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Abstract
Lost circulation costs are a significant expense in drilling oil and gas wells. Drilling anywhere in the Rumaila field, one 
the world’s largest oilfields, requires penetrating the Dammam formation, which is notorious for lost circulation issues and 
thus a great source of information on lost circulation events. This paper presents a new, more precise model to predict lost 
circulation volumes, equivalent circulation density (ECD), and rate of penetration (ROP) in the Dammam formation. A 
larger data set, more systematic statistical approach, and a machine-learning algorithm have produced statistical models 
that give a better prediction of the lost circulation volumes, ECD, and ROP than the previous models for events. This paper 
presents the new model, validates the key elements impacting lost circulation in the Dammam formation, and compares the 
predicted outcomes to those from the older model. The work previously presented by Al-Hameedi et al. (http://www.onepe 
tro.org, 2017a; http://www.AADE.org, 2017b) provided a platform for predicting the severity of lost circulation incidents 
in the Dammam formation. Using the new models, the predictions closely track actual field incidents of lost circulation. 
When new lost circulation events were compared with predictions from the old and new models, the new model presented 
a much tighter prediction of events. Three equations for optimizing operations were developed from these models focusing 
on the elements that have the highest degree of impact. The total flow area of the nozzles was determined to be a significant 
factor in the ROP model indicating that nozzle size should be chosen carefully to achieve optimal ROP. Good modeling of 
projected lost circulation events can assist in evaluating the effectiveness of new treatments for lost circulation. The Dam-
mam formation is a significant source of lost circulation in a major oilfield and warrants evaluation of the effectiveness of 
lost circulation treatments. These techniques can be applied to other fields and formations to better understand the economic 
impact of lost circulation and evaluate the effectiveness of various lost circulation mitigation efforts.
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Abbreviations
PV  Plastic viscosity
YP  Yield point
ECD  Equivalent circulation density
SPM  Strokes per minutes
MW  Mud weight
RPM  Revolutions per minute
TFA  Total flow area of the nozzles
WOB  Weight on bit

Background

Drilling fluid losses and problems associated with lost cir-
culation while drilling represent a major expense in drilling 
oil and gas wells, by industry estimates, more than 2 billion 
USD is spent to combat and mitigate this problem each year 
(Arshad et al. 2015).

The materials of the drilling fluid are so expensive, com-
panies spent $7.2 billion in 2011 and it is expected to reach 
$12.31 billion in 2018 as the global market for drilling 
fluid indicates, which shows a vigorous yearly maximize 
by 10.13% (Transparency Market and Research 2013). The 
cost of the drilling mud is equivalent to averages 10% of 
total well costs; however, drilling fluid can extremely impact 
the ultimate expenditure (Darley and Gray 1988). Lost cir-
culation events, defined as the loss of drilling fluids into 
the formation, are known to be one of the most challenging 
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problems to be prevented or mitigated during the drilling 
phase. The severity of the consequences varies depending on 
the loss severity; it could start as just losing the drilling fluid 
and it could end in a blowout (Messenger 1981). Among the 
top ten drilling challenges facing the oil and gas industry 
today is the problem of lost circulation. Major progress has 
been made to understand this problem and how to combat it. 
However, most of the products and guidelines available for 
combating lost circulation are often biased towards adver-
tisement for a service company.

Lost circulation is a common drilling problem especially 
in highly permeable formations, depleted reservoirs, and 
fractured or cavernous formations (Nayberg and Petty 1986). 
The range of lost circulation problems begins in the shallow, 
unconsolidated formations and extends into the well-consol-
idated formations that are fractured by the hydrostatic head 
imposed by the drilling mud (Moore 1986). Two conditions 
are both necessary for lost circulation to occur downhole: (1) 
the pressure in the wellbore must exceed the pore pressure 
and (2) there must be a flow pathway for the losses to occur 
(Osisanya 2002). Subsurface pathways that cause, or lead to, 
lost circulation can be broadly classified as follows:

• Induced or created fractures (fast tripping or underground 
blow-outs).

• Cavernous formations (crevices and channels).
• Unconsolidated or highly permeable formations.
• Natural fractures present in the rock formations (includ-

ing non-sealing faults).

The rate of losses is indicative of the lost pathways and 
can also give the treatment method to be used to combat the 
losses. The severity of lost circulation can be grouped into 
the following categories (Basra Oil Company 2012):

• Seepage losses: up to 1 m3/h lost while circulating.
• Partial losses: 1–10 m3/h lost while circulating.
• Severe losses: more than 15 m3/h lost while circulating.
• Total losses: no fluid comes out of the annulus.

The Rumaila field in Iraq is one of the largest oilfields in 
the world. Wells drilled in this field are highly susceptible to 
lost circulation problems when drilling through the Dammam 
formation. Lost circulation events range from seepage losses 
to complete loss of the borehole and are a critical issue in 
field development. Figure 1 shows the Rumaila field location.

The Dammam formation is a very shallow formation 
prone to mud losses and is continuous across the Rumaila 
field. The top of this zone is found between 435 and 490 m; 
thus, all of the wells in the field must be drilled through this 
zone. The interval is composed of interbedded limestone and 
dolomite, which is generally 200–260 m thick. The top of 
Dammam was eroded after burial and is karstified at depth. 

The karst features are believed to lead to the characteristic 
mud losses seen while drilling through this interval (Al-
Hameedi et al. 2017a). Because of the persistent losses in the 
Dammam formation in such a valuable and large oilfield, it 
is worth studying the lost circulation issues of the Dammam 
formation to determine the effectiveness of treatments and 
mitigate efforts. Figure 2 provides a summary of the strati-
graphic column and primary geological formations in Basra’s 
oil fields. Formations, where loss circulation has occurred, 
include the Dammam, Hartha, and Shuaiba formations. The 
aim of this work is to provide estimation models for volume 
loss, equivalent circulation density (ECD), and rate of pen-
etration (ROP) that can be used prior to drilling the Dammam 
formation using advanced machine learning approach. Also, 
the proposed models can be used in reverse to set up the key 
drilling parameters to avoid or at least mitigate mud losses.

Modeling lost circulation in the Dammam 
formation

Data analysis has become a very popular topic nowadays. 
This is due to the large data sets that are recorded and avail-
able. Utilizing data analysis methods/techniques will help 
to evaluate and understand the performance of the particu-
lar process and will help to optimize the future outcomes. 
Data analysis has been used in most industries, for petroleum 
engineering particularly; data analysis has been utilized 
mostly in reservoir engineering to evaluate enhanced oil 
recovery methods (Al-Dhafeeri et al. 2005; Alvarado et al. 
2008; Baker et al. 2012; Aldhaheri et al. 2016). However, in 
drilling, there is a gap in data analysis, since most drilling 
data are confidential and owned by companies.

Leite Cristofaro et al. (2017) utilized artificial intelligence 
strategies to minimize lost circulation NPT in deep water Bra-
zilian wells. Several predictive data-mining techniques used 
such as Naive Bayes, Instance-Based and Neural Network to 

Fig. 1  Rumaila field (Parks 2010)
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predict losses and choose the best treatment for losses prior to 
entering the losses zone. Hegde et al. (2015a, b) used princi-
pal component regression, least squares regression, and Ridge 
and Lasso regression as well as bootstrapping, trees, bagging, 
and the random forecast with data of to predict ROP. Wallace 
et al. (2015) developed a statistical learning model to predict 
and optimize the real-time drilling performance.

This paper shows the application of new models devel-
oped to study volume loss, equivalent circulating density 
(ECD), and rate of penetration (ROP) for lost circulation 
events within the Dammam formation in the Rumaila field 
in Iraq. The resulting models are compared to the previous 
models developed by Al-Hameedi et al. (2017a, b) for the 
Dammam formation in the same field. The old models pre-
sented by Al-Hameedi et al. (2017a, b) used 75 wells within 
the Dammam formation in the South Rumaila field in Iraq to 
develop three statistical models based on volume loss, ECD, 
and ROP. Least squared multi-linear regression was utilized 
to build the old models.

This study focuses on mud loss and lost circulation infor-
mation extracted from drilling data of over 500 wells in the 

Rumaila field in Iraq and the lost circulation screening cri-
teria developed for the Dammam formation, based on the 
historical mud loss and lost circulation problems. Data from 
over 500 wells were utilized to train the models, and another 
set of data of over 200 wells was used to test the models. 
Three mathematical models are created to evaluate the miti-
gation of lost circulation events—volume loss, ECD, and 
ROP. Lost circulation events are categorized according to 
the total volume of fluid lost during the event. The volume of 
mud losses depends on number of factors, including forma-
tion properties, drilling-fluid properties, operational drilling 
parameters, and formation breakdown pressure.

The aim of this new work was to develop a more sys-
tematic approach utilizing advanced machine learning algo-
rithm to estimate mud losses prior to drilling to choose the 
best operational drilling parameters to limit volume loss. 
The new models use a significantly larger data set (over 500 
wells compared to 75 wells on the old models) and utilize 
advanced machine learning algorithm (new models used par-
tial least squares (PLS) regression and the old model used 
simple least square multi-linear regression). In addition, 

Fig. 2  Stratigraphic column of the Rumaila field (Al-Ameri et al. 2011)



1342 Journal of Petroleum Exploration and Production Technology (2019) 9:1339–1354

1 3

more operational drilling parameters were included in the 
new models such as plastic viscosity (PV) and the total flow 
area of the nozzles (TFA).

PLS regression algorithm

Principal component analysis (PCA) is an unsupervised learn-
ing method, it is the very common approach to modeling to get 
low-dimensional features from a large set of variables. In other 
words, PCA is a mathematical tool that transforms a number of 
correlated variables to a smaller number of uncorrelated vari-
ables called principal components. PCA honors the variability 
of the data; thus, the first principal component will tend to 
represent most of the variability of the predictors (X-variables). 
This means that the response (Y-variable) is not utilized in 
identifying the principal components; this is why, it is called 
the unsupervised method. Unlike unsupervised learning tech-
niques, supervised methods can be tested to see whether the 
model is estimating the response (Y-variable) with an accept-
able range of error; such a test can be done with data that were 
not utilized on creating the model. Thus, partial least square 
(PLS), a supervised method alternative to PCA, used in this 
study. PLS will compute a new set of latent factors that are the 
linear combination of the original data. Then, using the new 
set of latent factors, a model will be fitted via least squares. 
Unlike, PCA, PLS will identify these new latent factors in a 
supervised technique—that is, it honors the response (Y-varia-
ble) as well as the predictors (X-variables). In other words, PLS 
will use both the predictors and the response to find the best 
direction that best explains the variability of the predictors as 
well as honoring the Y-variable (James et al. 2013). PLS was 
chosen from other regression techniques, because it is very 
efficient with large data sets and a large number of variables 
with collinearity. In addition, it is recommended for use in the 
petroleum industry (Tufféry 2011).

The first step of the algorithm of the PLS regression is 
centering and scaling the data. This means that the response 
and the predictor will be centered and scaled to have a mean 
and standard deviation of zero and one, respectively. Center-
ing the data is important, since the variable mean and its var-
iation around the mean will be both involved in constructing 
the latent factors. In other words, this will allow a change in 
one standard deviation of a predictor to be equivalent to the 
change of one standard deviation of another predictor. The 
data are scaled and centered before forming the interaction 
term. To illustrate how the interaction term is calculated, 
assume that there are two predictors (X1 and X2), the interac-
tion term can be calculated from Eq. 1 (SAS 2008):

(1)

Interaction term =

(

X1 −mean(X1)

STD(X1)

)

×

(

X2 −mean(X2)

STD(X2)

)

.

The most common PLS algorithm is called non-linear 
iterative partial least square (NIPALS). The NIPALS works 
by extracting one factor at a time. Let Y = Yo be the scaled 
and centered matrix of the response value and X = Xo be the 
centered and scaled matrix of the predictors. A linear com-
bination t = Xow of the predictors will be created, where t is 
the score vector and w is its associated weight vector. The 
PLS algorithm predicts both Xo and Yo by regression on t, as 
shown in Eqs. 2 and 3:

The vectors c and p are called the Y- and X-loadings, 
respectively. The linear combination t = Xow will be cho-
sen to maximize the covariance t′u with some response 
(Y-variable) combination u = Yoq. In addition, the X- and 
Y-weights, w and q, are proportional to the first eigenvectors 
of X′

o
YoY

′
o
Xo and Y ′

o
XoX

′
o
Yo , respectively. This accounts of 

the extraction of the first latent factor of the PLS regression. 
The second latent factor can be extracted in the same way by 
replacing Xo and Yo with the X- and Y-residuals from the first 
latent factor, as shown in Eqs. 4 and 5 (SAS 2008):

The same extraction process of the score vectors is 
repeated for as many latent factors as are desired (SAS 
2008).

Cross validation

After computing all latent factors, a cross validation has to 
be performed to decide how many latent factors should be 
included in the model. The number of latent factors has to 
be chosen to meet two goals; the first one is to capture the 
variation in X-variables and to honor the predictive (Y-vari-
able); the second one, however, is to avoid overfitting (avoid 
utilizing large number of latent factors that may result in 
overfitting). The root mean of the predicted residual sum of 
squares (PRESS) and scores plots are typically used to per-
form cross validation, the process of finding the root mean 
PRESS for a specific number of factors A, is summarized in 
Fig. 3 (SAS 2008).

Variable importance in projection

One of the most important steps in the PLS algorithm is to 
choose the X-variables that are important to the model and 
eliminate the X-variables that are not important. This can 
be done using variable importance in projection (VIP). The 
VIP is computed for each X-variable, and then, a threshold 

(2)X̂o = tp, where p� = (t�t)−1t�Xo

(3)Ŷo = tc�, where c� = (t�t)−1t�Yo.

(4)X1 = Xo − X̂o

(5)Y1 = Yo − Ŷo.
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has to be chosen to eliminate the variables that are below the 
chosen threshold. In general, a threshold of 0.8 is considered 
to be low; thus, any variable has a VIP less than 0.8 will be 
eliminated (Eriksson et al. 2006).

For each X-variable (j1, j2 … jn), the VIP for each X-var-
iable can be calculated as follows (Wold et al. 1993; Tran 
et al. 2014):

where d is the number of variables, A is the number of latent 
factors, and vk is the variance of X which can be expressed 
as follows:

where Ck is calculated for each column of the t score vector 
and for the predicted response y as follows:

Figure 4 shows a summary of the PLS algorithm.

Approach

Given the number of drilling parameters that affect mud loss 
and the complex interrelationship between some of the drill-
ing parameters, a drilling engineer is challenged to select 
the optimum value for each parameter that will optimize 
the entire situation. The purpose of this work is to develop 
advanced regression models to estimate mud loss, ECD, and 
ROP using advanced statistical techniques. These models 
are then tested with new data and compared with previous 
regression models developed for the Dammam formation 
(Al-Hameedi et al. 2017a).

Data of key drilling parameters [e.g., ROP, ECD, mud 
weight (MW), yield point (Yp), plastic viscosity (PV), flow 

(6)VIPj =

√

√

√

√

d

A
∑

k=1

vk(wkj)
2∕

A
∑

k=1

vk,

(7)vk = ck
2t�
k
tk,

(8)ck =
t�ky(k)

t�ktk
.

rate (Q), strokes per minutes (SPM), revolutions per min-
utes (RPM), weight on bit (WOB), pressure losses (ΔPlosses), 
and total flow area (TFA) of the nozzles] for more than 500 
wells were gathered from daily drilling reports, technical 
reports, final wells reports, and drilling programs. Partial 
least squares (PLS) regression was used to develop these 
models. All key drilling parameters were tested to find which 
parameters were significant and should be included in the 
models. The variable importance in projection (VIP) was 
used to test the key drilling parameters. The VIP threshold 
is assumed to be 0.8, and any key drilling parameter has a 
VIP greater than 0.8 will be included in the model. Finally, 
a sensitivity analysis is conducted for the parameters influ-
encing mud loss, ECD, and ROP using Visual  Basic® for 
Application (VBA) in  Excel®.1

The purpose of the sensitivity analysis is to examine 
which parameter has the highest influence in each model and 
to test the effect of each parameter in each model. Figure 5 
summarizes the methodology of this paper.

Volume loss model

The process of creating the model involves the section of 
the number of latent factors. Score plots help to select the 
optimum number of latent factors that will be used in the 
model. Unlike the principal component analysis (PCA), 
the PLS scores plots are calculated to explain the varia-
tion in x and y and to maximize the relationship between 
x- and y-variables. Choosing the optimum number of 
latent factors is a complicated process and requires trial 
and error until reaching the optimum number of latent fac-
tors. Using too many latent factors will lead to overfitting 
the model which in return will flip the sign of some vari-
ables and make the model unrealistic. On the other hand, 
using a very low number of latent factors will not explain 

Fig. 3  Process of finding root 
mean of PRESS

Fit a model with A-number 
of factors for each 

training set

Apply the prediction 
formula to the 

observation in the 
validation set

For each validation data 
set, calculate the squared 
difference between each 
observed validation set 
and its predicted value
(the squared prediction 

error)

For each validation data 
set, average the 

calculated squared 
differences from the 

previous step and dived 
the results by the 

variance of the entire 
response column

Sum the previously 
calculated means, that is 
the PRESS statistic for 

the given Y-variable

The Root Mean PRESS for 
A-number of factors is the 
square root of the average 

of the PRESS values 
across all responses

1 Visual Basic and Excel are registered trademarks of Microsoft.
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the variability of x and y. Two criteria are used to select 
the optimum number of latent factors. The first one is by 
minimizing at the root mean of the predicted residual sum 
of squares (PRESS). The second one is by inspecting the 
score plots of x- and y-variables, and each latent factor 
will have one score plot of x versus y. If there is a trend 
in the score plot, it means that the latent factor should be 
included in the model. However, if no trend is presented 
in the score plot, the latent factor should be ignored (Tuf-
féry 2011).

Figure 6 shows the root mean of PRESS versus number 
of latent factors. The figure is plotted for ten latent factor to 
inspect the optimum number of latent factors. By applying 
the first criteria, it is easy to see that having two or more 
latent factors will minimize the root mean of PRESS. How-
ever, it is not clear how many latent factors should be cho-
sen. This is where the scores plots come to play, Fig. 7 shows 
the score plot for six latent factors. By applying the second 
criteria, having more than two latent factors will not add any 
valuable information to the model, since there is almost no 

Fig. 4  PLS algorithm summary

Fig. 5  Approach
Key drilling 

parmeters data 
gathering for more 

than 500wells 

PLS regression used 
to create ECD, ROP, 

and mud loss models

Any key drilling 
parmeter has VIP < 
0.8 is dropped from 

the models

Models are tested 
with new data and 
compared to old 

models

Sensitivity analysis 
for all parmeters in all 

models
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relationship between x scores and y scores after two factors. 
Thus, two factors are chosen for this model.

Figure 8 shows the VIP versus the coefficients plot for 
each drilling parameter. Any drilling parameter below the 
0.8 VIP line will be dropped, since it is considered not sig-
nificant to the model. After dropping those parameters, the 
coefficients on the model will be changed, and Fig. 9 shows 
the new VIP versus coefficient plot after removing the key 
drilling parameters that have less than 0.8 VIP.

Figure 10 shows the correlation loading plot. This plot 
shows the relationship between the variables, the strong rela-
tionship between the variables can be indicated from their 
distance from each other, the closer the variable to another 
variable indicates a strong relationship and vice versa. 
Another thing can be observed from this plot is the percent-
age circles (25%, 50%, 75%, and 100%); the significant vari-
ables should be between the 50 and 100%. This is a useful 
check for the significant variables that might be missed by 

the VIP test. Moreover, the R-squared of each latent factor 
is shown in the plot, and the cumulative R-squared for this 
model is the sum of the y R-squared of each latent factor, 
which is 0.83. Volume loss can be estimated using Eq. 9 
prior to drilling the Dammam formation:

(9)

Volume loss = −1088.52 + 509.76 × ECD
( g

cc

)

+ 504.35 ×MW
( g

cc

)

− 0.492 × Nozzels, TFA (in.2)

+ 0.93 × PV(cp) + 0.86 × ROP
(

m

h

)

+ 0.6 ×WOB (ton).

Fig. 6  Number of latent factors versus root mean PRESS for volume 
loss model

Fig. 7  Scores plots for volume 
loss model

Fig. 8  VIP versus coefficient for volume loss model (before refining)

Fig. 9  VIP versus coefficient for volume loss model (after refining)
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Figures 11 and 12 show the percent variation explained 
by each factor for x-variables and y, respectively. It is easy 
to see that the second factor is not contributing to the model 
as much as the first factor. Choosing more than two factors 
will not add anything to the model. Thus, two factors are 
the optimum number of factors for this model. Figure 13 
shows the residual plot of the volume loss model. A residual 
plot is a plot of residual (actual minus predicted) versus the 
predicted. No trend is observed in the residual plot. Thus, 
the model is valid.

Tornado chart of volume loss model

Figure  14 presents a tornado chart for the significant 
parameters of volume loss model. A 10% sensitivity is 
used in this analysis. The base parameters are as follows: 
ECD = 1.075 g/cc, MW = 1.07 g/cc, TFA = 4.42 in.2, PV = 9 
cp, ROP = 7 m/h, and WOB = 8 ton. Figure 14 shows that 
volume loss is highly influenced by ECD, and least influ-
enced by TFA.

Fig. 10  Correlation loading plot of volume loss model

Fig. 11  Percent of variation explained by each factor for X-variables 
(volume loss model)

Fig. 12  Percent of variation explained by each factor for Y-variable 
(volume loss model)

Fig. 13  Residual plot of volume loss model
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Fig. 14  Tornado chart for volume loss model
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ECD model

The same procedure is applied to develop a model to esti-
mate ECD. Figure 15 shows the root mean of PRESS versus 
number of latent factors for the ECD model. Using Fig. 15, 
the number of factors that will minimize the root mean 
PRESS is 4 factors. Figure 16 shows the scores plots for 
the ECD for 4 factors. Looking closely at Fig. 16, an argu-
ment can be made about factor 4 which is not contributing 
much to the model. If only the scores plots are used, then the 
4th factor can be eliminated. However, deleting this factor 
will flip and signs of the model and the minimization of the 
root mean PRESS will not be obtained. Thus, the 4th factor 
should be kept in the model.

Figure 17 shows the VIP versus the coefficients of the 
model for each key drilling parameter. A threshold of 0.8 
is utilized to refine the model. Any key drilling parameter 
that has a VIP less than 0.8 was ignored. Figure 18 shows 

the VIP versus the coefficients of the key drilling parameter 
after applying the 0.8 VIP threshold.

Figure 19 shows the loading plot of the ECD model. 
Again, the closer the variables to each other indicate a strong 
relationship and vice versa. The cumulative R-squared for 
this model is 0.88. Equation 10 can be used to estimate ECD 
prior to drilling the Dammam formation:

Figures 20 and 21 show the percent variation explained 
by x and y, respectively. Going back to the argument of add-
ing factor 4, using Fig. 20, it is easy to see that factor 4 is 
contributing to the x variations especially for the variable 
nozzles TFA and WOB. Thus, it is necessary to add factor 
4 to the model. Figure 21 shows that only factors 1 and 2 
are contributing to the variation of y. Figure 22 shows the 
residual plot of the ECD model, and no trend is observed on 
the residual plot. Thus, the model is valid.

(10)

ECD = 0.76 + 0.28 ×MW
( g

cc

)

− 0.00084

× Nozzels, TFA (in.2) + 0.0013 × PV (cp)

+ 0.00053 ROP
(

m

h

)

+ 0.00057 ×WOB (ton).

Fig. 15  Number of latent factors versus root mean PRESS for ECD 
model

Fig. 16  Scores plots for ECD 
model

Fig. 17  VIP versus coefficient for ECD model (prior to refining)



1348 Journal of Petroleum Exploration and Production Technology (2019) 9:1339–1354

1 3

Tornado chart of ECD model

Figure 23 shows a tornado chart for the significant param-
eters of ECD. A 10% sensitivity is used in this analysis. The 
base parameters are as follows: MW = 1.06 g/cc, PV = 9 cp, 
TFA = 4.42 in.2, ROP = 7 m/h, and WOB = 8 ton. Figure 23 
shows that ECD is highly influenced by MW, and least influ-
enced by TFA.

ROP model

Once again, the same analysis and procedure explained 
previously are utilized to create a model to estimate ROP. 
Figure 24 shows the root mean of PRESS versus number of 
latent factors for the ROP model, 3 or 4 factors will mini-
mize the root mean of PRESS, but it is still not clear how 
many latent factors should be used. Figure 25 shows the 

Fig. 18  VIP versus coefficient for ECD model (after refining)

Fig. 19  Correlation loading plot of ECD model

Fig. 20  Percent of variation explained by each factor for X-variables 
(ECD model)

Fig. 21  Percent of variation explained by each factor for Y-variable 
(ECD model)

Fig. 22  Residual plot of ECD model
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Fig. 23  Tornado chart for ECD model
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scores plots for 3 factors of the ROP model. From Fig. 25, 
it is easy to see that the three latent factors are doing a good 
job explaining the variation of the data. Thus, three factors 
are chosen to be the optimum number of factors.

Figure 26 shows the VIP versus the coefficients of the 
model for each key drilling parameter. A threshold of 0.8 is 
utilized to refine the model. Any key drilling parameter that 
has a VIP less than 0.8 was ignored. Figure 27 shows the 
loading plot of the ROP model. The cumulative R-squared 
for this model is 0.94. Equation 11 can be used to estimate 
ROP prior to drilling the Dammam formation:

Figure 28 shows the residual plot of the ROP model, 
and no trend is observed on the residual plot. Hence, 
the model is valid. Figures 29 and 30 show the variation 
explained by each latent factor for x- and y-variables, 
respectively. Looking at Fig. 29, it is easy to see that factor 

(11)

ROP = 6.94 − 1.00338 ×MW
( g

cc

)

− 0.55

× Nozzles, TFA (in.2) + 0.027 × PV (cp)

+ 0.012 × RPM + 0.0021 × SPM + 0.295

×WOB (ton).
3 is contributing to the variability of SPM and RPM. Thus, 
it was necessary to include the factor 3 on the model. Fig-
ure 30 shows that only factors 1 and 2 are contributing to 
the variability of y.

Fig. 24  Number of latent factors versus root mean PRESS for ROP 
model

Fig. 25  Scores plots for ROP 
model

Fig. 26  VIP versus coefficient for ROP model (prior to refining)

Fig. 27  Correlation loading plot of ROP model
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Tornado chart of ROP model

Figure 31 shows a tornado chart for the significant param-
eters of ROP. A 10% sensitivity is used in this analysis. 

The base parameters are as follows: MW = 1.06  g/cc, 
PV = 9 cp, TFA = 4.42 in.2, SPM = 105, RPM = 60, and 
WOB = 8 ton. Figure 31 shows that ROP is highly influ-
enced by WOB and TFA, and least influenced by SPM.

Models verifications and comparisons

An essential step that should be done is testing the models 
on a new data and see if they work or not. The new mod-
els are tested and compared to the old models presented 
by Al-Hameedi et al. (2017a). The new models are tested 
using new data sets of over 200 wells for the Dammam 
formation. The new data that were used to test the models 
were not used to create the models. Figures 32, 33, 34, 35, 
36, 37 show a comparison between the old and the new 
models for partial, severe, and complete losses. Looking 
at these figures, it is easy to conclude that the new models 
are doing much better of estimating the actual mud loss, 
ECD, and ROP. Figures 32, 33, 34, 35, 36, 37 show the 
predicted versus the actual of the new and the old models 
for partial, severe, and complete losses, and it is easy to 
see the black line (45° line) overlaps with the data which 
indicates that there is a very strong correlation between 
the actual and the predicted data.

Conclusions

This paper presents a deep statistical analysis of more than 
500 wells in the Rumaila field. This work includes the appli-
cation of advanced techniques to develop mathematical mod-
els to estimate volume losses in the Dammam formation, as 
well as the ECD and ROP associated with the losses model.

The three models developed in this study can be used 
to estimate mud losses prior to drilling the Dammam for-
mation. Alternatively, given a target loss volume, the mod-
els can be used in reverse, to set key drilling parameters to 
limit losses while drilling. The volume loss models provide 

Fig. 28  Residual plot of ROP model

Fig. 29  Percent of variation explained by each factor for X-variables 
(ROP model)

Fig. 30  Percent of variation explained by each factor for Y-variable 
(ROP model)
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Fig. 31  Tornado chart for ROP model
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Fig. 32  Predicted versus actual mud loss for partial losses

Fig. 33  Predicted versus actual mud loss for severe and complete losses

Fig. 34  Predicted versus actual ECD for partial losses
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greater consistency in the approach to handling mud losses 
for wells drilled in the Rumaila field. The models provide a 
formalized methodology for responding to losses and pro-
vide a means of assisting drilling personnel to work through 
the mud loss problems in a more systematic way. Based on 
this study, the following conclusions are made:

• Three advanced statistical models are developed that will 
help to estimate volume loss, ECD, and ROP prior to 
drilling the Dammam formation.

• The new models are doing a much better job than the old 
models in estimating mud loss, ECD, and ROP.

• TFA is a very important parameter for the ROP model. 
It has a negative influence on the ROP model. Thus, the 
selection of the nozzle size should be done very carefully.

• Using advanced statistical methods—such as PLS—will 
enhance the prediction of volume loss, ECD, and ROP. 
One challenge of using the PLS method is the selection 
of the optimum number of latent factor. Thus, carefully 
inspecting the root mean of PRESS plot and the scores 
plots as well as the percent variations of y and x plots will 
help to select the optimum number of latent factors.

• The three equations that were developed in this study can 
be used globally if the characteristics of the formation are 
the same as the Dammam formation.

Fig. 35  Predicted versus actual ECD for severe and complete losses

Fig. 36  Predicted versus actual ROP for partial losses



1353Journal of Petroleum Exploration and Production Technology (2019) 9:1339–1354 

1 3

Acknowledgements The authors would like to thank Basra Oil Com-
pany from Iraq and British Petroleum Company for providing us vari-
ous real field data.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Al-Ameri KT, Jafar MSA, Pitman J (2011) Modeling hydrocarbon 
generations of the Basrah Oil Fields, Southern Iraq, based on 
Petromod with palynofacies evidences. AAPG search and dis-
covery article #90124 © 2011 AAPG Annual Convention and 
Exhibition, April 10–13, 2011, Houston, Texas

Al-Dhafeeri AM, Nasr-El-Din HA, Seright RS, Sydansk RD (2005) 
High-permeability carbonate zones (Super-K) in Ghawar Field 
(Saudi Arabia): identified, characterized, and evaluated for gel 
treatments. Soc Pet Eng. https ://doi.org/10.2118/97542 -MS

Aldhaheri MN, Wei M, Bai B (2016) Comprehensive guidelines for 
the application of in-situ polymer gels for injection well con-
formance improvement based on field projects. Soc Pet Eng. 
https ://doi.org/10.2118/17957 5-MS

Al-Hameedi AT, Dunn-Norman S, Alkinani HH, Flori RE, Hilge-
dick SA (2017a) Limiting drilling parameters to control mud 
losses in the Dammam formation, South Rumaila Field, Iraq. 
American rock mechanics association, August 28. http://www.
onepe tro.org/

Al-Hameedi AT, Dunn-Norman S, Alkinani HH, Flori RE, Hilgedick 
SA (2017b) Limiting drilling parameters to control mud losses 
in the Shuaiba formation, South Rumaila Field, Iraq. Paper 
AADE-17-NTCE-45, 2017 AADE national technical confer-
ence, Houston, Texas, April 11–12, 2017. http://www.AADE.
org

Alvarado V, Thyne G, Murrell G (2008) Screening strategy for chem-
ical enhanced oil recovery in Wyoming basins. Soc Pet Eng. 
https ://doi.org/10.2118/11594 0-MS

Arshad U, Jain B, Ramzan M, Alward W, Diaz L, Hasan I, Aliyev 
A, Riji C (2015) Engineered solutions to reduce the impact of 
lost circulation during drilling and cementing in Rumaila Field, 
Iraq. This paper was prepared for presentation at the interna-
tional petroleum technology conference held in Doha, Qatar, 
6–9 December

Baker RO, Stephenson T, Lok C, Radovic P, Jobling R, McBurney 
C (2012) Analysis of flow and the presence of fractures and 
hot streaks in waterflood field cases. Soc Pet Eng. https ://doi.
org/10.2118/16117 7-MS

Basra Oil Company (2012) Various daily reports, final reports, and 
tests for 2007, 2008, 2009, 2010, 2011 and 2012. Several Drilled 
Wells, Basra’s Oil Fields, Basra

Darley HC, Gray GR (1988) Composition and properties of drilling 
and completion fluids, vol 720, 6th edn. Gulf Professional Pub-
lishing, Oxford

Eriksson L, Johansson E, Kettaneh-Wold S, Trygg J, Wikstr¨om C, 
Wold S (2006) Multi- and megavariate data analysis. Part I. Basic 
principles and applications. Umetrics Academy, Montpellier

Hegde CM, Wallace SP, Gray KE (2015a) Use of regression and boot-
strapping in drilling inference and prediction. Soc Pet Eng. https 
://doi.org/10.2118/17679 1-MS

Hegde C, Wallace S, Gray K (2015b) Using trees, bagging, and random 
forests to predict rate of penetration during drilling. Soc Pet Eng. 
https ://doi.org/10.2118/17679 2

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to 
statistical learning: with applications in R. Springer, New York. 
https ://doi.org/10.1007/978-1-4614-7138-7

Leite Cristofaro RA, Longhin GA, Waldmann AA, de Sá CHM, Vadi-
nal RB, Gonzaga KA, Martins AL (2017) Artificial intelligence 
strategy minimizes lost circulation non-productive time in Bra-
zilian deep water pre-salt. Offshore Technol Conf. https ://doi.
org/10.4043/28034 -MS

Messenger JU (1981) Lost circulation. PennWell Corp, Tulsa
Moore PL (1986) Drilling practices manual, 2nd edn. Penn Well Pub-

lishing Company, Tulsa
Nayberg TM, Petty BR (1986) Laboratory study of lost circulation 

materials for use in oil-base drilling muds. Paper SPE 14995 

Fig. 37  Predicted versus actual ROP for severe and complete losses

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2118/97542-MS
https://doi.org/10.2118/179575-MS
http://www.onepetro.org/
http://www.onepetro.org/
http://www.AADE.org
http://www.AADE.org
https://doi.org/10.2118/115940-MS
https://doi.org/10.2118/161177-MS
https://doi.org/10.2118/161177-MS
https://doi.org/10.2118/176791-MS
https://doi.org/10.2118/176791-MS
https://doi.org/10.2118/176792
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.4043/28034-MS
https://doi.org/10.4043/28034-MS


1354 Journal of Petroleum Exploration and Production Technology (2019) 9:1339–1354

1 3

presented at the deep drilling and production symposium of the 
society of petroleum engineers held in Amarillo, TX, 6–8 April

Osisanya S (2002) Course notes on drilling and production laboratory. 
Mewbourne School of Petroleum and Geological Engineering, 
University of Oklahoma, Oklahoma (Spring)

Parks B (2010) Southern Iraq’s Rumaila field kicks into high gear. 
http://www.drillingcontractor.org/southern-iraq%92s-rumaila-
field-kicks-into-high-gear-7691. Accessed June 2016

SAS Institute Inc (2008) SAS/STAT ® 9.2 user’s guide. SAS Institute 
Inc, Cary

Tran TN, Afanador NL, Buydens LMC, Blanchet L (2014) Inter-
pretation of variable importance in partial least squares with 
significance multivariate correlation (sMC). Chemom Intell 
Laboratory Syst 138:153–160. https ://doi.org/10.1016/j.chemo 
lab.2014.08.005 (ISSN 0169-7439)

Transparency Market Research (2013) Drilling fluids market (oil-based 
fluids, synthetic-based fluids and water-based fluids) for oil and 
gas (offshore & onshore)—global industry analysis, size share, 

growth, trends and forecast, 2012–2018, p 79. http://www.trans 
paren cymar ketre searc h.com/drill ingfl uid-marke t.html. Accessed 
July 2017

Tufféry S (2011) Data mining and statistics for decision making. Wiley, 
Chichester, West Sussex

Wallace SP, Hegde CM, Gray KE (2015) A system for real-time drill-
ing performance optimization and automation based on statisti-
cal learning methods. Soc Pet Eng. https ://doi.org/10.2118/17680 
4-MS

Wold S, Johansson E, Cocchi M (1993) PLS—partial least squares 
projections to latent structures. In: Kubinyi H (ed) 3D QSAR in 
drug design, theory, methods, and applications. ESCOM Science 
Publishers, Leiden, pp 523–550

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://www.drillingcontractor.org/southern-iraq%2592s-rumaila-field-kicks-into-high-gear-7691
http://www.drillingcontractor.org/southern-iraq%2592s-rumaila-field-kicks-into-high-gear-7691
https://doi.org/10.1016/j.chemolab.2014.08.005
https://doi.org/10.1016/j.chemolab.2014.08.005
http://www.transparencymarketresearch.com/drillingfluid-market.html
http://www.transparencymarketresearch.com/drillingfluid-market.html
https://doi.org/10.2118/176804-MS
https://doi.org/10.2118/176804-MS

	Mud loss estimation using machine learning approach
	Abstract
	Background
	Modeling lost circulation in the Dammam formation
	PLS regression algorithm
	Cross validation
	Variable importance in projection

	Approach
	Volume loss model
	Tornado chart of volume loss model

	ECD model
	Tornado chart of ECD model

	ROP model
	Tornado chart of ROP model

	Models verifications and comparisons
	Conclusions
	Acknowledgements 
	References


