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Abstract
Permeability is difficult to evaluate in reservoir petrophysics property, especially in low porosity–permeability reservoir. 
The conventional permeability estimation model with establishment of the regression relationship between permeability and 
porosity is not applicable. This regression hypothesis based on the correlation between porosity and permeability (logarithm) 
is not available in low porosity–permeability reservoir. It remains a challenging problem in tight and heterogeneous forma-
tions’ petrophysical interpretation. Feature engineering process, as the most significant procedure in data-driven analytics, 
indicates that accurate modelling should be based on the main control factor on permeability ignoring its concrete mathemati-
cal expression. To select the factors that influence the main function of the model, and use the appropriate model to carry 
out the model structure, fusion and optimization is the main task to permeability estimation in low porosity–permeability 
reservoirs. Fuzzy logic, as a widely used approach in estimation of permeability, can be used to estimate the permeability 
with the advantage of tolerance. Its good adaptation in objective contradictory concepts and false elements in computational 
processes outweighs the traditional method on permeability estimation which always lies in a wide distribution of orders of 
magnitude. The research takes the permeability estimation issue in Mesozoic strata, Gaoqing area as example. The area of 
study mainly contains reservoirs with low-to-ultra-low porosity–permeability. The relationship between porosity and perme-
ability is somewhat certain but insufficient using the regression method to predict. The research combined specialized feature 
engineering process with the fuzzy logic analysis to predict permeability. First, this paper analyzes that the main control 
factors of permeability in the region is the homogenization by diagenetic with statistical multivariate variance analysis SNK 
(Student–Newman–Keuls) method. It can be characterized by �� , the changing degrees of porosity. To characterize the 
permeability response in well logs, the variables standing for a comprehensive reflection of the formation hydrology, lithol-
ogy, and diagenesis are selected in the result of the electrofacies, SP, LLS, AC by multivariate variable selection method. 
The study is trying to combine the logging principle to explain its physical meaning by the statistical results. For discrete 
variables like electrofacies in modelling, scale quantization should be conducted by the optimal scale analysis considering 
discrete variables influences on permeability instead of manual labelling by numbers. Finally, the fuzzy logic analysis is 
carried out to achieve the results. The study makes a comparison of results in three ways to indicate the importance of feature 
engineering. That is, improved results with optimized model, model without feature engineering, and ordinary regression 
model. The optimized model with feature engineering predicts the permeability more conformed to the core data.

Keywords  Permeability estimation · Low porosity–permeability reservoir · Feature engineering · Fuzzy logic · Data-driven 
analytics

Introduction

Permeability prediction is one of the most important tasks in 
oil and gas reservoir evaluation. The core laboratory analy-
sis obtained from drilling provides the most reliable perme-
ability value. Because of the complexity of cost and pro-
cess, this method cannot be popularized in large areas. The 
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conventional permeability prediction is based on the regres-
sion analysis of multivariate statistics, and the most com-
mon approach is to establish a regression formula between 
porosity and permeability. However, the real laboratory core 
results confirmed that the core permeability and permeabil-
ity prediction by regression has big errors especially in low 
porosity–permeability reservoir. It remains a challenge in 
tight and heterogeneous formations.

The prediction of permeability is developed with theory 
and techniques (Geerits et al. 1999; Anifowose et al. 2013a, 
b, 2014a, b, c; Hassan et al. 2013). The method in early 
times is to incorporate the variables associated with the per-
meability, such as porosity, saturation and capillary pres-
sure, into the permeability regression model (Coates and 
Dumanoir 1974; Kozeny 1927; Carman 1937). It forms a 
series of models such as the famous Coats formula and the 
Kozeny–Carman formula; Lev Vernik (2000) set up an expo-
nential model based on porosity and shale content control, 
but it is only applicable to shallow ocean sediments and flu-
vial deltaic sediments strongly correlated with the particle 
(pore) size of weakly diagenetic rocks; Faruk Civan (2002) 
incorporates the fractal attributes of connected pore space 
into a bundle of tortuous leaky hydraulic tubes model of 
porous media to estimate permeability. The logging tech-
nique is also improved. Nuclear magnetic resonance (NMR) 
logs are also used to obtain good estimates of pore-space 
characteristics to improve permeability correlations (Sen 
et al. 1990; Coates et al. 1991; Quintero et al. 1999; Ama-
beoku et al. 2001). Array Sonic Logging utilizes the prop-
erties of the frequency shift and time delay of the wave to 
indicate good permeability result (Winkler 1989). Baziar 
et al. (2014) employ co-active neuro-fuzzy inference sys-
tem and support vector machine to predict permeability of 
Mesaverde tight gas sandstones located in Washakie Basin in 
USA. Permeability prediction in sandstone reservoirs using 
data mining and expert system approach is done in KS field 
(Nashawi and Malallah 2009; Gholami et al. 2012).

The low porosity–permeability reservoir has its own char-
acteristics: the heterogeneity of the strata caused by different 
curvature and shape coefficients of the pore throat results in 
a drastic change in samples; a disproportionate correlation 
makes samples in same porosity probably with simultane-
ous presence of permeability in high- and low-displayed 
with high scattering in crossplot. Any empirical correlation 
obtained from such a plot is vulnerable to unrealistic results. 
All these limit the prediction accuracy and precision of the 
permeability in low porosity–permeability reservoir. Feature 
engineering is the key process of discovering features that 
have a significant impact on the target variable (Qian et al. 
2016). In this study, feature engineering procedure in Data-
Driven Analytics is paid most attention to characterize the 
change in the representation of permeability. It is modeled 
from the main geological effects using advanced technology 

and a comprehensive process to analyze and select the main 
control factor that can be represented as variables, and use 
appropriate analytical means to carry out model construc-
tion, integration, and optimization. According to the charac-
teristics of Mesozoic clastic strata in Gaoqing area, feature 
engineering process is conducted by a comprehensive analy-
sis by reservoir physical analysis and statistical multivariate 
variance analysis SNK method. The optimal scale analysis 
is used to quantify the variable scale for the existence of dis-
crete variables. Finally, it adopts the fuzzy logic algorithm 
which can tolerate and explain the objective contradictions. 
It allows the calculation process to be modeled with the 
error components. Compared with the traditional regression, 
fuzzy logic algorithm with feature engineering predicts the 
permeability more conformed to the core data.

Area of study

The Mesozoic buried hill in Gaoqing area is one of the 
ancient buried hill in Jiyang depression with its Mesozoic 
strata sloping towards the North. The stratum at the top of 
Mesozoic is invaded by multi-stage magma. Meanwhile, the 
formation is raised to the surface under the sharp lifting of 
the faulting in the south of study area. Long-term weathering 
and erosion caused hiatus between Mesozoic stratigraphy 
and overlying strata Kongdian formation constructing angu-
lar unconformity (Jiang 1998).

The Mesozoic strata are incomplete. The lithology near 
Mesozoic unconformity structure in Gaoqing area is red and 
purple, gray purple, gray mudstone with tuffaceous sand-
stone or conglomerate and multilayer mafic volcanic, such 
as gray-green rock, diorite rocks, and igneous rocks. The 
remaining strata are mainly distributed in the Northern Slope 
in Gaoqing field forming angular unconformity. Reservoir 
is mainly located in sandstone, siltstone, and basalt gravel 
buried shallow with the attribute of low porosity and low 
permeability.

Methodology

Data scenario

Core data utilized in the study is collected in Mesozoic 
stratigraphy and the formation of overlying unconformity 
structure in Gaoqing area: three coring wells (including 
porosity, permeability and density) with definition of rock 
and microscope observation of core slice, 21 wells with a 
complete series of well-logging data. Considering the unbal-
anced distribution of the sample counts, the sample set was 
divided into two subsets with equal counts, one for training 
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and one for testing the ability of the trained classifier to cor-
rectly assign classes. Nomenclature is as follows:

Nomenclature

GR, gamma ray DEN, the density logging
SP, spontaneous potential AC, the acoustic time logging
LLD, the deep-lateral logging Elec, electrofacies
LLS, the shallow-lateral logging

Reservoir properties

A classification of the region’s electrofacies is obtained 
using an optimized KNN clustering method (Wang et al. 
2018b, c) based on the characteristics of logging response 
of GR, SP, LLD, LLS, AC, and DEN. The optimized KNN 
clustering method based on weighed cosine distance was 
proposed to better fit the electrofacies Model. To deal the 
problem for the initial center selection and outliers, a set of 
statistic method like box plots is conducted. A better cluster 
series center to feature more information about electrofa-
cies and new distance algorithm selection is obtained in the 
base of geology model and a logging data similarity attribute 
when utilizing KNN clustering. It is divided into six classes 
of electrofacies by this method (Table 1).

The overall distribution of porosity and permeability are 
shown in Figs. 1 and 2. The pore-permeability distribution 
has good morphological similarity, which indicates that it 
has slightly certain correspondence. According to the stand-
ard of clastic reservoir classification in Table 2, the poros-
ity has obvious multiple humps distribution, and the main 
distribution locates in ultra-low porosity in a mean value 
of 5% and the low-to-middle porosity ranging from 10 to 
20% with least extra-high porosity. The permeability dis-
tribution is mainly concentrated in ultra-low permeability 
and low-permeability reservoir ranging from 1 × 10−3 μm2 
to 40 × 10−3 μm2. The permeability distribution has obvi-
ous double-humped properties. With 1 × 10−3  μm2 and 
40 × 10−3 μm2 as the two humps characteristics, they all 
belong to the ultra-low-to-low permeable strata. In a whole, 
the region mainly distributes low porosity–low permeabil-
ity and low porosity–ultra-low permeability reservoir and 
develops few middle porosity–low permeability reservoirs.

By analyzing the distribution of pore permeability by the 
classification of the electrofacies in Figs. 3 and 4, it can 
be seen that the porosity and permeability also has a cor-
respondence. Elec1 and Elec2 show significant ultra-low 
porosity and ultra-low permeability features with a value 
range of � ≤ 10% , K ≤ 1 × 10−3 μm2. There is a high-perme-
ability point in the distribution that remains to be observed. 
Porosity distribution in Elec3 has a large range with a slight 

Table 1   The cluster center and the definition of the electrofacies

Code GR SP LLD LLS AC DEN Definition

1 83.14 113.65 7.45 6.71 211.89 2.46 Mainly composed of pyroxene, plagioclase, dark gray blocky structure of intrusive rock
2 178.1 108.8 19.26 17.69 202.1 2.48 Composed mainly of volcanic ash to form igneous rocks in the block structure
3 73.07 112.62 4.73 4.35 263.97 2.23 Composed mainly of mafic glass with vesicular structure of volcano rock
4 147.91 108.27 12.9 12.1 228.63 2.45 Mainly composed of quartz and feldspar sand structure, coarse grains
5 154.13 112.71 7.22 6.55 239.92 2.36 Mainly composed of quartz and feldspar sand fine sand structure, particle size smaller 

with fine compaction and dissolution
6 152.54 113.51 6.97 5.905 254.1 2.24 Dense fine-grained sandstone with fine cementation

Fig. 1   Overall distribution of porosity (%)
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right tendency distribution, mainly displaying low pore dis-
tribution. At the same time there are fewer ultra-low porosity 
and more middle porosity, and the permeability distribution 
is mainly distributed in the low-permeability reservoir with 
a value of 1 × 10−3 μm2, but a small amount of middle per-
meability with a value of 100 × 10−3 μm2. The porosity in 
Elec4 and Elec5 has a similar left tendency single humped 
distribution, mainly in the middle and low pore, and the 
permeability distribution has a big difference: permeability 
distribution in Elec4 has obvious double-humped properties 
with the presence of the hump values of 1 × 10−3 μm2 and 

40 × 10−3 μm2 at the same time, while low permeability and 
middle permeability are also developed. A single hump is 
developed in Elec5 within the limit in 10 × 10−3 μm2and a 
major distribution of the peak in 1 × 10−3 μm2, showing the 
characteristics of ultra-low permeability. Low permeability 
and middle permeability characteristics are undeveloped. 
Elec6 has a large range of distributions as same, mainly with 
low porosity and a small amount of middle porosity.

Box plot can indicate the information about symmetry of 
the data, distribution of the degree of dispersion, especially 
it can be used to analyze discrete outliers and the extremes. 

Fig. 2   Overall distribution of permeability (1 × 10−3 μm2)

Table 2   Criterion for 
classification of Clastic 
reservoir physical property

Classification of reservoir by petrophysics Porosity� (%) Permeability K 
( 1 × 10−3μm2 i.e., 
mD)

Extra high porosity and high permeability � ≥ 30 k ≥ 2000

High porosity and high permeability 25 ≤ 𝜑 < 30 500 ≤ k < 2000

Middle porosity and middle permeability 15 ≤ 𝜑 < 25 50 ≤ k < 500

Low porosity and low permeability 10 ≤ 𝜑 < 15 5 ≤ k < 50

Ultra-low porosity and ultra-low permeability � ≤ 10 k ≤ 5

Fig. 3   Overall distribution of porosity in electrofacies categories
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As is shown in Figs. 5 and 6, the permeability distribution 
in Elec1 has an extreme value. The porosity distribution in 
Elec4 appears as two outliers. There are also outliers in the 

distribution of pore permeability in Elec5. By contrastive 
analysis, extreme values and outliers values are divided into 
two types. Class 1: the great differences between a sample 

Fig. 4   Overall distribution of permeability in electrofacies categories

Fig. 5   Box plot of porosity in electrofacies

Fig. 6   Box plot of permeability in electrofacies
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and its adjacent sample have a great effect on petrophys-
ics. Such as extreme point Sample 197 labeled by cross of 
Elec1, is close to the sample points of Elec4, Sample 198. 
Class 2: because of the quantitative classification of electro-
facies, samples in transition zones of the electrofacies will 
also cause disperse phenomenon displayed as outliers in box 
plot like Sample 229, 424 labeled by circle. Therefore, for 
the precision of the permeability modeling, the study is car-
ried out by eliminating outlier samples in Class 1, standing 
still for the samples in Class 2.

The main control factors of permeability

Feature engineering is a typical work to determine the main 
effect factors and characterize the factor as a parameter in 
model (Qian et al. 2016). The first task is to figure out the 
main control factors of permeability. In general (Zeng and 
Li 2009), the petrophysics of the reservoir is controlled 
by the particle size, sorting, and diagenesis if no signifi-
cant development of fracture is involved in the charac-
teristics. (Abbaszadeh et al. 1996). The main factors that 
affect the petrophysics of oil reservoirs can be inferred by 

the convergence or divergence of the differential between 
porosity and permeability. If � –K transforms in electrofacies 
is nearly overlapping and exhibiting minimal divergence in 
trend, homogenization by Diagenetic modification (Skalin-
ski and Kenter 2015) may be inferred as a significant con-
tributor to the fluid flow characteristics of the reservoir.

Figure 7 is the � –K crossplot of the relationship with 
color representing the different electrofacies. It can be seen 
that there is a small degree of dispersion in the relationship 
between different electrofacies proving that the main geo-
logic factor controlling reservoir fluid flow in the Mesozoic 
strata of Gaoqing area is the transformation of diagenesis 
(Skalinski and Kenter 2015).

Digenesis mainly consists of compaction, cementation, 
dissolution and metasomatism. The first three contributes 
more on the petrophysics of reservoir because metasoma-
tism causes little effect on the petrophysics due to the slight 
extent of development and the small amount of generation. 
It can be seen from the micro-observation that the cementa-
tion of the reservoir is carbonate cementation. As is shown 
in Fig. 8, carbonate cementation is colored by red. Quartz 
grains in gray or white and other quartz grains with asphal-
tene in black or dark gray and long shape feldspar can also 
be seen.

Core analysis in carbonate content and permeability 
makes the crossplot Fig. 9 signifying that the main carbon-
ate content is less 5% and is not significantly correlated with 
permeability. The unstable carbonate content of low perme-
ability and ultra-low permeability reservoirs has both low 
value and high value, and reservoir with carbonate cementa-
tion less than 5% has no significant effect on permeability.

Cementation–intergranular volume projection crossplot 
can explain the influence of cementation on reservoir petro-
physics in this area. Figure 10 shows the effect of compac-
tion and cementation on reservoir-pore volume in previous 
research results (Wang et al. 2018a). As shown in the fig-
ure, the pore space of the reservoir is mostly affected by the 
compacting effect. A few samples are affected by cementa-
tion because of its postion adjacent to unconformity. This is 
due to the fact that the primary pores near the unconformity Fig. 7   � –K crossplot in electrofacies

Fig. 8   The carbonate cementa-
tion in Well G41
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surface have not been dissolved but carbonate filled in a 
result of reduction of the pore by cementation obviously. But 
the main body is far from the unconformity surface, and the 
compaction effect causes the pore volume to decrease, the 
throat becomes fine or disappears, supplying no space for the 
cementation to fill, so the cementation content is low and the 
cementation effect is weaker. This indirectly indicates that 
the region’s cementation is not strong. Lack of cast core slice 
in the study makes dissolution hard to evaluate. So the main 
effect is compaction in a whole view.

The digenesis of this area mainly undergoes compac-
tion, compaction and cementation syngeneic process, and 
compaction cementation and dissolution syngeneic process 
(Wang et al. 2018a). Under the precondition of less influence 
of cementation on reservoir petrophysics, the value of poros-
ity changed by compaction �� is put forward to characterize 

the reservoir transformation in the diagenetic stage. The ini-
tial porosity of the reservoir is �0 , the current porosity is � , 
initial porosity and sorting coefficients S0 gains a functional 
relationship (Pan and Liu 2011), that is

The variation of the porosity is related to the sedimenta-
tion and diagenesis: the sedimentation mainly affects the 
initial value of the pore space, and the diagenesis has a more 
obvious transformation to the pore space. The sorting coef-
ficients are mainly obtained by fitting sorting coefficients of 
core data in lab. The main component in Elec1, Elec2, and 
Elec3 is volcanic rock with no concept of sorting coeffi-
cients. However, some researchers used the data of mercury 
injection to study the microstructure of volcanic rocks using 
the parameter to characterize the arrangement of volcanic 
particles (Qu et al. 2007). For exploratory research and 
result comparison, the sorting coefficient of the three elec-
trofacies is set as two based on regional experience (Wang 
et al. 2018a, b, c). Figure 11 shows the relationship between 
porosity and permeability, and it is obvious that the perme-
ability becomes smaller as the value of porosity changes.

Factors characterization on permeability modeling 
controls

It is known that the change of porosity can better reflect 
the diagenesis effect on reservoir petrophysics by control 
factors analysis. The variation of porosity, as the control 
factor of permeability model, can be used as the characteri-
zation parameter of the model. In this study, the stratum has 
been classified into six kinds of electrofacies. A cluster is 
regarded as a distinct electroface reflecting formation hydrol-
ogy, lithology, and diagenetic properties. By petrophysics 
analysis, a qualitative understanding is obtained by statistical 

φ0 = 20.91 + 22.90∕S0,

Δφ = φ0 − φ.

Fig. 9   Carbonate content and permeability crossplot

Fig. 10   Cementation–intergranular volume projection crossplot

Fig. 11   �� –K crossplot in electrofacies
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description. It is understood that the electrofacies properties 
can be used as an important independent variable of perme-
ability modeling on reservoir petrophysics, but there is a 
certain overlapping zone in pore-permeability distribution. 
No obvious and concrete boundary can be observed between 
different electrofacies. The electrofacies classification can-
not be used as a single parameter to estimate permeabil-
ity. SNK(Student–Newman–Keuls) method in multivariate 
variance analysis is used to verify and evaluate comparisons 
quantitatively for different electrofacies (Barr et al. 1977). 
If you draw a statistically significant conclusion, and fur-
ther infer which groups are different, which groups are not 
different, or whether all groups are different, SNK method 
can quantitatively evaluate the difference of permeability 
between different electrofacies, and explain the relationship 
between electrofacies and permeability statistically. With 
Table 3, we can see similar conclusions with the descrip-
tive analysis of petrophysics statistics analysis. N column 
represents the sample number and the values in subset are 
the calculated P values (Demuth 2006) in statistics. P value 
is the probability that a sample observation or more extreme 
result will occur when the null hypothesis is true. The data-
set are divided into three subsets. Elec1 and Elec2 have simi-
lar petrophysics, so do Elec4 and Elec5. Elec3 and Elec6 
have obvious overlapping behavior and Elec5 also has a little 
bit of this behavior. This shows that there are some common 
petrophysics characteristics in different electrofacies, but the 
petrophysics have a wide fuzzy area and the electrofacies can 
be proved to be a very important discrete parameter that can 
reflect the permeability.

Electrofacies is just an application of the discrete attrib-
ute regarded as a distinction that reflects formation features. 
The well-logging data as continuous data consists of abun-
dant information on hydrology, lithology, and diagenetic 
properties of the reservoir. DEN and AC logs are indirect 
measures of porosity. In clastic rocks, they reflect formation 
permeability. The GR log indicates shale content in sand-
stone reservoirs, which is inversely related to permeability, 
particularly in low-permeability layers. The SP log indicates 

the concentration difference between the mud and the forma-
tion water which is affected by hydrology, lithology, and dia-
genetic characteristics of the reservoir. LLS and LLD logs 
measure the resistivity in the vicinity of the wellbore and 
deep into the reservoir, respectively; when these two logs 
are collectively analyzed, and respecting saturation-height 
considerations, they give an indication of the invasion sever-
ity; hence they are coherently related to permeability.

It is known that there is a certain distribution in differ-
ent logging properties between electrofacies using a multi-
crossplot illustrated in Figs. 12, 13, 14, 15, 16, 17 to analyze 
the relationship between permeability and logging data. (a) 
Elec1 and Elec4 have a lower GR value. Elec1 displays a rel-
atively compact, ultra-low-permeability distribution, while 
the Elec4 has a large distribution range. The distributions of 
the remaining electrofacies are mainly above 110API and 
have no obvious distribution characteristics. (b) Elec4 dis-
plays a relatively low value distribution in SP, but high value 
also exists correspondingly. (c) The trend of distribution in 
LLD and LLS are similar, and Elec4 and Elec5 have signifi-
cant changes in the resistivity. The rest of the distribution 
features are not obvious, (d) as for sonic features, Elec1 and 

Table 3   Comparison result of electrofacies in permeability with SNK 
method

Electrofacies N Subset

1 2 3

Elec2 2 − 1.1615
Elec1 17 − 0.9538
Elec6 13 − 0.2522 − 0.2522
Elec3 22 − 0.1119 − 0.1119 − 0.1119
Elec5 127 0.3338 0.3338
Elec4 174 0.8405
Sig. 0.061 0.343 0.061

Fig. 12   GR–K crossplot in electrofacies

Fig. 13   SP–K crossplot in electrofacies
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Elec4, Elec5 reflects a tendency to increase with the large 
permeability of acoustic time, and Elec4, Elec5 reflect the 
tendency of the permeability increase with the same acoustic 
time overlapping more seriously. (e) The density charac-
teristic is similar to the characteristic distribution of sonic 

features. There are many overlapping areas and no obvious 
distribution boundaries between different electrofacies.

Using the crossplot to describe the variables, we can 
get a qualitative understanding of the effect of the different 
logging data on the permeability model but not a quanti-
tative knowledge of the influence on the primary control 
and characterize the influence. By the analysis above, vari-
able selection is conducted among the continuous variables, 
namely �� to represent the strength of the diagenesis; GR 
to represent the radioactive characteristics of the strata; SP 
to represent the subsurface fluid percolation characteristic 
information; LLD and LLS to represent the electrical infor-
mation of the strata and the flushing zone; AC to represent 
the elastic feature of the strata and DEN to represent the den-
sity information. Multivariate selection method is using sta-
tistics evaluation to carry out forward and backward method 
(Mark and Goldberg 2001). The result is in Table 4. B is 
partial regression coefficient and its standard error without 
normalization. Beta is the normalized regression coefficient. 
T is the T statistics value to test for the significance of a sin-
gle coefficient. Sig represents significance to signify statistic 
difference. The principle of variable selection is to estimate 
the magnitude that affects the variables through the calcula-
tion of statistics of P value which test the possibility that 
the null hypothesis is true or more serious. The independent 
variables are sorted based on P value to characterize the 
respective impact on dependent variable, K (Charniak 1996).

Table 4 shows that the variable �� is firstly included by 
the forward method. This proves the consistency of statisti-
cal model and geological analysis, and also characterizes the 
availability of the definition of the variable by �� . However, 
beyond our expectation, the SP curve and the LLS curve will 
be included in the second and third variables in turn, and AC 
is the fourth variable.

The backward approach first incorporates all variables to 
calculate the statistics, according to whether it is meaningful 
in the statistics to delete the variable. The result of backward 

Fig. 14   LLD–K crossplot in electrofacies

Fig. 15   LLS–K crossplot in electrofacies

Fig. 16   LLS–K crossplot in electrofacies

Fig. 17   DEN–K crossplot in electrofacies
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approach is the same as the forward method; the reserved 
variables are �� , SP, LLS and AC. The first excluded varia-
ble is GR, followed by LLD, DEN. The two methods remain 
consistent (see Table 5).

Description analysis learned similar distribution trends in 
LLS to LLD and no obvious characteristic of distribution in 
SP. But both of them are figured out to indicate permeability 
included in the modeling by calculation of statistics. Com-
bined with the logging principle, the common denominator 
in LLS, SP, and AC are all reflective of the flushing zone 
information. The flushing zone is the part of the borehole 
near the wellbore which is strongly flushed by the mud fil-
trate, and the different degrees of mud intrusion will strongly 
affect the formation conductivity, the electrochemical prop-
erty and the elastic property in the reservoir with different 
permeability. It is the most abundant ring zone of perme-
ability information (see Fig. 18).

Analysis of the selection results of independent vari-
ables from the logging principle (Schlumberger 1986) pre-
sents that: spontaneous potential data, SP is an indicator to 
a permeable formation by the appearance of the apparent 
variation in the profile of electrical potential changes of the 
natural electric field around the borehole. The spontane-
ous potential is mainly due to the salinity difference of the 
formation water and the mud to form ion exchange with 
the formation pressure and the mud column pressure pro-
ducing potential difference in electrochemical process. The 
exchange ability of the ion between the formation water and 
the mud is largely related to the permeability of the strata. 
Application of LLS in shallow-lateral logging is to measure 
the resistivity between flushing zone and transition zone, as 
a result strong permeable formations will invade more mud, 
and the high resistance of fresh water mud can cause the 
change of resistance in the flushed zone for the replacement 

of the low-resistivity formation water in different permeable 
formations. The statistical conclusion confirms the influence 
of permeability on the assumption of flushing electrification. 
In view of the exclusion variable, the first excluded vari-
able GR curve reflects the formation of radioactive, mostly 
contained by clay volume information, which reveals that 
it has little impact on permeability. The second exclusion 
variable LLD and third variables DEN convey more infor-
mation of uninvaded zone and mud cake, respectively, which 
is not contributed to manifest information of permeability. 
Acoustic time logging mainly contains elasticity feature of 
the flushing zone and zone of transition. As the fourth vari-
able, it reflects a certain degree of reaction to the perme-
ability. However, as a statistics result, little research has been 
conducted to show it can be inducted by the three logging 
attribute in theory.

Scale quantification of discrete variable by optimal 
scale analysis

The variables characterizing the permeability model are 
electrofacies,�� , SP, LLS, AC based on the analysis above. 
The types of data attributes are different: electrofacies is a 
discrete variable, but the others are continuous variables. 
The scale of the discrete variable is necessary to be quan-
tified for the correct representation of the model and the 
unification of scales in the other five continuous variables 
with different attributes should be considered in the mod-
eling process.

The general regression requires data in strict forms as 
continuous value. When the discrete variable is encoun-
tered, the regression cannot accurately reflect the different 
values of the discrete variables, such as gender variables. 
It may lose its own significance if discrete variables are 

Table 4   The statistic result of 
forward approach

Model Non-normalized coefficients Standard coefficient T Sig.

B Standard error Beta

1 (constant) 3.330 0.693 4.803 0.000
Δφ − 0.125 0.031 − 0.391 − 3.983 0.000

2 (constant) 8.161 1.846 4.420 0.000
Δφ − 0.130 0.030 − 0.406 − 4.293 0.000
SP − 0.043 0.015 − 0.266 − 2.806 0.006

3 (constant) 11.320 2.223 5.092 0.000
Δφ − 0.111 0.030 − 0.346 − 3.631 0.000
SP − 0.072 0.019 − 0.444 − 3.760 0.000
LLS − 0.042 0.017 − 0.293 − 2.415 0.018

4 (constant) 9.786 2.300 4.256 0.000
Δφ − 0.094 0.031 − 0.294 − 3.035 0.003
SP − 0.081 0.019 − 0.499 − 4.199 0.000
LLS − 0.040 0.017 − 0.280 − 2.348 0.021
AC 0.009 0.004 0.208 2.097 0.039
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labeled directly into the regression model manually label. 
The optimal scale regression is to solve the problem; it is 
good at quantifying the discrete variables by different values, 
and then converts the categorical variables to the numerical 
model for statistical analysis (Paolillo 2009). It can be said 
that with the optimal scale method, it will greatly improve 
the processing ability of categorical variable data and break 
the restriction of discrete variables to the analysis model 
selection, and enlarge the application ability of regression 
analysis. Using the optimal scale analysis, the variables 
required for modeling the permeability are analyzed as 
follows:

As shown in Fig. 19, the optimal scale transformation 
takes a linear transformation to the continuous variable with 
x axis representing its original value and y axis represent-
ing the converted value after scale quantification. It does 
not affect the control of the independent variable for the 
continuous variable like well data and�� . For the discrete 
variable, electrofacies, the optimal scale analysis is quanti-
fied. The quantified electrofacies and the petrophysics analy-
sis as mentioned before are in accordance reflecting impact 
on the permeability of the scale represented in the model 

established by the value. The specific electrofacies values 
are as shown in Table 6.

Model establishment by fuzzy logic

Fuzzy Logic theory is a logic extension which allows the 
existence of partial truth between the entirely true and 
entirely false and take all options between these alternatives 
into account (Zadeh 1965). Fuzzy logic is an effective tool 
for modeling uncertainty, which is associated with vague, 
imprecise, and/or lack of information about a particular 
factor in a problem (Boske and Diem 2000; Lababidi and 
Baker 2003). The Permeability estimation problem is typi-
cal situation of imprecise data involving uncertainty, fuzzy 
correlation between rock properties, and the effects of man-
made and/or natural disturbances. For this type of issue, 
fuzzy logic can tolerate and interpret subjective concepts 
uniformly such as very high permeability or very low perme-
ability, which effectively fills the missing information gap 
making the problem to be mathematically expressed and cal-
culated instead of ignoring or minimizing it (Cuddy 1997) 
which will result in an inherent error term. In addition, the 

Table 5   The statistics result of 
backward approach

Model Non-normalized coefficients Standard coefficient T Sig.

b Standard error Beta

1 (constant) 4.269 3.890 1.097 0.276
AC 0.015 0.006 0.337 2.571 0.012
DEN 1.581 1.109 0.179 1.425 0.158
GR − 0.007 0.005 − 0.123 − 1.213 0.229
LLD 0.111 0.083 0.730 1.333 0.186
LLS − 0.141 0.075 − 0.988 − 1.880 0.064
SP − 0.071 0.022 − 0.438 − 3.176 0.002
Δφ − 0.090 0.031 − 0.281 − 2.914 0.005

2 (constant) 4.559 3.894 1.171 0.245
AC 0.015 0.006 0.334 2.547 0.013
DEN 1.627 1.112 0.185 1.463 0.147
LLD 0.083 0.080 0.542 1.030 0.306
LLS −  0.120 0.073 − 0.844 − 1.645 0.104
SP −  0.082 0.020 − 0.508 − 4.058 0.000
Δφ −  0.089 0.031 − 0.280 − 2.889 0.005

3 (constant) 5.167 3.850 1.342 0.183
AC 0.015 0.006 0.337 2.569 0.012
DEN 1.657 1.112 0.188 1.490 0.140
LLS − 0.047 0.018 − 0.331 − 2.684 0.009
SP − 0.088 0.020 − 0.541 − 4.459 0.000
Δφ − 0.089 0.031 − 0.278 − 2.867 0.005

4 (constant) 9.786 2.300 4.256 0.000
AC 0.009 0.004 0.208 2.097 0.039
LLS − 0.040 0.017 − 0.280 − 2.348 0.021
SP − 0.081 0.019 − 0.499 − 4.199 0.000
Δφ − 0.094 0.031 − 0.294 − 3.035 0.003
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fuzzy logic model is completely open and easy to under-
stand and requires minimal user intervention. Not only the 
interpretation of fuzzy logic results is simple, but also they 
often describe complex nonlinear systems that violate con-
ventional logic (Nashawi and Malallah 2009).

The user chooses the number of bins into which the train-
ing data is to be divided. The program sorts the training 
data into roughly equal-sampled bins, starting at the lowest 
values and extending to the highest. For each data bin the 
program calculates the mean ( μ ) and the standard deviation 
( σ ) for all the associated curves to be used in the prediction. 
The mean and standard deviation values are then used by 
the program, when run in prediction mode, to find the most 
likely result.

To make the prediction, the program first calculates the 
fuzzy probability that an input log is in a certain bin. The 
following equation is used for this:

where P(Cb) the probability that curve C is in bin b, nb the 
number of samples in bin b, C the input value for curve C, 
μ
b
 the mean value for curve C for bin b, σ

b
 b the standard 

deviation for curve C for bin b.
The probabilities for all the input curves are then com-

bined as follows:

P
�

C
b

�

=
√

n
b
× e

−(C−�)2∕(2×�b
2) ,

1

P
b

=
1

P(C1b)
+

1

P(C2b)
+

1

P(C3b)
+ ......

where Pb the total probability for bin b, P(C1b) the prob-
ability for curve C1 for bin b.

The most likely solution will be the bin with the highest 
probability. The program outputs the most likely bin result, 
the second highest probability bin, and a weighted average of 
these two highest results. The weighting is done as follows:

where Rav average weighted result, Rml most likely result, 
Rsl second most likely result, Pml probability of most likely 
result, Psl probability of the second most likely result.

To give a quantitative feel for the errors in the results, high 
and low result curves can be generated for the most likely and 
the weighted average results. These curves are constructed as 
follows: at each level the bin probabilities are converted to 
a normalized (0–1) cumulative frequency distribution. The 
Result Bin Percentile is found (ResPC).

The Low result is the bin that has the percentile ResPc–Er. 
The High result is the bin that has the percentile ResPc + Er 
where Er is the percentile error set with a value of 25% by the 
manual.

Rav =
Rml × Pml + Rsl × Psl

Pml + Psl

,

Fig. 18   Diagram of the intrusion characteristics of the reservoir and corresponding radial detection range



881Journal of Petroleum Exploration and Production Technology (2019) 9:869–887	

1 3

Results and discussion

The well plot is shown with the results of the estimated per-
meability in Fig. 20: the first to fifth track is the independ-
ent variable applied for the modeling of permeability, and 
the sixth path is average weighted result, most likely result 
and compared to cores plugs. The seventh track is the most 
likely result, and the range between the low result and the 
high result. The ninth track is the spectrum of the probability 
obtained at each sampling point. It is known from the plot 
that the calculated permeability is in good accordance with 
the trend of core permeability.

There are several understandings on the comparison of 
calculated permeability and core permeability in the whole 

Fig. 19   Variables transformation by optimal scale analysis

Table 6   The transformation 
value of electrofacies

Category Quantification

Elec1 − 2.428
Elec2 − 2.574
Elec3 − 1.779
Elec4 0.835
Elec5 − 0.323
Elec6 − 1.206
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well-plot view: There are two periods of volcanic intru-
sions with the volcanic rocks in the upper part which are 
affected by dissolution due to close to the unconformity 
surface with a mean value nearly 2 × 10−3 , while the lower 
part retains the dense characteristics of volcanic rocks, the 

permeability is only 0.0765 × 10−3 μm2. In 1070–1100 m 
interval, electrofacies change more frequently. The core 
permeability is 173 × 10−3 μm2 and the calculation per-
meability is 163 × 10−3 μm2 with the relative error only 
6% in the middle- and low-permeability area at 1075 m; 

Fig. 20   The well plot of Well G41
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The interval adjacent below results in a sharp change in 
permeability due to the existence of Elec2, which is well-
reflected in the core data.

Scaling up the plot in Fig. 21, the estimation of perme-
ability is better reflected in the permeability of the changes 
in the track; precise estimation of Elec2 in the interval in 
1100 m is consistent with the core permeability indicating 
that the calculated permeability is of availability for the 
low-permeability range; The interval in 1120 m is char-
acterized by the edges of a thick layer of Elec4 and at the 
junction of Elec3. The core permeability shows that there 
is a thin low-permeability zone between the ultra-low per-
meability reservoirs, which calculates the permeability of 
0.284 × 10−3 μm2 but core permeability of 2.5 × 10−3 μm2 
presenting a slight error in the accuracy comparison of 
cores, which shows that the algorithm is still unable to 

break the limit of the resolution of the well-logging. It also 
exists in the interval of 1089 m and 1103 m.

The accuracy rate of permeability calculation in the inter-
val of 1230 m and 1275–1300 m is the highest with the core 
permeability (see Fig. 22). The main reason is that petro-
physics characteristics in the overlying strata are significant 
with a larger thickness and between clear boundaries of 
electrofacies; the calculated permeability retains the lowest 
degree of accuracy with core permeability in the interval of 
1250–1270 m with the petrophysics of the layer in middle 
permeability, low permeability and ultra-low permeability at 
the same time. More types, thin thickness and rapid changes 
in electrofacies and the complicated petrophysics character-
istics of Elec6 as the main component in the interval leads 
the logging response to be greatly affected by the adjacent 
layer with unmatched penetration information of the corre-
sponding layer that cannot be correctly indicated.

Fig. 21   The well plot of Well G41 between 1000 and 1150 m
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A comprehensive knowledge about the precision of the 
model can be obtained by the analysis above: In the view of 
electrofacies, the result of permeability calculation is good 
in Elec4 and Elec5, and the error exists relatively more in 
Elec2 and Elec6. This is the reason as petrophysics in Elec4 
and Elec5 are obvious, but Elec2 and Elec6 are more com-
plex. In terms of thickness, the effect on the medium-thick 
layer is good, but for the turbulent sedimentary environment 
with more types of electrofacies and rapid changes with thin 
thickness, permeability prediction effect is not good. In the 
perspective of permeability distribution, the model has the 
ability to adapt to the full range of permeability, which can 
not only identify low permeability, ultra-low permeability 
reservoir, but also can identify middle-high permeable layer 
and have good patience. At the same time, the method has a 

clue on uncertainty analysis because it determines the upper 
and lower limit of permeability calculation.

Figures 23, 24, 25 are the comparison crossplots of the 
calculated permeability (logarithm) and core permeability 
(logarithm) with the calculation of correlation coefficient. In 
the analysis of the calculation result by optimized approach 
in Fig. 23, the calculated permeability characteristics of dif-
ferent electrofacies are consistent with the petrophysics anal-
ysis above: Elec1 and Elec2 mainly develops the ultra-low 
permeability strata in a value below 1 × 10−3 μm2; the main 
part of Elec4 is higher than Elec5; Elec6 has a good calcula-
tion accuracy with a few dispersed points; core permeability 
range of Elec3 is large, and the calculation of permeability 
is mainly between 1 and 10 × 10−3 μm2. In the comparison 
with multiple linear regressions with the same parameter 

Fig. 22   The well plot of Well G41 between 1230 and 1330 m
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in Fig. 24 and the fuzzy model without feature engineering 
containing all parameters collected in Fig. 25, the accuracy 
increased significantly. In the multiple linear-regression 
model, the accuracy is bad with a narrow distribution above 
the value of 10. Moreover, it calculates negative in ultra-
low permeability area. The regression model apparently 
acts badly in estimation with the correlation coefficient of 
0.07. Compared with model without feature engineering, the 
result maintains a good trend with the core, but estimated 
less observation by the reference line. It means that the fuzzy 
logic is well-behaved in estimation in permeability but the 

correlated parameter should be purified to feature the rela-
tionship. In the result with optimized method, the core points 
of these samples are estimated well and the correlation coef-
ficients are calculated to reach the 0.76, which fully meets 
the needs of exploration production.

Conclusion

The fuzzy logic application based on permeability control 
factors of low permeability and low-permeability reservoirs 
is proposed and the formation permeability of Mesozoic 
strata in Gaoqing area is estimated and the following con-
clusions are obtained.

1.	 The Mesozoic strata in the Gaoqing area are charac-
terized by low permeability, and ultra-low permeabil-
ity. Based on the optimized K nearest to the neighbor 
clustering,the reservoir is classified into six electrofa-
cies in which Elec1 and Elec2 show significant ultra-low 
porosity and ultra-low permeability features; petrophys-
ics of Elec4 and Elec5 is relatively better and Elec3 and 
Elec6 are the most complicated. Each electrofacies has 
its own characteristic distribution while different electro-
facies have a large range of overlapping of the range that 
cannot be directly classified by the electrofacies predic-
tion.

2.	 According to logging data analysis, the main factors 
affecting reservoir permeability are the homogeniza-
tion effect caused by diagenesis. The cementation effect 
is not strong in the area. The petrophysics are mainly 
related to the effect of compaction and dissolution, and 

Fig. 23   Cross plot of results from estimated permeability versus core 
permeability with feature engineering

Fig. 24   Cross plot of results from estimated permeability by linear 
regression model versus core permeability

Fig. 25   Cross plot of results from estimated permeability by fuzzy 
logic without feature engineering versus core permeability
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the change of pore value caused by diagenesis is used to 
characterize the transformation effect of diagenesis.

3.	 Variable selections in the permeability modeling is con-
ducted by the forward and backward approach integrat-
ing the result of electrofacies, SP, LLS, AC and �� as a 
combination of independent variables. Combined with 
the result of variable selection and the logging princi-
ple, this paper comprehensively explains the meaning of 
each independent variable achieving the unification of 
the mathematical model and the method principle.

4.	 Apply the optimal scale analysis to scaling the measure-
ment of the model in discrete variable and the continu-
ous variable, and get the value of the discrete variable 
in electrofacies and the scale conversion value of each 
continuous variable.

5.	 Fuzzy logic is assembled to model permeability with 
the filtered independent variable. By the accuracy analy-
sis, the correlation coefficients reached 0.76 with the 
elimination of data points in scale error. The applica-
tion is practical for the ultra-low permeability-to-middle 
permeability stratum, and the calculation precision is 
high. As for the stratum of the thin layer or in frequent 
sedimentary changes, the adaptability is poor.
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