 1.37 10.13 165.23 202.46
1991 2372 1903 506 740.62 55.46 1.26 10.88 202.46 217.59
1992 2641 2123 705 867.65 59.83 1.18 11.54 217.59 260.64
1993 3090 2574 689 987.98 60.87 1.11 12.07 260.64 302.53
1994 3603 2826 964 1110.87 63.39 1.11 12.96 302.53 349.31
1995 3987 2878 1073 1183.27 63.12 1.2 13.57 349.31 372.58
1996 4530 3002 1003 1309.18 64.79 1.2 14.76 372.58 403.76
1997 4872 3172 1044 1406.31 67.45 1.07 14.59 403.76 420.05
1998 5110 3260 854 1576.06 68.89 1.01 14.88 420.05 439.82
1999 5400 3375 686 1676.03 70.12 0.95 15.4 439.82 464.97
2000 5524 3497 758 1651.9 71.88 0.88 15.82 464.97 471.25
2001 5653 3704 891 1808.34 71.88 0.91 16.46 471.25 520.5
2002 6958 5523 1043 1926.73 72.95 0.83 17.22 520.5 611.55
2003 8680 7805 1181 1958.05 72.83 0.83 17.74 611.55 715.87
2004 9864 8263 1319 2536.5 72.28 0.89 17.71 715.87 810.95
2005 11,805 9522 1946 3003.2 72.01 0.84 16.98 810.85 905.1
2006 12,314 11,092 2347 3298.7 72.31 0.85 17.2 905.1 962.3

Table 2   Summary of the evaluation results for different models

Methods Relative error R RMSE MAPE SI

MLR (Guo 
2009)

0.0935 0.9923 42.0044 4.5892 0.1124

GMDH 0.0724 0.9883 41.6208 8.2109 0.1051
BP 0.0249 0.9969 21.1922 3.2006 0.0575
Modified 

GMDH (Guo 
et al. 2017)

0.0629 0.9984 13.9440 3.0268 0.0378

GMDH-BP 0.0197 0.9949 24.8495 5.4415 0.0675
Modified 

GMDH-BP
0.0099 0.9985 13.8481 3.0293 0.0378
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As a contrast, the traditional GMDH algorithm was con-
sidered and taken to predict the relationship between the 
output and the parameters, and the results are presented as 
follows:

As can be seen from the analytical equations, the modi-
fied GMDH algorithm runs within six rounds of iteration, 
with the MSE of each layer reduces from 0.1999 to 0.0231. 
Meanwhile, the effective parameters selected by the modi-
fied GMDH algorithm are {Ntotal,Nact,Nnew, �,R,Qlast}. By 
contrast, the traditional GMDH algorithm runs within three 
rounds of iteration, with the MSE reduces from 0.1999 to 
0.0631, and the output parameters are {Nnew,Qinj, �,Qlast}.

The output prediction based on the BP algorithm

Different types and numbers of the input nodes lead to differ-
entiated outcomes. As mentioned above, the effective param-
eters selected by the traditional/modified GMDH network 
fed into the BP network for analysis and prediction.

The structure of the BP network adopted single-hid-
den layer network. The number of the input nodes equals 
to the sum of parameters selected by GMDH type model, 
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respectively. Determining the number of nodes in hidden 
layer is a crucial point for BP network prediction. Either 
too many or too few nodes in hidden layer will increase the 
simulating error. Major methods for solving this problem 
conclude the following rules:

Liu (2008):

or

Fu and Zhao (2010):

In which l is the number of nodes in hidden layer, n and 
m are the number of nodes in the input and output layers, 
respectively, and a is constant ranging from 0 to 10. In this 
paper, the actual number of nodes in hidden layer is com-
puted to be 

√
6 + 1 + 10 = 13.

For the hybrid model of modified GMDH and BP net-
work, a total of 22 records used for oilfield output prediction 
were gathered from 27 records with the production history 
from 1980 to 2006. The learning rate was 0.1, the stop cri-
terion of error function was set to 0.001 and the maximum 
number of iteration was 1000. The initial weights and thresh-
old were randomly generated by the computer. In the process 
of model operation, 22 data samples (81%) were randomly 
selected for training the BP network and the remaining 5 
data samples (19%) were used as testing data sets for model 
evaluation, the average results of residual error obtained 
from the six prediction models are presented in Table 2.

Results and discussion

The outputs predicted by the hybrid model are presented 
in Fig. 3, compared with the traditional equations (MLR) 
and the artificial neural network models (GMDH, modified 

(27)l = 2m + 1

(28)l =
√
mn

(29)l =
√
n + m + a.

0
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Fig. 3   Comparison chart for actual/predicted production by different 
models
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GMDH, BP, GMDH-BP). The comparison chart indicates 
that the hybrid model combining the modified GMDH net-
work and BP algorithm is more approximate to the actual 
production for the oilfield than other models listed. To inves-
tigate the precision in-depth analysis, error (mean relative 
error), R (correlation coefficient), RMSE (root mean square 
error), MAPE (mean absolute percentage of error), and SI 
(scatter index) are utilized to investigate the performance of 
the presented models:

where Yi(Model) and Yi(Actual) are the forecasted and observed 
values, respectively, Ȳ(Model) and Ȳ(Actual) are the average of 
the forecasted and observed values, and M is the total of 
events.

The statistical results of the proposed traditional equations 
and artificial intelligence approaches with training and test-
ing data are presented in Table 2. It is clear at a glance that 
the hybrid model combining modified GMDH network and 
BP algorithm (modified GMDH-BP) is more accurate than 
other models with higher correlation (R = 0.9986) and lower 
error (error = 0.0099, RMSE = 13.7979, MAPE = 2.9889, 
SI = 0.0376). In general, the neural network tools perform 
better with a relatively higher correlation and lower error 
in prediction precision. Comparing with the hybrid model 
combining traditional GMDH network and BP algorithm 
(GMDH-BP), the proposed model (modified GMDH-BP) 
improves overall precision in forecasting, with higher cor-
relation from 0.9949 to 0.9986 and lower error from 0.0197 
to 0.0099 (error), from 24.8495 to 13.7979 (RMSE), 5.4415 
to 2.9889 (MAPE), and 0.0675 to 0.0376 (SI), respectively.

Figure 4 shows the comparison of the six models men-
tioned above with time series and scatter plots for predicting 
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�∑M

i=1
(Yi(Actual) − Ȳ(Actual))

2
⋅

∑M

i=1
(Yi(Model) − Ȳ(Model))
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((Yi(Model) − Ȳ(Model)) − (Yi(Actual) − Ȳ(Actual)))
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,

the production of oilfield. The results derived from the 
whole six models are in agreement with the actual produc-
tion, indicating that these prediction algorithms are appli-
cable for modeling oilfield production series data. However, 
the dashed line generated from modified GMDH-BP is the 
closest than other models to the solid line which indicating 
the actual output of oilfield. By means of using correla-
tion coefficient to evaluate the degree of fitting, the hybrid 
model combining the modified GMDH network and BP 
algorithm (modified GMDH-BP) is slightly superior to 
other models taken into consideration. The successful per-
formance obtained in this paper indicates that the hybrid 
model (modified GMDH-BP) is a powerful tool to simu-
late the oilfield production time series and has the ability 
to provide a better prediction performance. In conclusion, 
the evaluation results suggest that the best performance can 
be obtained by the hybrid model (modified GMDH-BP), 
followed by modified GMDH, BP, GMDH-BP, MLR and 
GMDH models in turn.

Conclusion

Yearly production estimation of oilfield is vital in oil-
field development programming and plenty of models 
predicting the dynamic output have been proposed in 
recent years. In this paper, we have demonstrated sys-
tematically how the yearly production of oilfield could 
be represented by a hybrid model combining the modi-
fied GMDH and BP models. To illustrate the capability 
of the hybrid model (modified GMDH-BP), an actual oil-
field with various production parameters was chosen to 
be analyzed and used to test the annual output predicted 
by six models. The forecast of the oilfield production is 
a complex issue, including various parameters in which 
share different impact on each other. Therefore, the first 
step of model construction is the effective parameter selec-
tion on the basis of using modified GMDH network. The 
modified GMDH network proposed in this paper performs 
better in selecting input variables, owing to the improve-
ment of introducing randomly drawing method for origi-
nal datasets and original variable preservation method 
to optimize the selection of variables in each layer. In 
addition, the excellent precision of the BP algorithm is 
another favorable factor for obtaining the best degree of 
fitting for the modified GMDH-BP model. By comparing 
the performances of the six models, the proposed hybrid 
model (Modified GMDH-BP) provides the best forecast 
precision with highest correlation (R = 0.9986) and lowest 
error (error = 0.0099, RMSE = 13.7979, MAPE = 2.9889, 
SI = 0.0378). It should be mentioned that the hybrid model 
(modified GMDH-BP) provides a robust simulation ability 
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Fig. 4   Comparison of the performances of MLR, GMDH, modified GMDH, BP, GMDH-BP, and modified GMDH-BP models for oilfield fore-
casting
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of capturing the nonlinear relation of complex production 
time series prediction of oilfield and thus producing more 
accurate forecasts.
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