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Abstract
Multi-fractured horizontal wells (MFHWs) are effective for developing unconventional reservoirs. A complex fracture net-
work around the well and hydraulic fractures form during fracturing. Hydraulic fractures and fracture network are sensitive 
to the effective stress. However, most existing models do not consider the effects of stress sensitivity. In this study, a new 
analytical model was established for an MFHW in tight gas reservoirs based on the trilinear flow model. Fractal porosity and 
permeability were employed to describe the heterogeneous distribution of the complex fracture network. The stress sensitiv-
ity of fractures was also considered in the model. Pedrosa substitution and perturbation method were applied to eliminate 
the nonlinearity of the model. Analytical solutions in the Laplace domain were obtained using Laplace transformation. The 
model was then validated and applied. Finally, sensitivity analyses of pressure and rate were discussed. The presented model 
provides a new approach to estimate the effect of fracturing. It can also be utilized to recognize formation properties and 
forecast the dynamics of pressure and the production of tight gas reservoirs.
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List of symbols
m(p)	� Pseudo-pressure [MPa2/(mPa·s)] m = 2 ∫ p

p0

p

�Z
dp

p	� Reservoir pressure (MPa)
T 	� Temperature (K)
cg	� Gas compressibility (1/MPa)
c�	� Pore compressibility (1/MPa)
ct	� Total compressibility (1/MPa)
b3, b2	� Apparent permeability coefficient in region 3 and 

region 2
k	� Permeability (mD)
k3a	� Apparent permeability in region 3 (mD)
k2a	� Apparent permeability in matrix in region 2 (mD)
k2fref	� Fracture permeability in region 2 at the boundary 

of the hydraulic fracture (mD)
k1ref	� Permeability of region 1 at initial condition (mD)
�	� Porosity
�2fref	� Fracture porosity in region 2 at the boundary of 

the hydraulic fracture
Λ	� Λ=

(
�cti

)
2m

+
(
�cti

)
2fref

�	� Storativity ratio � =
(
�cti

)
2fref

/
Λ,

�3	� Diffusivity coefficient in region 3 �3 =
k3a

�3�ct3

�2	� Diffusivity coefficient in region 2 �2 =
k2fref

��

�1	� Diffusivity coefficient in region 1 �1 =
k1ref

�ct1�1

�	� Shape factor (m2)
�	� Inter-porosity coefficient � =

�k2ad
2
ref

k2fref

�	� Permeability modulus (1/MPa)
Df	� Fractal dimension of fracture network
�	� Connectivity index
s	� Laplace variables
C	� Wellbore storage coefficient (m3/MPa)
t	� Time (s)
q	� Gas flow rate (m3/d)
�	� Gas viscosity (mPa·s)
Z	� Gas deviation factor
Dg	� Gas diffusion coefficient (m2/s)
Bg	� Gas volume factor (m3/m3)
LR	� Model length (m)
WR	� Model width (m)
h	� Formation thickness (m)
xe	� The spacing from the wellbore to the boundary 

(m)
ye	� Half fracture spacing (m)
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yo	� The spacing from the exterior fracture to the 
boundary (m)

xf	� Half fracture length (m)
bf	� Half-width of the hydraulic fracture (m)
wf	� Width of the hydraulic fracture (m)
dref	� Reference length (m)

Subscript
D	� Dimensionless
i	� Initial condition
sc	� Standard condition
3	� Region 3
2	� Region 2
2f	� Fracture in region 2
2m	� Matrix in region 2
1	� Region 1
wf 	� Bottom hole

Superscript
–	� Laplace transform

Introduction

With the continuous decrease in conventional oil and gas 
reserves, the development of unconventional resources, such 
as tight gas and shale gas, has attracted increasing attention. 
Tight gas reservoir features low permeability and low poros-
ity (Huang et al. 2018), which lead to a quick decline of 
production for a single well. Multi-fractured horizontal wells 
(MFHWs) are effective for developing tight gas reservoirs. 
Multistage fracturing leads to the formation of a complex 
multi-scale coupling medium, which has complicated seep-
age characteristics and is composed of matrix, natural and 
induced fractures (fracture network), and artificial fractures.

A complex analytical model must be established to accu-
rately characterize the complex seepage of MFHWs. Such 
a model can be established using two methods. One is to 
divide the fracture into many segments and then use the 
Green’s function and the point source function to solve the 
problem. The other one is to establish a linear flow model by 
simplifying the seepage process as a combination of linear 
flow. The advantage of the linear flow model approach is 
that it considers a finite conductivity of the fracture without 
dividing the fracture into many units. Hence, the linear flow 
method is more convenient and is a significant alternative 
for simulating the behavior in MFHW (Wang et al. 2016a). 
The bilinear flow model was first proposed by Cinco-Ley 
(1981) for studying the transient pressure behavior of a ver-
tical fractured well with infinite conductivity in an infinite 
reservoir. Basing on the bilinear flow model, Wong et al. 
(1986) studied the pressure characteristic of a vertical well 
with a finite conductivity fracture. Similarly, Lee and Brock-
enbrough (1986) first proposed a trilinear flow model for a 

vertical well. The trilinear flow model was introduced into 
a fractured horizontal well by Brown et al. (2009). They 
established a multi-fractured horizontal well model by treat-
ing the simulated area around hydraulic fracture stages as 
a dual-porosity medium. The correctness of the model was 
verified by comparing it with the semi-analytical solutions 
obtained by Medeiros et al. (2007). Thereafter, the trilin-
ear flow model has been widely used to investigative the 
dynamic characteristics of MFHWs in unconventional res-
ervoirs (Ozcan et al. 2014; Gao 2014; Wei et al. 2015; Wang 
et al. 2015; Chen et al. 2016; Wang et al. 2016a, 2016b). 
Aside from the trilinear flow model, other multi-linear 
models such as five- (Zhang et al. 2016) and seven-region 
flow models (Yuan et al. 2015) have been proposed by some 
scholars. However, the accuracy of these models is not sig-
nificantly improved compared with that of the trilinear flow 
model. Moreover, the boundaries between different regions 
are not easy to divide, and the parameters of each region are 
difficult to obtain, thereby limiting the practical applications 
of these models.

Due to the presence of natural fractures and induced 
fractures generated by hydraulic fracturing, dual-porosity 
assumption (Barenblatt et al. 1960; Warren and Root 1963; 
Kazemi et al. 1976) is generally used in the stimulated area 
around the hydraulic fracture. However, considering the 
large variations of scale in tight formation, dual-porosity 
assumption, which is only a first-order approximation, would 
inevitably lead to a deviation between simulation and actual-
ity (Ozcan et al. 2014). Studies have shown that natural frac-
tures obey fractal distribution in fractured reservoirs. Chang 
and Yortsos (1990) obtained the power law expression of 
permeability and porosity of fractures by introducing fractal 
theory. Subsequently, many scholars have applied the theory 
of Chang and Yortsos (1990) to seepage models of various 
types of fractured reservoirs (Tong and Ge 1998; Tong and 
Zhou 1999; Tong and Liu 2003; Tong et al. 2003; Velazquez 
et al. 2008; Zhao and Zhang 2011). Cossio et al. (2013) first 
applied this theory to the trilinear flow model and obtained a 
semi-analytical solution for a vertically fractured well. Wang 
et al. (2015) further established a fractal trilinear flow model 
for MFHWs in tight oil reservoirs.

The effectiveness of the complex fracture network consid-
erably affects yield, drainage area, and final recovery (May-
erhofer et al. 2008; Warpinski et al. 2008). The pressure in 
the fracture drops rapidly because of the greater conductivity 
compared with the matrix, which will lead to a production 
reduction caused by fracture closure. However, previous 
trilinear flow models do not consider the effect of the stress 
sensitivity of fractures.

Based on the trilinear flow model proposed by Brown 
et al. (2009), a new model was established to analyze the 
pressure and rate responses of MFHWs in tight gas res-
ervoirs by considering the effect of stress sensitivity of 
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fracture. Fractal theory and dual-porosity model were con-
sidered in this model to accurately describe the complex 
fracture network. To obtain an analytical solution of the 
model, we assumed the permeability modulus of natural 
and induced fractures and hydraulic fracture to be equal. 
Although this assumption is inappropriate to some degree, 
some scholars (Chen et al. 2015, 2016; Teng et al. 2016; Ji 
et al. 2017) have already proven that this method is accept-
able. With Pedrosa substitution, perturbation method, and 
Laplace transformation method, the analytical solution of 
the model in the Laplace domain was obtained. Finally, a 
sensitivity analysis of pressure and rate was conducted.

Mathematical model

Figure 1 shows the schematic of the trilinear flow model for 
a MFHW. Regions 1–3 represent the flow in the hydraulic 
fracture, the stimulated reservoir, and the outer reservoir, 
respectively. Other assumptions of the presented mathemati-
cal model are as follows:

1.	 The outer boundary of the rectangular tight gas reservoir 
is impermeable, and the length and width of the reser-
voir are LR and WR , respectively.

2.	 The height of each fracture is equal to the formation 
thickness. The hydraulic fractures are the same in feature 
and are equally spaced. The yield of each fracture is the 
same. No gas flow is observed at the end of the fracture, 
as well as at the region at the parallel fracture direction 
in the center of the fracture spacing.

3.	 Region 3 is considered a single medium, and the effect 
of gas slippage is considered. Region 2 is considered a 
dual-porosity medium, and the fractal porosity and per-
meability coupling with stress sensitivity are employed. 
In region 1, the effect of stress sensitivity is considered.

4.	 The gas flow in the reservoir is isothermal, and the 
effects of gravity and capillary pressure are negligible.

The viscosity and compression coefficient of gas are 
functions of pressure. Therefore, a pseudo-pressure func-
tion (Russell et al. 1966) was introduced to eliminate the 
nonlinearity of the model. The definitions of dimensionless 
variables are shown in Table 1.

Mathematical model in outer reservoir (region 3)

According to the apparent permeability derived by Ozkan 
et al. (2010), the apparent permeability considering the 
effect of gas slippage in region 3 is as follows:

where b3 = 1 +
(
�cg3Dg3

)/
k3 . Therefore, the seepage veloc-

ity of matrix in region 3 is as follows:

Governing equations in region 3 are obtained by combin-
ing the movement equation with the continuity equation. By 
introducing pseudo-functions and dimensionless variables 
into governing equations, we describe the mathematical 
model in region 3 as follows:

(1)k3a = b3k3

(2)v3 = −
3.6k3a

�

�p3

�x
.

(3)
�2m3D

�x2
D

=
1

�3D

�m3D

�tD

(4)Initial condition ∶ m3D
||tD=0 = 0

(5)Inner boundary condition ∶ m3D
||xD=xfD = m2fD

||xD=xfD

Fig. 1   Schematic of the trilinear 
flow model for MFHW in tight 
gas reservoirs
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Mathematical model in stimulated reservoir (region 
2)

The dual-porosity model was used to model the stimulated 
area. Moreover, the power law expression of permeability 
and porosity of natural and induced fractures considering 
the effect of stress sensitivity (Tong and Zhou 1999) was 
employed. The permeability and porosity are given by:

Similarly, governing equations in region 2 were obtained. 
The mathematical model in region 2 can be described as 
follows:

Fracture network:

(6)Outer boundary condition ∶
�m3D

�xD

||||xD=xeD
= 0.

(7)k2f = k2fref e
−�(pi−p2f )

(
y

bf

)Df−�−2

(8)�2f = �2fref e
−c�2f (pi−p2f )

(
y

bf

)Df−2

.

(9)

�2m2fD

�y2
D

+
Df − � − 2

yD

�m2fD

�yD
− �D

(
�m2fD

�yD

)2

+ e�Dm2fD�
1

b�
fD

y�
D

(
m2mD − m2fD

)

+ e�Dm2fDy�
D

1

F2D

1

b�
fD

�m3D

�xD

|||||xD=xfD
= e�Dm2fD

y�
D

b�
fD

�
�m2fD

�tD

Mathematical model in hydraulic fracture (region 1)

To consider the effect of stress sensitivity on hydraulic frac-
ture, we adopted a stress-dependent permeability.

Similarly, governing equations in region 1 were obtained. 
The mathematical model in region 1 can be described as 
follows:

(10)Matrix ∶ (1 − �)
�m2mD

�tD
+ �

(
m2mD − m2fD

)
= 0

(11)Initial condition ∶ m2fD
||tD=0 = m2mD

||tD=0 = 0

(12)
Inner boundary condition ∶ m2fD

||yD=bfD = m1D
||yD=bfD

(13)Outer boundary condition ∶
�m2fD

�yD

||||yD=yeD
= 0.

(14)k1 = k1ref e
−�(pi−p1).

(15)

�2m1D

�x2
D

− �D

(
�m1D

�xD

)2

− e�Dm1D
1

�1D

�m1D

�tD
+

1

F1D

�m2fD

�yD

||||yD=bfD
= 0

Table 1   Definitions of dimensionless variables

Dimensionless pseudo-pressure (constant gas rate)
mjD =

86.4k2frefhTsc(mi−mj)
qscTpsc

, j = 3, 2f , 2m, 1

Dimensionless pseudo-pressure (constant bottom hole pressure) mjD =
mi−mj

mi−mwf

, j = 3, 2f , 2m, 1

Dimensionless time tD =
3.6�2

d2
ref

t

Dimensionless gas rate qD =
qscpscT

86.4k2frefTsch(mi−mwf )

Dimensionless permeability modulus (constant gas rate) �D =
�ZqscTpsc

172.8pik2frefhTsc
�

Dimensionless permeability modulus (constant bottom hole pressure)
�D =

�Z(mi−mwf )
2pi

�

Dimensionless distance xD = x∕dref , yD = y∕dref

Dimensionless hydraulic fracture half-width bfD = bf∕dref

Dimensionless fracture conductivity F1D =
bfk1ref

drefk2fref
,F2D =

xfk2fref

drefk3a

Dimensionless diffusivity coefficient �1D = �1∕ �2,�3D = �3
/
�2

Dimensionless wellbore storage coefficient CD =
C

�hd2
ref
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Solutions

To obtain the pressure and rate solution, we performed 
Laplace transformation of the equations and boundary con-
ditions. Moreover, Pedrosa substitution and perturbation 
method were applied to linearize the equations. Finally, ana-
lytical solutions of dimensionless bottom hole pressure and 
dimensionless gas rate in Laplace domain were obtained. 
Detailed derivation of the solution can be found in Appen-
dix 1.

Bottom hole pressure

The dimensionless bottom hole pressure in Laplace domain 
is as follows:

(16)Initial condition ∶ m1D
||tD=0 = 0

(17)Inner boundary condition ∶

{
e−�Dm1D

�m1D

�xD

|||xD=0 = −
1

2F1D

(Constant gas rate)

m1D
||xD=0 = 1 (Constant bottom hole pressure)

(18)Outer boundary condition ∶
�m1D

�xD

||||xD=xfD
= 0.

(19)𝜉0wD =
1

2
√
a1F1Ds

1

tanh
�√

a1xfD

� .

According to the Duhamel principle, the dimensionless 
bottom hole pressure incorporating the wellbore storage 

Fig. 2   Schematic of multiple stage fractures in closed reservoir

effect in the Laplace domain can be obtained as follows 
(Zhao et al. 2015):

Using the Stehfest algorithm (Stehfest 1970a, b) and 
inverse substitution, the dimensionless pseudo-pressure at 
bottom hole in the time domain was obtained as follows:

Gas rate

The dimensionless gas rate is as follows:

The gas rate in the time domain can be also obtained by 
using the Stehfest algorithm. qD is the rate for a single sym-
metry element. To obtain the total rate of horizontal well, we 
employed Meyer’s method (Meyer et al. 2010).

(20)𝜉0wD,storage =
𝜉0wD

1 + s2CD𝜉0wD

(21)mwD = −
1

�D
ln
(
1 − �D�0wD,storage

)
.

(22)q̄D = 2F1D

√
a1

1 − e−𝛾D

𝛾Ds
tanh

�√
a1xfD

�
.
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Figure 2 illustrates the system configuration of NF , num-
ber of equally spaced fractures in closed rectangular reser-
voir with aspect ratio ( � ). The individual fractured reservoir 
aspect ratios for the in-between fractures ( �c ) and extreme 
fractures ( �e ) are given by:

The total flow rate QD of horizontal well is given by:

Validation and application

To validate the bottom hole pressure solution, we com-
pared the solution with the classic dual-porosity trilinear 
flow model obtained from Brown et al. (2009) for the spe-
cial case of Df = 2,�=0,�=0 . The input data used for the 
comparison are listed in Fig. 3. As can be seen from Fig. 3, 
there is a good agreement between the two solutions for 
both dimensionless pressure and pressure derivative. We 
further verified the solution by applying the model to match 
with actual data of Well 314 (Al-Ahmadi and Wattenbarger 
2011). Some of the reservoir parameters are collected from 
the paper SPE149054 as shown in Table 2. After match-
ing the rate data, other reservoir parameters, especially the 
parameters of the complex fracture network (such as fracture 
permeability, inter-porosity coefficient, fractal dimension, 
connectivity index and permeability modulus) are obtained. 
The parameters obtained from the matching are given in 
Table 2 and marked with an asterisk. As shown in Fig. 4, the 
new model matches the gas rate quite well. Therefore, our 

(23)�c =
WR

2ye
,�e =

WR

2yo
.

(24)QD = qD
(
�c

)
⋅

(
NF − 1

)
+ qD

(
�e

)
.

model could be a useful tool for pressure and rate analysis 
of tight gas wells.

Pressure and rate behavior analyses

The pressure and rate responses for MFHW in tight gas res-
ervoir were calculated with the well testing model proposed 
above. The transient pressure and rate type curves are plotted 
in Fig. 5. An MFHW in tight gas reservoirs has five possible 
flow stages as follows:

(1) Wellbore storage stage. The pseudo-pressure curve 
and the pseudo-pressure derivative curve coincide at this 
stage, and the slopes of the two curves are 1. (2) Transi-
tional flow. (3) Inter-porosity flow. The derivative curve of 
this stage is characterized by a “dip.” At this stage, the rate 

Fig. 3   Comparison between the new model and the classic dual-
porosity trilinear flow model

Table 2   Relevant parameters in a real tight gas reservoir

Parameters Values Parameters Values

T  (K) 338.9 cti (MPa−1) 4.35 × 10−2

h (m) 91.44 k3 (mD) 1.5 × 10−4

Bgi 0.00509 k2m (mD) 1.5 × 10−4

� (mPa·s) 0.0201 k2fref * (mD) 0.1
�3 0.06 k1fref  *(mD) 20
�2m 0.06 b2,b3 * 2
�2fref 0.01 xf  *(m) 62.48
�1 0.2 bf  *(m) 0.001
ye(m) 16.15 xe *(m) 120
mi(MPa2·(mPa·s)−1) 2.84 × 104 � * 0.5
mwf (MPa2·(mPa·s)−1) 9.65 × 102 � *(MPa−1) 0.01
LR(m) 905 Df  * 1.95
NF 28 � * 0.2

Fig. 4   Matching result of gas rate for Well 314
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of decline in gas rate slows down because of inter-porosity 
flow. (4) Compound linear flow. The derivative curves of this 
stage are characterized by a slope of 1/2. At this stage, gas 
in outer region begins to flow linearly, and gas rate begins to 
decline rapidly. (5) Boundary dominated flow. The pseudo-
pressure curve and the pseudo-pressure derivative curve 
coincide again at this stage, and the slope of the two curves 
is 1. The quick depletion of the formation pressure leads to 

a closure of the natural and induced fractures. As a result, 
gas rate rapidly decreases until the well stops production.

Then, the effects of relevant parameters on the type curves 
were analyzed. The effects of inter-porosity flow coefficient 
� on pressure and rate are shown in Fig. 6. � determines the 
location and size of the “dip” in the pseudo-pressure deriva-
tive curve. The larger the value of � , the more left and more 
down the location of the “dip.” Besides, the larger the value 
of � , the higher the gas rate at the middle stage, which leads 

Fig. 5   Transient pressure type curves of MFHW in tight gas reservoir

Fig. 6   Effect of inter-porosity flow coefficient on pseudo-pressure and rate curves. a Dimensionless pseudo-pressure and pseudo-pressure deriva-
tive curve, b dimensionless rate curve
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to an earlier decline at the later stage. This is because � is 
related to shape factor � . When the value of � is small, the 
characteristic length of the matrix is large, which leads to a 
small density of the fracture network. The inter-porosity flow 
now has a slim chance of occurrence, and the quantity of 
the flow is small. As a result, the inter-porosity flow stage is 
delayed. On the contrary, a larger value of � means a higher 
density of the fracture network; thus, the gas rate increases 
at the middle stage.

The effects of storativity ratio � on pressure and rate 
are shown in Fig. 7. The storativity ratio mainly affects the 
width and depth of the “dip” in the pseudo-pressure deriva-
tive curve. The smaller the value of � , the deeper and wider 
the “dip” in the derivative curve. This is because � reflects 
the gas capacity in the fracture network. A smaller value of 
� means less gas in the fracture network; thus, the gas in 
the matrix must transfer into the fracture network earlier. 

Fig. 7   Effect of storativity ratio on pseudo-pressure and rate curves. a Dimensionless pseudo-pressure and pseudo-pressure derivative curve, b 
dimensionless rate curve

Fig. 8   Effect of fractal dimension on pseudo-pressure and rate curves. a Dimensionless pseudo-pressure and pseudo-pressure derivative curve, b 
dimensionless rate curve
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The smaller the value of � is, the smaller the gas rate at the 
early stage.

The effects of fractal dimension Df on pressure and rate 
are shown in Fig. 8. The fractal dimension significantly 
affects the curves throughout entire stages, except for the 
early stage when wellbore storage is the predominant mecha-
nism. Df reflects the development of the fracture network. 
The greater the value of Df , the more the induced fractures 
produced by the fracturing process. The fractal permeability 

of the fracture network reduces slowly further away from the 
hydraulic fracture, which leads to a lower seepage resistance. 
Therefore, the position of pseudo-pressure and pseudo-pres-
sure derivative curves becomes lower, and the value of gas 
rate becomes higher. Therefore, Df is a satisfactory param-
eter that can be used to describe and evaluate the effects of 
multistage fracturing.

The effects of conductivity index � on pressure and rate 
are shown in Fig. 9. The positions of the pseudo-pressure 

Fig. 9   Effect of conductivity index on pseudo-pressure and rate curves. a Dimensionless pseudo-pressure and pseudo-pressure derivative curve, 
b dimensionless rate curve

Fig. 10   Effect of fracture conductivity on pseudo-pressure and rate curves. a Dimensionless pseudo-pressure and pseudo-pressure derivative 
curve, b dimensionless rate curve
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and pseudo-pressure derivative curves are lower when the 
value of � is smaller. The gas rate decreases as the value of � 
increases. This is because � is related to the topology of the 
fracture network and reflects the connectivity of the fractal 
fracture network. In general, the more complex the fracture 
network is, the worse the connectivity of the fracture net-
work, and the larger the value of � . Therefore, � can be also 
used to evaluate the quality of the fracture network.

The effects of fracture conductivity wf k1ref on pressure 
and rate are shown in Fig. 10. The fracture conductivity 
mainly affects the pressure and rate at the early and middle 
stages. The larger the value of wf k1ref , the easier the gas 
flow in the hydraulic fracture. Therefore, the position of the 
pseudo-pressure and pseudo-pressure derivative becomes 
lower, and the position of gas rate becomes higher. How-
ever, the larger the fracture conductivity, the earlier the gas 
rate begins to decrease. Hence, fracture conductivity for a 
specific tight gas reservoir has an optimal value.

The effects of dimensionless permeability modulus �D on 
pressure and rate are shown in Fig. 11. The definition of 
dimensionless permeability modulus varies under different 
working systems. Therefore, the values of �D in Fig. 11a and 
b are different. The stress sensitivity of fractures also sig-
nificantly affects the curves throughout the different stages, 
except for the early time when wellbore storage is the pre-
dominant mechanism. The larger the value of �D , the faster 
the decrease in fracture permeability, which leads to a higher 
position of pseudo-pressure and pseudo-pressure derivative 
curves and a lower gas rate. When the gas rate is constant, a 
large pressure drop is required to maintain the constant rate 

as the value of �D is large, which leads to a short seepage 
period.

Conclusions

In this paper, we established an analytical model for an 
MFHW in tight gas reservoirs based on the trilinear flow 
model. Fractal porosity and permeability were applied to 
consider the heterogeneous distribution of the complex frac-
ture network. Moreover, the stress sensitivity of fractures 
was considered in the model. Pedrosa substitution, perturba-
tion method, and Laplace transformation were employed to 
solve this model. The transient pressure and rate type curves 
were obtained, and a sensitivity analysis was performed. The 
following conclusions can be obtained:

1.	 The transient pressure and rate type curves contain 
five flow regimes, including the wellbore storage stage, 
transitional flow, inter-porosity flow, compound linear 
flow, and boundary dominated flow.

2.	 Inter-porosity flow coefficient is related to the density 
of the fracture network. The larger the inter-porosity 
flow coefficient is, the lower the position of pressure 
curves and the larger the gas rate at the inter-porosity 
flow stage. Storativity ratio reflects the storage capacity 
of the fracture network. The larger the storativity ratio is, 
the lower the position of pressure curves and the larger 
the gas rate at the early stage.

3.	 Fractal dimension and conductivity index can fully 
reflect the development and connectivity of the complex 

Fig. 11   Effect of dimensionless permeability modulus on pseudo-pressure and rate curves. a Dimensionless pseudo-pressure and pseudo-pres-
sure derivative curve, b dimensionless rate curve
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fracture network. When the fractal dimension is larger 
and the connectivity index is smaller, more fractures 
are produced by fracturing process, and the connectiv-
ity between fractures is better, which leads to a lower 
position of pressure curves and a larger gas rate.

4.	 Fracture conductivity considerably affects the pressure 
and rate at the early and middle stages. A larger fracture 
conductivity leads to a lower position of the pressure 
curves and a larger gas rate at early and middle stages.

5.	 The effect of the stress sensitivity of the fracture is obvi-
ous and cannot be neglected. The larger the dimension-
less permeability modulus, the higher the position of 
pressure curves and the lower the gas rate.

6.	 The model presented here can be utilized to recognize 
formation properties and forecast the pressure and rate 
dynamics of tight gas reservoirs. In addition, the new 
model is recommended as an evaluation model for 
screening attractive tight gas reservoirs and evaluating 
the effect of fracturing.
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Appendix 1: Analytical solutions 
in the Laplace domain

Outer reservoir (region 3)

By taking the Laplace transformation, the model of region 
3 in Laplace domain can be obtained:

The general solution of the model in the Laplace domain 
is as follows:

(A.1)

⎧⎪⎪⎨⎪⎪⎩

𝜕2m̄3D

𝜕x2
D

−
1

𝜂3D
sm̄3D = 0

m̄3D
��xD=xfD = m̄2fD

���xD=xfD
𝜕m̄3D

𝜕xD

���xD=xeD = 0

.

(A.2)m̄3D = A3e

√
1

𝜂3D
sxD

+ B3e
−
√

1

𝜂3D
sxD .

By taking the derivative of Eq. (A.2) with respect to xD , 
we obtain:

Substituting inner and outer boundary conditions into 
Eqs. (A.2) and (A.3), we can obtain:

Substituting Eq. (A.4) into Eq. (A.3), we obtain:

where a3 =
√

1

�3D
s tanh

[√
1

�3D
s
(
xfD − xeD

)]
.

Stimulated reservoir (region 2)

Obviously, there is a strong nonlinearity in the model of 
region 2. Hence, the Pedrosa substitution and the perturba-
tion method are applied to linearize the equations (Pedrosa 
1986; Wang 2014):

Similarly, dimensionless pseudo-pressure of region 1 can 
be also substituted to the following form:

Performing a parameter perturbation in �D by defining 
the following series: (Kikani and Pedrosa 1991; Chen et al. 
2016):

(A.3)
𝜕m̄3D

𝜕xD
= A3

√
1

𝜂3D
se

√
1

𝜂3D
sxD

− B3

√
1

𝜂3D
se

−
√

1

𝜂3D
sxD .

(A.4)

⎧
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e
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1
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e
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1
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1
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+ e
−
�

1
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1
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1
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���xD=xfD .

(A.5)
𝜕m̄3D

𝜕xD

||||xD=xfD
= a3 m̄2fD

|||xD=xfD

(A.6)m2fD = −
1

�D
ln
(
1 − �D�

)
.

(A.7)m1D = −
1

�D
ln
(
1 − �D�

)
.

(A.8)� = �0 + �D�1 + �2
D
�2 + �3

D
�3 +⋯
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1

1 − �D�
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D
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Considering that the value of �D is always small, usually 
�D� < 1 . The zero-order perturbation solution can satisfy 
accuracy requirement. Therefore, the model of region 2 can 
be transformed to the following form:

By taking the Laplace transformation, the model of 
region 2 in Laplace domain can be obtained:

Equation (A.13) can be transformed to the following 
form:

Here, f (s) = �

(1−�)s+�
.

Substituting Eqs. (A.5) and (A.14) into Eq. (A.12), we 
obtain:

Here, a2 =
1

b�
fD

�s −
�[f (s)−1]

b�
fD

−
1

b�
fD
F2D

a1..

Therefore, the final equations of the model are as follows:

(A.11)
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(A.14)m̄2mD = f (s)𝜁0.
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The generalized Bessel function can be described as follows:

When 2 + m − n > 0 , the general solution of the function 
is as follows:

Here, � =
1−n

2+m−n
=

3−Df+�

2+�
.

By comparing Eq. (A.16) and Eq. (A.17), we obtain:

Obviously, 2 + m − n = � + 2 > 0 . Therefore, the general 
solution of the model is as follows:

Here, � =
3−Df+�

2
 , � =

2
√
a2

�+2
 , � =

�+2

2
..

By taking the derivative of Eq. (A.20) with respect to yD , 
we obtain:

Substituting inner and outer boundary conditions into 
Eqs. (A.20) and (A.21), we can obtain:

Substituting Eq. (A.22) into Eq. (A.21), we obtain:
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Here, a�
2
=
√
a2
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Hydraulic fracture (region 1)

Similarly, the model of region 1 in Laplace domain is as 
follows:

where a1 =
1

�1D
s −

1

F1D

a�
2
.

The general solution of the governing equation is as 
follows:

By taking the derivative of Eq. (A.25) with respect to xD , 
we obtain:

1.	 Constant gas rate

Substituting constant gas rate inner boundary condition and 
the outer boundary condition into Eqs. (A.25) and (A.26), 
we can obtain:

Substituting Eq. (A.27) into Eq. (A.25), the solution of 
hydraulic fracture can be obtained as follows:
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By setting xD = 0 in Eq. (A.28), we can obtain the bottom 
hole pressure of the fractured horizontal well in Laplace 
domain as follows:

2.	 Constant bottom hole pressure

Substituting the constant bottom hole pressure inner bound-
ary condition and the outer boundary condition into Eq. 
(A.25) and Eq. (A.26), we can obtain:

Substituting Eq. (A.30) into Eq. (A.26), and setting 
xD = 0 , we can obtain:

Finally, the dimensionless gas rate in Laplace domain can 
be obtained:
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