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Abstract
The assumption of constant reservoir permeability is not strictly applicable to reservoirs where rock properties undergo 
changes, such as stress-sensitive porous media. Most researches on the permeability stress sensitivity mainly concentrated 
on experimental approach, physical modeling or pressure transient analysis, whereas rate transient analysis does not attract 
much attention. Based on source/sink function method, this paper develops a seepage model of multi-fractured horizontal 
well incorporating stress-sensitive permeability. The model is semi-analytically solved by fracture discretization, Pedrosa’s 
transformation, perturbation theory, and integration transformation method. Not only pressure transient analysis, but also 
rate transient analysis is separately performed with relevant parameters. The model presented here can provide some insights 
into well dynamic forecasting during exploiting such reservoirs, and contribute to establish the theoretical basic for transient 
analysis efficiently.

Keywords  Stress sensitivity · Multi-fractured horizontal well · Line-sink model · Hydraulic fracture discretization · 
Pressure transient analysis · Rate transient analysis

List of symbols

Latin symbols
C	� Wellbore storage coefficient (m3/MPa)
CD	� Dimensionless wellbore storage coefficient
Ct	� Total compressibility coefficient (MPa−1)
Cρ	� Fluid compressibility coefficient (MPa−1)
Cϕ	� Rock compressibility coefficient (MPa−1)
h	� Reservoir thickness (m)
hD	� Dimensionless reservoir thickness
K	� Permeability (µm2)
Ki	� Initial permeability under initial condition (µm2)
K0	� The second kind of zero-order-modified Bessel 

function
K1	� The second kind of first-order-modified Bessel 

function

I0	� The first kind of zero-order-modified Bessel 
function

I1	� The first kind of first-order-modified Bessel 
function

M	� Total number of hydraulic fractures
m	� Pseudo pressure [MPa2/(mPa s)]
mD	� Dimensionless pseudo pressure
mi	� Initial pseudo pressure [MPa2/(mPa s)]
N	� Number of discretized segments for a half of 

each fracture
p	� Pressure (MPa)
p0	� Reference pressure (MPa)
pi	� Initial formation pressure (MPa)
q	� Gas production rate (104 m3/day)
qD	� Dimensionless gas production rate
qsc	� Surface gas production rate (104 m3/day)
q̃i,j	� Flux density per unit length of discrete segment 

(i, j) [104 m3/(d m)]
R	� Universal gas constant [0.008314 MPa m3/

(kmol K)]
r	� Radial distance (m)
rD	� Dimensionless radial distance
rw	� Wellbore radius (m)
rwD	� Dimensionless wellbore radius
S	� Skin factor, dimensionless
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s	� Laplace transform variable
T	� Absolute temperature (K)
t	� Time (h)
tD	� Dimensionless time
v	� Velocity of gas flow (m/h)
x, y	� x- and y-coordinates (m)
xw, yw	� x- and y-coordinates of the line-sink (m)
Xi,j, Yi,j	� x- and y-coordinates of discrete segment (i, j) 

midpoint (m)
Xf	� Half-length of each fracture (m)
yi	� y-Coordinate of the intersection between the ith 

fracture and y-axis (m)
Δyi	� Distance between yi and yi−1, Δyi = Yi − yi−1
Z	� Gas deviation factor

Greek symbols
γ	� Permeability modulus (MPa−1)
γm	� Pseudo permeability modulus (mPa s/MPa2)
γmD	� Dimensionless pseudo permeability modulus
µ	� Gas viscosity (mPa s)
ρ	� Gas density (kg/m3)
ρ0	� Reference gas density under reference pressure 

(kg/m3)
ϕ	� Porosity of reservoir, fraction
ηD	� Perturbation deformation function
ηD0	� Zero-order perturbation deformation function

Superscripts
–	� Laplace transform domain

Subscripts
D	� Dimensionless
i	� Initial
m	� Pseudo
sc	� Standard condition
t	� Total
w	� Wellbore

Introduction

The transport of fluid (liquid, gas and their mixture) in 
porous medium is so called percolation or seepage. Study on 
the characteristics of porous flow and fluid mechanics is of 
vital significance in oil and gas field development. We have 
surveyed a lot of literatures aiming at the stress sensitivity of 
porous media, which is generated from the effective stress of 
rock skeleton increasing and the pore pressure decreasing.

In tight rocks, the existence of stress sensitivity is widely 
confirmed. Numerous efforts have been made to investigate 
the stress-sensitivity mechanism via laboratory experi-
ments or physical modeling (Dormieux et al. 2011; Zhao 
et al. 2013; Liu et al. 2015; Tian et al. 2015). Wang et al. 
(2015) established the relationship between overburden 

pressure and effective stress considering stress arching 
effect in Sulige gas field and proved that the stress sensitiv-
ity of permeability greatly depends on stress arching ratio. 
Tan et al. (2015a, b) developed the predictive models for 
permeability of porous media considering stress sensitivity 
based on the fractal theory and mechanics of materials. Xiao 
et al. (2016) proposed a stress-sensitivity evaluation stand-
ard considering experiment data and rock micro-structural 
features, on the basis of analysis of the empirical models 
and theoretical models on the relationships between perme-
ability and effective stress. Through the conventional meas-
urement of the core plug samples from carbonate formation, 
Hamid et al. (2016) developed a relationship between per-
meability, porosity, velocity and effective horizontal stress 
for carbonate reservoirs using both core and field data. Luo 
et al. (2017) proposed a model using microseismic data to 
calculate fracturing network parameters for tight oil reser-
voirs. Xu et al. (2018) carried out an experimental study on 
porosity and permeability stress-sensitive behavior of sand-
stone, including characteristics, mechanisms and controlling 
factors.

Pressure transient analysis considering specific fac-
tors (such as stress sensitivity) is always a hot and difficult 
problem in the field of seepage theory (Guo et al. 2015a, 
b; Zhao et al. 2014; Zhang et al. 2017; Abbas et al. 2017). 
For the pressure transient analysis of tight rocks related to 
the stress-sensitive permeability, some scholars chose an 
exponential model in their mathematical derivation. Zhang 
et al. (2011) presented a well test model for stress-sensitive 
composite dual-porosity reservoirs based on the concept of 
permeability modulus, which is the key parameter in per-
meability exponential model. Yao et al. (2013) presented a 
semi-analytical model to facilitate transient pressure analysis 
with stress-dependent hydraulic fracture conductivities for 
both hydraulically fractured vertical wells and multi-stage 
fractured horizontal wells. They pointed out the effect of 
stress-sensitive conductivities on transient pressure behavior 
results in a hump on the pressure derivative curves. Qanbari 
and Clarkson (2014) provided a new method for analysis of 
transient linear flow in stress-sensitive tight oil reservoirs, in 
which a correction factor is taken into account. The results 
indicated that the correction factor becomes more impor-
tant for higher values of permeability modulus and pressure 
drawdown. Dou et al. (2015) introduced a new procedure to 
quantify the permeability stress sensitivity by applying the 
traditional straight-line analysis method. They determined 
the permeability modulus and the formation parameters 
based on the corrected pseudo-parameters and the concept 
of cut-and-trial. Guo et al. (2015a, b) presented the pressure 
transient analysis (PTA) and rate decline analysis (RDA) 
on the hydraulic fractured vertical wells with finite con-
ductivity in shale gas reservoirs considering multiple flow 
mechanisms. Bahrami et al. (2015) proposed a practical 
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methodology and workflow for characterizing the SRV 
parameters in multi-fractured wells in unconventional oil 
and gas reservoirs using well test and rate transient data 
analysis based on diffusivity equation solution for linear 
and elliptical flow regimes integrated with numerical res-
ervoir simulation. Lei et al. (2016) proposed a comprehen-
sive hybrid grid model and performance analysis workflow 
to study the impact of reservoir and hydraulic fracturing 
parameters on production performance of tight oil reservoir. 
Yao et al. (2016) developed a semi-analytical composite 
model for multi-stage fractured horizontal wells (MFHWs) 
in heterogeneous reservoirs. The model was better prepared 
for not only incorporating pressure-dependent heterogeneous 
reservoir properties, but also investigating the different pro-
duction behavior at different fracture stages in complex het-
erogeneous reservoirs. Huang et al. (2018) also established a 
new analytical model based on the permeability exponential 
model in tight oil reservoirs for pressure transient analysis.

To sum up, many researches on the pressure transient 
analysis have been performed, while the rate transient analy-
sis about reservoirs with stress-sensitive property is rarely 
discussed, which acts as the motivation of this work. This 
study develops a seepage model of multi-fractured horizon-
tal well incorporating stress-sensitive permeability based on 
source/sink function method. The model is semi-analytically 
solved by fracture discretization, Pedrosa’s transformation, 
perturbation theory, and integration transformation method. 
Not only pressure transient analysis, but also rate transient 
analysis is separately performed with relevant parameters. 
The model presented here can provide some insights into 
well dynamic forecasting during exploiting such reservoirs.

Line‑sink model considering stress 
sensitivity

Due to the difficulty of describing the multiple fractures 
inner boundary condition with a direct mathematical for-
mula, the model of a continuous line-sink in stress-sensitive 
porous medium is first addressed here. The system of units 
and symbols adopted in this paper is listed in nomenclature 
for the convenience of comprehending the coefficients in 
the formulas.

Figure 1 illustrates the physical model of a continuous 
line-sink throughout the top and bottom boundaries. The 
mass conservation equation for single-phase fluid is writ-
ten as

Like a vertical well, gas only flows along the radial r 
direction from the porous medium into the line-sink. There-
fore, the equation of motion is expressed by

(1)∇ ⋅

(
�

⇀

v
)
+

�(��)

�t
= 0.

Considering the permeability is affected by the stress 
sensitivity of the porous medium, which is resulted from 
the decreasing of pore pressure and the increasing of effec-
tive stress during the production process, the permeability 
modulus � is introduced by

Solving Eq. (3), we obtain:

Substituting (4) into (2) yields the equation of motion:

The rock-state equation:

The gas-state equation:

Substituting Eqs. (5)–(8) into Eq. (1) yields the governing 
equation that accounts for the stress sensitivity:

where the total compressibility coefficient Ct = C� + C� , 
MPa−1.

Define the pseudo pressure and pseudo permeability 
modulus as the following expressions:

(2)v⃗ = vrr⃗ = − 3.6
K

𝜇

𝜕p

𝜕r
.

(3)� =
1

K

dK

dp
.

(4)K = Kie
−�(pi−p).

(5)vr = − 3.6
Ki

�
e−�(pi−p)

�p

�r
.

(6)� = �0[1 + C�(p − p0)].

(7)� = �0[1 + C�(p − p0)],

(8)� =
Mp

RTZ
.

(9)
Ki

r

�

�r

[
r
p

�Z
e−�(pi−p)

�p

�r

]
=

��Ct

3.6

p

�Z

�p

�t
,

(10)m(p) = ∫
p

p0

2p

�Z
dp,

Fig. 1   A line-sink of natural gas in stress-sensitive porous medium
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where p0 is the reference pressure and can be variable, and 
γm is introduced according to the pseudo pressure. Therefore:

Combining Eqs. (11)–(13) into Eq. (9) and multiplying both 
sides by 2

Ki

 , we obtain:

The left-hand term of Eq. (14) can be written as

Therefore, Eq. (14) is rewritten as

Based on the dimensionless definitions listed in Table 1, 
the dimensionless governing flow equation, converted from 
Eq. (16), can be obtained as

Initial condition:

Inner boundary condition:

(11)K = Kie
−�m(mi−m),

(12)
�m

�r
=

2p

�Z

�p

�r
,

(13)
�m

�t
=

2p

�Z

�p

�t
.

(14)
1

r
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�r

[
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�m
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]
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��Ct

3.6Ki

�m

�t
.
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1
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[
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+ re−�m(mi−m)�m

(
�m

�r

)
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�2m

�r2
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= e−�m(mi−m)

[
�2m

�r2
+

1

r
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�r
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(
�m
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)2
]
.

(16)
�2m

�r2
+

1

r

�m

�r
+ �m

(
�m

�r

)2

= e�m(mi−m)
��Ct

3.6Ki

�m

�t
.

(17)
�2mD

�r2
D

+
1

rD

�mD

�rD
− �mD

(
�mD

�rD

)2

= e�mDmD

�mD

�tD
.

(18)mD

|||tD=0 = 0.

(19)lim
rD→0

(
rDe

−�mDmD

�mD

�rD

)
= − 1.

Infinite lateral boundary condition:

Equations (17)–(20) compose the mathematical model for a 
continuous link-sink in stress-sensitive porous medium.

According to Pedrosa (1986), introduce the variable sub-
stitution to alleviate the nonlinearity of Eqs. (17) and (19):

where �D
(
rD, tD

)
 is an intermediate variable which is also 

called the perturbation deformation function.
The following formulas can be derived from Eq. (21):

Substituting (21) and (22) into the model (17)–(20) yields:

According to the regular perturbation theory, the terms �D , 
1

1−�mD�D
 , and − 1

�mD

ln
(
1 − �mD�D

)
 in (23) can be expanded as 

power series in dimensionless permeability modulus, which 
are:

The zero-order approximate solution can meet the require-
ments of engineering precision because the dimensionless 

(20)mD

|||rD→∞ = 0.

(21)mD

(
rD, tD

)
= −

1

�mD

ln
[
1 − �mD�D

(
rD, tD

)]
,

(22)

⎧
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�rD
=

1

1 − �mD�D

��D
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2
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2
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.

(23)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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rD

��D
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�D
���rD→∞ = 0

.

(24)�D = �D0 + �mD�D1 + �2
mD

�D2 +⋯ ,

(25)
1

1 − �mD�D
= 1 + �mD�D + �mD

2�D
2 +⋯ ,

(26)−
1

�mD

ln
(
1 − �mD�D
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= �D +

1

2
�mD�D

2 +⋯

Table 1   Definitions of the dimensionless variables

Dimensionless pseudo pressure mD =
78.489Kih

Tqsc

(
mi − m

)
Dimensionless pseudo permeability modu-

lus
�mD =

Tqsc

78.489Kih
�m

Dimensionless time tD =
3.6Ki t

��CtX
2

f

Dimensionless wellbore storage coefficient CD =
0.159C

�CthX
2

f

Dimensionless radial distance rD =
r

Xf
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permeability modulus is usually small ( 𝛾mD ≪ 1 ), so the 
model (23) becomes:

Equation (27) is the linearized line-sink model in stress-
sensitive porous medium.

Applying Laplace transformation, the model (27) 
becomes:

where s is the Laplace transformation variable.
The general solution of (28) can be easily obtained as 

follows:

where I0 is the first kind of zero-order-modified Bessel func-
tion, K0 is the second kind of zero-order-modified Bessel 
function, and A and B are constants.

Substitution of Eq. (29) into the inner boundary condi-
tion yields:

According to the properties of Bessel’s function, which 
are limx→0xI1(x) → 0 , and limx→0xK1(x) → 1 , Eq.  (28) 
becomes:

Likewise, with the outer boundary condition 
given in (28) and the properties of Bessel’s function, 

(27)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

rD

�

�rD

�
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�rD

�
=

��D0

�tD

�D0
���tD=0 = 0

lim
rD→0

�
rD

��D0

�rD

�
= −1

�D0
���rD→∞ = 0

.

(28)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

rD

𝜕

𝜕rD

�
rD

𝜕𝜂̄D0

𝜕rD

�
= s𝜂̄D0

lim
rD→0

�
rD

𝜕𝜂̄D0

𝜕rD

�
= −

1

s

𝜂̄D0
���rD→∞ = 0

,

(29)𝜂̄D0 = AI0

�
rD

√
s
�
+ BK0

�
rD

√
s
�
,

(30)

lim
rD→0

rD
𝜕𝜂̄D0

𝜕rD
= lim

rD→0
rD

√
s
�
AI1

�
rD

√
s
�
− BK1

�
rD

√
s
��

= −
1

s
.

(31)B =
1

s
.

limx→∞I0(x) → ∞ and limx→∞K0(x) → 0 , and the coefficient 
in (29), A, should satisfy the following equation:

With (31) and (32), we can get the final form of (29) 
as follows:

As mentioned above, zero-order perturbation solution 
is enough to approximate the exact solution of Eq. (23), 
that is:

where r2
D
=
(
xD − xwD

)2
+
(
yD − ywD

)2.
Equation (44) is the basic line-sink solution in Laplace 

domain for stress-sensitive porous medium. Employing 
the superposition principle, the pressure response of a 
multi-fractured horizontal well will be derived in the next 
section.

Model illustration and solution 
for multi‑fractured horizontal well

Physical model

Given that a horizontal well with multiple hydraulic frac-
tures is producing in stress-sensitive porous medium at a 
constant surface flow rate qsc (see Fig. 2), such assump-
tions of physical model are outlined as follows:

1.	 The thickness of the formation is h, the lateral bound-
ary is infinite, and the top and bottom boundaries are 
assumed to be penetrated completely by each fracture (a 
total of M). The initial permeability of porous medium 
is Ki under the initial formation pressure pi.

2.	 The horizontal wellbore is parallel to the top and bot-
tom boundaries. Fractures are evenly spaced. At each 
fracture, the height is h, the width is neglected, and the 
half-length is Xf.

3.	 Gas flow obeys Darcy rule, while the permeability is 
considered stress sensitive to the impact of effective 
stress increasing and pore pressure decreasing during 
production.

4.	 Both the horizontal wellbore and the fractures have infi-
nite conductivity. Each fracture has the different flow 
rate.

5.	 Consider single-phase isothermal flow and negligible 
gravity and capillary effects.

(32)A = 0.

(33)𝜂̄D0 =
1

s
K0

�
rD

√
s
�
.

(34)𝜂̄D ≈ 𝜂̄D0 =
1

s
K0

�
rD

√
s
�
,



860	 Journal of Petroleum Exploration and Production Technology (2019) 9:855–867

1 3

Pressure solution of producing at a constant 
production rate

Based the basic line-sink solution, we applied the fracture 
discretization and superposition principle to obtain the solu-
tion for a multi-fractured horizontal well.

Figure 3 shows the top view of the multi-fractured hori-
zontal well and described the fracture discrete segments. 
The coordinate origin is set to the turning point of horizon-
tal well. M fractures are evenly distributed along the y-axis 
(horizontal wellbore) with the spacing of Δy. The cross point 
of the ith (i = 1, 2,…, M) fracture and the y-axis is repre-
sented by (0, yi). Along the x-axis direction, each fracture 
is divided into 2N segments, which will generate a total of 
2N midpoints and 2N + 1 endpoints. For jth segment on the 
ith fracture (j = 1, 2,…,2N), the midpoint is denoted by (Xi,j, 
Yi,j) and the corresponding endpoints are (xi,j, yi,j) and (xi,j+1, 
yi,j+1).

The flow rate of each fracture is different and the flux 
strength is also different along the fracture length. Neverthe-
less, for the single discrete segment (i, j), the flux strength is 

considered as constant, and the flux density per unit length 
is represented by q̃i,j . Therefore, the dimensionless pressure 
response at any point of porous medium (x, y), caused by the 
segment (i, j), can be calculated by integrating the basic line-
sink along the segment length:

where ywD = yDi , xDi,j =
xi,j

Xf

 , yDi,j =
yi,j

Xf

 , and qDi,j =
q̃Di,jXf

qsc
.

Applying the superposition principle over all discrete frac-
ture segments, the dimensionless pressure response at (x, y) 
caused by a total of (M × 2N) discrete segments can be written 
as

(35)

𝜂̄Di,j
�
xD, yD

�
= q̄Di,j ∫

xDi,j+1

xDi,j

× K0

�√
s

��
xD − xwD

�2
+
�
yD − ywD

�2�
dxwD,

(36)𝜂̄D
(
xD, yD

)
=

M∑
i=1

2N∑
j=1

𝜂̄Di,j
(
xD, yD

)
.

Fig. 2   Schematic of a multi-
fractured horizontal well

Fig. 3   Description of fracture 
discrete segments
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Set the point (x, y) to the midpoint of the segment (k, v), 
i.e. (Xk,v,Yk,v), Eq. (36) is changed into:

Since the infinite conductive fractures and wellbore reveal 
that the pressure in hydraulic fractures is equal to the bot-
tom-hole pressure, we have:

Letting k = 1,2,…, M and v = 1,2,…, 2N, i.e. writing (38) 
for all discrete segments, we can get M × 2N equations, 
which are including (M × 2N + 1) unknowns. The flow con-
straint condition is given as follows:

In the Laplace domain Eq. (39) is written as

There are (M × 2N + 1) equations when composing 
Eq. (38) at each segment together with Eq. (40), which can 
solve the (M × 2N + 1) unknowns of 𝜂̄wDN and q̄Di,j(i = 1,2,…, 
M; j = 1,2,…, 2N). The matrix expression is:

Employing Duhamel’s theorem to incorporate wellbore 
storage coefficient and skin factor into well response, the 
pseudo pressure solution is:

𝜂̄wD in (42) is the bottom-hole pressure response in the 
Laplace domain, and by Stehfest numerical inversion algo-
rithm we can calculate the pressure responses �wD(tD) in 
real-time domain. Then, with (43), we can obtain the bot-
tom-hole pressure response for the multi-fractured horizon-
tal wells in stress-sensitive porous media:

(37)𝜂̄D
(
XDk,v, YDk,v

)
=

M∑
i=1

2N∑
j=1

𝜂̄Di,j
(
XDk,v, YDk,v

)
.

(38)𝜂̄wDN =

M∑
i=1

2N∑
j=1

𝜂̄Di,j
(
XDk,v, YDk,v

)
.

(39)
M∑
i=1

2N∑
j=1

[(
xDi,j+1 − xDi,j

)
⋅ qDi,j

]
= 1.

(40)
M∑
i=1

2N∑
j=1

[(
xDi,j+1 − xDi,j

)
⋅ q̄Di,j

]
=

1

s
.

(41)

⎡⎢⎢⎢⎢⎢⎢⎣

A1.1 ⋯ A1,v ⋯ A1,2N −1

⋮ ⋮ ⋮ ⋮

Ak,1 ⋯ Ak,v ⋯ Ak,2N −1

⋮ ⋮ ⋮ ⋮

AM,1 ⋯ AM,v ⋯ AM,2N −1�
xD1,2 − xD1,1

�
⋯

�
xDk,v+1 − xDk,v

�
⋯

�
xDM,2N+1 − xDM,2N

�
0

⎤⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̄D1,1

⋮

q̄Dk,v

⋮

q̄DM,2N

𝜂̄wDN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮

0

⋮

0

1∕s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(42)𝜂̄wD =
s𝜂̄wDN + S

s + CDs
2(s𝜂̄wDN + S)

.

According to Stehfest (1970), the expression of the pres-
sure response in the real domain is written as

where N is an even number and si =
ln 2

tD
i . The weight coef-

ficient Vi is given by

Equation (44) is the semi-analytical solution of transient 
pressure response for a multi-fractured horizontal well in 
stress-sensitive porous medium.

Production solution of producing at a constant 
bottom‑hole pressure

The dimensionless flowrate equation for the constant-pres-
sure production case can be determined by the relation-
ship between the dimensionless pressure and the rate in the 
Laplace space (Van Everdingen and Hurst 1949):

Therefore, taking Lapace transformation over the values 
of mD in Eq. (44) into m̄D , and substituting m̄D into Eq. (46), 
we can determine the dimensionless production rate in the 
Laplace domain. Furthermore, the production rate in real 
space can be calculated by Stehfest numerical inversion and 
expressed as

(43)mD = −
1

�mD

ln
(
1 − �mD�wD

)
.

(44)

mD = −
1

𝛾mD

ln

[
1 −

𝛾mD ln 2

tD

N∑
i=1

Vi

si𝜂̄wDN + S

si + CDs
2

i

(
si𝜂̄wDN + S

)
]
,

(45)

Vi = (−1)
N

2
+i

min
(
i,
N

2

)
∑
k=

i+1

2

k
N

2 (2k+1)!

(k + 1)!k!(
N

2
− k+1)!(i − k+1)!(2k − i+1)!

.

(46)q̄D(s) =
1

s2m̄D(s)
.

(47)

qD =
ln 2

tD

N�
i=1

Vi

−𝛾mD

si ln

�
1 −

𝛾mD ln 2

tD

N∑
i=1

Vi

si 𝜂̄wDN+S

si+CDs
2

i (si 𝜂̄wDN+S)

�
.
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Equation (47) is the semi-analytical solution of transient 
production rate for a multi-fractured horizontal well in 
stress-sensitive porous medium.

Results and analysis

As one of the applications of the above mathematical and 
mechanics derivation, the flow characteristic investigation of 
a multi-fractured horizontal well in stress-sensitive porous 
medium is performed in this section. We plotted the double-
logarithmic type curves of transient pressure response and 
transient rate decline through the Matlab programming.

Pressure transient analysis of producing 
at a constant production rate

Figure 4 shows the transient pressure curves affected by dif-
ferent permeability modulus, which can be classified into six 
seepage stages as follows.

Stage 1, pure wellbore storage effect flow. Both pressure 
curve and derivative curve exhibit unit slope on the log–log 
plots. Stage 2, skin effect transition flow. The pressure deriv-
ative curve acts out like a “hump” representing the effect 
of skin. Stage 3, early linear flow perpendicular to hydrau-
lic fractures. The pressure derivative curve manifests as an 
upward straight line with a slope of “1/2”. Stage 4, mid-time 
pseudo-radial flow around each fracture. The pressure deriv-
ative curve exerts a horizontal level with a value of “1/2M”, 

where M is the number of hydraulic fractures. Stage 5, linear 
flow of whole system perpendicular to horizontal wellbore. 
Another straight line with a slope of “1/2” can be observed 
in the derivative curve. Stage 6, late-time pseudo-radial flow 
of whole system. The pressure derivative curve behaves as a 
horizontal line with the value of “0.5” on the y-axis.

Permeability modulus γmD reflects the extent of the stress 
sensitive effect. From Fig. 4, we can see γmD starts to take 
effect from stage 2, i.e. the first period of gas flow in the 
underground formation. With the increase of the value of 
γmD, the derivative curves turn upward gradually and devi-
ate from the 0.5 level line, which means the stronger stress 
sensitivity is, the more serious damage of permeability is, 
the more difficult of fluid flow, and the larger drawdown 
pressure is needed.

Figure 5 represents the effect of fracture number (M) on 
transient pressure curves. The derivative curve gradually 
declines with the increasing of fracture number, but this 
phenomenon is not so obvious in wellbore storage period 
(stage 1) and late-time pseudo-radial flow period (stage 6). 
Because the bigger of M, the more flow channels for natural 
gas, the better of the formation connectivity, and thus the 
smaller drawdown pressure is needed.

Figure  6 indicates the effect of fracture spacing Δyi 
on transient pressure curves. It can be observed that Δyi 
mainly affects the mid-time pseudo-radial flow of fracture 
system (stage 4) and the subsequent linear flow of whole 
system (stage 5). The larger the fracture spacing, the longer 
the duration of the mid-time pseudo-radial flow of fracture 
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system, and the later the occurrence of the linear flow of 
whole system.

Figure 7 illustrates the effect of fracture half-length 
Xf on transient pressure curves. As we can see, with the 
increase of fracture length, the early linear flow perpen-
dicular to hydraulic fractures (stage 3) will last longer 

with lower position of pressure derivative curves, and the 
mid-time pseudo-radial flow around each fracture (stage 
4) occurs later with shorter duration. When Xf continues 
to increase, the horizontal line on the pressure derivative 
curves reflecting stage 4 will be gradually concealed.
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Rate transient analysis of producing at a constant 
bottom‑hole pressure

Figure 8 reflects the effect of permeability modulus γmD 
on rate decline curves. The greater of γmD, the stronger of 
the stress sensitivity, i.e. the more serious of permeability 

damage, so the worse the reservoir property is, and the lower 
the production rate under constant pressure will be, resulting 
in a steeper downwarping of the production decline curve 
and a more obvious upwarping of the derivative curve.

Figures 9, 10 and 11 successively reveal the rate decline 
curves affected by fracture number (M), fracture spacing 
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(Δyi) and fracture half-length (Xf). The bigger the M, the 
better the reservoir connectivity, so that driving pressure 
differential of fluid flow is smaller, and the production rate 
is higher (see Fig. 9). The smaller the Δyi, the more serious 
the fracture interference, and the lower the production rate. 

Correspondingly, on the rate derivative curve, the shorter 
the duration of the mid-time pseudo-radial flow around 
each fracture, even to be covered (see Fig. 10), the larger 
the Xf, the greater the drainage area, and the higher position 
of production rate curves. Meanwhile, the early linear flow 
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perpendicular to hydraulic fractures will last longer with 
lower position of rate derivative curves (see Fig. 11).

Concluding remarks

This study mainly deduced a semi-analytical model of gas 
transient transport from the stress-sensitive porous medium 
to a multi-fractured horizontal well. Based on the semi-ana-
lytical solution, a series of transient flow dynamic curves 
(including pressure response and rate decline) were plotted. 
The following conclusions can be summarized:

1.	 A semi-analytical solution of multi-fractured horizontal 
well is developed by orderly employing Pedrosa’s lin-
earization, perturbation technique, Laplace transforma-
tion, fractures discretization and superposition principle.

2.	 The stress-sensitivity indicates the permeability damage 
of formation and results in larger pressure drawdown 
during intermediate and late flow regimes, which are 
reflected by upward tendencies in both pressure and rate 
derivative curves.

3.	 The major factors (mainly related to the geometry and 
placement of hydraulic fractures including fracture 
number, fracture spacing and fracture half-length) influ-
ence on the transient flow behavior is analyzed to better 
understand the gas transport characteristics.

4.	 The proposed model is better prepared for not only well 
test interpretation but also rate transient analysis, which 

contributes to evaluating underground fluid transport in 
stress-sensitive formations efficiently and accurately.
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