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Abstract
Huge amount of works was done on modeling of gas transport in nanopores (both organic and inorganic) of shale formation. 
However, the study on oil transport behaviors is quite limited. Based on the study on water transport in carbon nanotubes, an 
analytical model is developed for oil transport in nanopores of shale formation. The new model takes the effect of oil–wall 
interaction on the oil viscosity in the adsorption region into consideration. Results show that: (1) the oil–wall interaction on 
oil viscosity in the adsorption region plays an important role in oil transport behaviors and cannot be neglected; (2) when 
the critical thickness is smaller than 1 nm, the volume flux increases slowly with increasing contact angle; (3) when the 
critical thickness increases to 2 nm, the volume flux increases rapidly to infinity when the contact angle is larger than 140°.
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Introduction

Great pressure is laid on the energy supply with the rapid 
rising population (Lee 2011; Sun et al. 2017a, b, c, d, e, f, 
g, h, i, j; Sheikholeslami et al. 2018a, b, c). Besides, the 
rapid depletion of conventional petroleum and natural gas 
resources aggravates the seriousness of the problem (Wang 
et al. 2018; Jia et al. 2018; Sun et al. 2018a, b, c, d, e, f, g, h, 
i, j, k, l). Fortunately, the geological reserves of unconven-
tional oil and gas are extremely rich throughout the world, 
and the development of these resources has become a hot 
spot (Zhu et al. 2016). Shale oil reserves have been explored 
worldwide, and the US has seen a boom of oil shale develop-
ment in recent years (Ribas et al. 2017; Soeder 2018; Alfarge 

et al. 2018; Pang et al. 2018). However, the extremely poor 
connectivity of pores in shale and the ultralow permeability 
are the main characteristics of shale formation (Sheng et al. 
2018; Shovkun et al. 2018). At present, the study on the oil 
transport mechanisms in nanopores of shale is quite limited 
(Lu et al. 2012; Falk et al. 2015; Bousige et al. 2016). The 
key physics of oil transport mechanisms in nanopores of 
shale are still held as mysteries (Cui et al. 2017).

Modern experimental means face challenges in isolating 
kerogen from the oil shale, and the critical knowledge about 
the physical and chemical properties of nanopores in shale 
is quite limited (Ibrahimov and Bissada 2010; Suleimenova 
et  al. 2014). Therefore, molecular dynamics simulation 
(MDS) is always adopted in the preliminary study (Kondori 
et al. 2017; Rafati et al. 2018), and the kerogen is always 
described as graphene in the shale formation (Ambrose et al. 
2012; Mosher et al. 2013; Harrison et al. 2014; Wang et al. 
2015a, b, 2016a). Wang et al. (2016b) studied the profile 
of oil transport rate in nanopores of kerogen and the multi-
layer sticking phenomenon by adopting the MDS method. 
They found that there exists slip flow of oil in inorganic 
nanopores, which is different from that in kerogen, where 
some layers of oil are stuck to the nanopore wall. It has been 
pointed out that the flow enhancement, a ratio of oil trans-
port rate in nanopores of shale to the calculated velocity by 
the Hagen–Poiseuille model, in organic nanopores of shale 
can be up to three orders of magnitude (Majumder et al. 
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2005). The slip flow and apparent viscosity model is then 
developed to capture the physics of liquid transport in nano-
pores (Majumder et al. 2005; Chen et al. 2008). However, 
for the ideal graphite model, some unique characteristics of 
shale nanopores (e.g. wall roughness, radius change, hydro-
philicity and hydrophobicity and tortuosity) cannot be con-
sidered (Schmatko et al. 2005; Bahrami et al. 2006; Joseph 
and Aluru 2008; Falk et al. 2010; Yang et al. 2015a, b; Gu 
et al. 2016; Guo et al. 2016; Joly et al. 2016). In fact, MDS 
is time consuming and cannot describe the surface proper-
ties well (Secchi et al. 2016). Besides, empirical equations 
cannot show the internal relationships among the physical 
parameters (e.g., the function relationship between sticking 
viscosity and wettability). The present study on the profile 
of oil velocity in nanopores is still at the early stage: the fac-
tors influencing the velocity profile is not well understood 
and whether the slip flow will always happen is still waited 
to be explored. What is worth to mention is that the present 
modeling methods of slip length and apparent viscosity are 
not the most appropriate for characterizing (Cui et al. 2017).

It has been pointed out that the viscosity of bulk oil in the 
center of the nanopores is equal to that of oil in macropores 
(Cui et al. 2017). As a result, adopting the predicted value of 
apparent viscosity may not reflect the actual profile of veloc-
ity. Besides, the present equations for characterizing the slip 
length may be physically unrealistic under some conditions 
(Myers 2011; Cui et al. 2017).

It has been pointed out that the wettability is the dominant 
factor influencing the liquid transport in nanopores under 
certain conditions (Neto et al. 2005; Thomas et al. 2009; 
Li et al. 2010; Ho et al. 2011; Botan et al. 2011; Majumder 
et al. 2011; Lee et al. 2012; Gruener et al. 2016; Wu et al. 
2017; Cui et al. 2017). Mattia and Calabro (2012) presented 
a model for estimating the slip velocity of water flow in 
carbon nanotubes. Then, based on Mattia et al.’s work, a 
series of works were done on modeling of the flow enhance-
ment at nanoscale (Park and Aluru 2007, 2010; Wei et al. 
2011; Mattia et al. 2015). At present, in the theoretical study 
of water transport in nanotubes, the effect of surface dif-
fusion, representing the water–wall interaction, adhesion 
work, wall roughness and the water–wall wettability were 
all taken into consideration, and some novel physics were 
discovered. However, present model shows a relatively poor 
fitness compared with experimental data (Zhang et al. 2002; 
Mashl et al. 2003; Kou et al. 2014, 2015; Cui et al. 2017). 
Ritos et al. (2014) conducted a verification test of the Mat-
tia’s model by simulating water transport in nanotubes of 
various wall materials. However, these previous works were 
almost focused on water transport in nanotube (mostly car-
bon nanotubes) (Thomas et al. 2008, 2010; Kannam et al. 
2013; Muscatello et al. 2016; Wu et al. 2017). At present, the 
study on oil transport in nanopores of shale is quite limited.

It has been pointed out that the polar components in crude 
oil can be adsorbed on the surface of the nanopores and 
this part of oil is not easy to flow. Therefore, these polar 
components can be regarded as a part of the shale forma-
tion (Schwark et al. 1997; Qin et al. 2000; Pan et al. 2005; 
Cui et al. 2017). Cui et al. (2017) presented an analytical 
model for oil transport estimation in nanopores of oil shale 
with consideration of van der Waals adsorption (McGonigal 
et al. 1990), and compared the contributions of slip factor 
and adsorption factor on the flow enhancement. Besides, Cui 
et al. (2017) found the contribution of physical adsorption 
is negligible compared with slip flow, which is in agree-
ment with water transport behaviors in carbon nanotubes 
(Kondratyuk and Yates 2007). For liquid flow through nano-
pores, the adsorption phenomenon is extremely important, 
which has an obvious influence on the flow enhancement 
(Wu et al. 2017). The adsorption region is the area where 
some layers of fluid are stuck to the nanopore walls and its 
physical parameters are significantly different from that of 
bulk liquid (Do and Do 2005; Severson and Snurr 2007; 
Sha et al. 2008). Riewchotisakul and Akkutlu (2016) pre-
sented a model for gas transport in nanopores of shale with 
consideration of physical adsorption. However, the physi-
cal parameters of gas are significantly different from that 
of liquid. Despite this, the studies on gas transport revealed 
the importance of physical adsorption on fluid transport at 
nanoscale (Akkutlu et al. 2012; Deng et al. 2014; Yang et al. 
2015a, b; Wu et al. 2015). Zhang et al. (2017a) presented 
a model for predicting the volume flux of oil in nanopores 
of shale. However, their model failed to take the effect of 
oil–wall interaction on the viscosity of oil in the adsorption 
region into consideration.

In this paper, a modified model is developed for oil trans-
port estimation in nanopores of shale considering spatial 
variation of oil viscosity. Then, sensitivity analysis is con-
ducted based on the new equation.

Model description

The shale formation is rich in nanopores and nanoslits (Li 
et al. 2017; Feng et al. 2018a, b, c; Zhang et al. 2017a, b). 
A cross-section of a SEM image of a shale sample is shown 
in Fig. 1 below. It is observed that nanopores and nanoslits 
are distributed in both organic and inorganic materials of 
the shale formation.

A further study showed the nanopores of kerogen (the 
organic material) in the shale formation, as shown in Fig. 2 
below. It is observed that nanopores (most of them are in 
cylindrical shape) are rich in abundance in the kerogen 
(Mohammed et al. 2017; Feng et al. 2018a, b). Therefore, in 
this paper, a cylindrical model is developed for oil transport 
in nanopores of shale formation.
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Based on both theoretical and MDS research, Zhang et al. 
(2017a) presented an analytical equation considering multiple 
mechanisms (e.g. physical adsorption, slip flow and physical 
and chemical properties of nanopore wall, etc.) of oil transport 
in nanopores of oil shale. The volume flux in their model is 
given below (Zhang et al. 2017a; Cui et al. 2017):

where qo denotes the volume flux of oil in nanopores of 
shale,  nm3/s; �

C
 denotes the slip factor (Cui et al. 2017), 

dimensionless; �
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 denotes the oil density in the adsorption 
region, g/nm3; �
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 denotes the density of bulk oil, g/nm3; 
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denotes the radius of the nanopore, nm; P denotes the oil 
pressure, mPa; � denotes the oil viscosity, mPa·s; L denotes 
the length in the flow direction, nm; C

1
 denotes the coef-

ficient of slip velocity (Cui et al. 2017), dimensionless; h 
denotes the thickness of the adsorption layer, nm.

As mentioned above, the oil–wall interaction plays an impor-
tant role in oil properties, especially in the adsorption region. The 
oil viscosity in the adsorption region will increase or decrease 
according to the wettability of the nanopore wall. However, the 
oil viscosity in Eq. (1) is a constant, which leads to deviation to 
the calculated results. Thomas et al. (2008) proposed an ana-
lytical model for estimating effective water viscosity, which is a 
weighted average of water viscosity in the adsorption region and 
the bulk water, in nanotubes. In this paper, the model proposed by 
Thomas et al. is extended to describe the oil viscosity distribution 
in the nanopores of shale formation. According to Thomas et al.’s 
model, the effective viscosity of oil confined in the nanpores can 
be expressed as (Thomas et al. 2008):

where �(r) denotes the effective viscosity of oil confined 
in the nanpores of shale formation, mP s; �i denotes the oil 
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Fig. 1  A cross-section of a 
SEM image of a shale sample: a 
unsegmented and b segmented. 
Reproduced with permission 
from (Walls and Sinclair 2011; 
Song et al. 2018)

Fig. 2  Structure of nanopores in 
organic material of shale forma-
tion. Reproduced with permis-
sion from (Zeng et al. 2017)
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viscosity in the adsorption region, mP s; �∞ denotes the 
viscosity of bulk oil, mP s; Ai(r) denotes the cross-sectional 
area of the adsorption region,  nm2; At(r) denotes the cross 
section area of nanopore,  nm2.

In this paper, it is assumed that Eq. (5), developed for 
water transport in carbon nanotubes, can also be used to cal-
culate the oil viscosity in the nanopores of shale formation. 
This is because the lipophilicity or oleophobicity proper-
ties of an oil–wall system can lead to increase or decrease 
of oil viscosity in the surface region, which is similar to a 
water–wall system (Cui et al. 2017).

Wu et al. (2017) proposed an analytical equation for esti-
mating water viscosity in the adsorption region based on 
MDS and experimental results. In this paper, we also assume 
that the equation developed for water viscosity calculation is 
effective in oil viscosity calculation. The empirical equation 
can be expressed as (Wu et al. 2017):

where �w denotes the contact angle of a water droplet on the 
surface of a certain material, °.

Given the fact that the components of crude oil and 
the mineral compositions of shale sample are much more 
complicated than that of pure water and carbon, Eq. (6) is 
rewritten with two fitting parameters. The expression for 
oil transport in nanopores of shale or tight formation can be 
expressed as:

where �o denotes the contact angle of an oil–wall system, °.
Combining Eqs. (7) and (5), we can obtain:

Then, combining Eqs. (8) and (1), we can obtain:

Equation (9) is the analytical equation for estimating oil 
transport behaviors in nanopores of shale formation.

Discussion

In this section, the key findings of this work are discussed 
in detail. The relationship between the volume flux and 
contact angle is shown in Fig. 3 below. Given the fact 

(6)
�i

�∞

= − 0.018�w + 3.25

(7)
�i

�∞

= −C
2
�o + C

3

(8)�(r) =
(

−C
2
�o + C

3

)

�∞

Ai(r)

At(r)
+ �∞

[

1 −
Ai(r)

At(r)

]

(9)qo = �C

[

�ads

�bulk

(

1 − �ads
)

+ �ads

]

�R4ΔP

8L

1

(

−C
2
�o + C

3

)

�∞

Ai(r)

At(r)
+ �∞

[

1 −
Ai(r)

At(r)

]

that the composition of crude oil varies significantly to 
each other, the curves under various critical thickness are 
shown for comparison.

It is observed from Fig. 3 that when the critical thickness 
is smaller than 1 nm, the volume flux increases slowly with 
increasing contact angle. However, when the critical thick-
ness increases to 2 nm, the volume flux increases rapidly 
to infinity when the contact angle is larger than 140°. This 
means the effect of wettability on oil transport only make a 
contribution when the critical thickness is larger than 1.5 nm.

Conclusions

In this paper, an improved model is developed with con-
sideration of the effect of oil–wall interaction on the oil 

viscosity in the adsorption region. Then, the effects of 
physical adsorption and wettability on the oil transport in 
nanopores are discussed in detail. Some meaningful con-
clusions are listed below:

(1) The oil–wall interaction on oil viscosity in the adsorp-
tion region plays an important role in oil transport 
behaviors and cannot be neglected.
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different critical thickness conditions
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(2) When the critical thickness is smaller than 1 nm, the 
volume flux increases slowly with increasing contact 
angle.

(3) When the critical thickness increases to 2 nm, the vol-
ume flux increases rapidly to infinity when the contact 
angle is larger than 140°.

Following researchers are suggested to perform more 
studies on the physics in the surface region to obtain a sat-
isfactory oil recovery efficiency of the oil shale reserves.
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