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Abstract
At present, the study of supercritical water (SCW) flow in wellbores is at the starting stage. In this paper, a simple but useful 
model is developed to study the effect of seawater on the thermophysical properties of SCW in offshore vertical wellbores. 
Firstly, based on the momentum and energy balance equations, a flow model describing SCW flow in a tube is established. 
Then, coupled with transient heat transfer model in seawater and formation, and thermophysical parameters of SCW, a com-
prehensive mathematical model is established. In order to solve the model, the governing equations are expressed in the form 
of difference equations. The straight forward numerical method is adopted to solve the model from wellhead to well-bottom. 
In the process of solving, iterative technique is used to control the calculation accuracy. Finally, type curves of SCW flow in 
offshore wellbores and sensitivity analysis are discussed. Results show that (a) the flow of seawater results in a rapid decline 
in the temperature/enthalpy of SCW in wellbores. (b) Heat loss is the dominant factor of physical parameter distribution in 
wellbores when the injection rate is relatively small. (c) Heat loss has an obvious influence on temperature drop when SCW 
is sparse in volume. (d) The SCW pressure decreases with increasing of injection temperature.

Keywords  Heavy oil recovery · Wellbore modeling · Supercritical water · Effect of seawater · Heat loss rate · Injection 
parameters

List of symbols
wSCW	� The mass flow rate of SCW in offshore wells 

(kg/s)
rai	� The inner radius of the inner tubing (m)
�SCW	� The density of SCW (kg/m3)
vSCW	� The flow velocity of SHS (m/s)
z	� The well depth (m)

QSCW	� The heat transfer rate from SCW to seawater/for-
mation (J/s)

hSCW	� The specific enthalpy of SCW (J/kg)
g	� The gravitational acceleration (m/s2)
�	� The well angle from vertical (rad)
f 	� The shear force in the vertical wellbores (N)

Introduction

Thermal energy is widely adopted in engineering (Sheik-
holeslami et al. 2013, 2017, 2018; Sheikholeslami and Ganji 
2014, 2016; Sheikholeslami and Bhatti 2017; Sheikholeslami 
and Rokni 2017a, b, 2018; Sheikholeslami and Sadoughi 
2017, 2018; Sheikholeslami and Seyednezhad 2017, 2018; 
Sheikholeslami and Shehzad 2017a, b, 2018a, b, c). In the 
petroleum industry, the recovery of heavy oil can be mainly 
divided into two types: thermal recovery (Dong et al. 2015; 
Rego et al. 2017; Nian and Cheng 2017; Mullakaev et al. 
2017; Akhmedzhanov et al. 2017; Telmadarreie and Trivedi 
2017) and the cold recovery (Coskuner et al. 2015; Zhou 
et al. 2018). The thermal recovery is mainly conducted by 
injecting thermal fluid (e.g., wet steam, superheated steam, 
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multi-component thermal fluid) into oil layers (Marx and 
Langenheim 1959; Sun et al. 2017a). This is because the 
viscosity of heavy oil is extremely sensitive to temperature. 
A small increase in temperature can cause great drop of vis-
cosity of heavy oil. One may find that when these thermal 
methods are adopted, the heat loss estimation from wellhead 
to well-bottom must be conducted in order to increase the 
economic performance (Jacobson 2009; Sun et al. 2017b). 
What is worth to stress is that the wet steam (a mixture of 
steam and water) is always selected as the thermal carrier due 
to low cost and high economic efficiency (Sun et al. 2017c).

Ramey (1962) proposed an equation for wet steam tem-
perature estimation based on the energy balance equa-
tion. However, their energy balance equation was built 
upon incompressible fluid. Raymond (1969) presented an 
improved model that can be used for temperature estima-
tion. Then, a series of works were done on modeling of wet 
steam flow in the wellbores (Eickmeier et al. 1970; Alves 
et al. 1992; Hasan and Kabir 1994, 1996, 2012; Hasan et al. 
2009; Pourafshary et al. 2009; Livescu et al. 2010; Bahonar 
and Azaiez 2011a, b; Mao and Harvey 2013; Gu et al. 2014; 
Sivaramkrishnan et al. 2015).

However, the pressure and temperature of the wet steam 
are in function relationship. That is to say the temperature 
can be obtained when the pressure is known, which is dif-
ferent from supercritical water. Zhou (2010) and Xu (2011) 
proposed models for estimating superheated steam flow in 
the vertical wells and obtained the pressure and tempera-
ture profiles by numerical methods (de Almeida et al. 2017). 
Xu et al. (2013) added some oil displacement mechanisms 
of superheated steam to previous models (Fan et al. 2016). 
Sun et al. (2017c) proposed an novel model by taking the 
effect of frictional work on fluid temperature into consid-
eration, which laid a solid foundation for following stud-
ies (Sun et al. 2017d, e). Gu et al. (2015) proposed a basic 
model for single-phase fluid flow in the horizontal section 
of the wellbores (Dong et al. 2014, 2016). Sun et al. (2017f) 
improved Dong et al.’s model by modifying the energy bal-
ance equation. As a result, the scope of application of the 
multi-component thermal fluid flow model in horizontal 
wells was extended to a wider range of injection rate. Then, 
flow behaviors of saturated steam in parallel or concentric 
dual-tubing wells were revealed by Wei (2015) and Gu 
(2016). Based mainly on Wei and Gu et al.’s works, Sun 
et al. (2017g, h, i) conducted a series of studies on super-
heated fluid (superheated steam or multi-component thermal 
fluid) flow in parallel or concentric dual-tubing wells. They 
found out that heat exchange inside the wellbores has an 
obvious influence on thermophysical properties of super-
heated fluid in the integral joint tubing and annuli or in the 
main tubing and auxiliary tubing.

However, these previous works were focused on super-
heated steam (or multi-component thermal fluid), which 

cannot be used to analyze the flow behaviors of SCW in 
wellbores. At present, the study on SCW flow in wellbores 
was very limited. This paper moves one step forward to 
develop a numerical model for simulating SCW flow in off-
shore wellbores. There are mainly three contributions of this 
paper to the existing body of the literature: (1) a numerical 
model is developed for SCW flow in offshore wells with 
consideration of turbulent flow of seawater. (2) Type curves 
of SCW flow in offshore wells were obtained by finite differ-
ence method on space and iteration technique. (3) Effect of 
injection parameters on the profiles of thermophysical prop-
erties of SCW in offshore wellbores was discussed in detail.

Model description

General assumptions

The flow channel of SCW from wellhead to well-bottom is 
shown in Fig. 1. Besides, some basic assumptions are made 
in order to establish the model, as shown below (Sun et al. 
2017j):

1.	 The injection parameters of SCW at platform are con-
stant during the whole injection process.

2.	 Heat transfer rate from SCW to the outside wall of riser/
cement sheath is steady state.

3.	 Thermophysical properties of seawater are independent 
from well depth.

4.	 Heat transfer rate from the outside wall of the cement 
sheath to formation is transient state.

5.	 Thermophysical properties of SCW remain unchanged 
as it flows from the platform to the sea surface.

Governing equations of the mathematical model

The development of the governing equations of SCW flow 
in wellbores is based on the theory proposed by previous 

Casing

Outer tubing

Insulation layer

Inner tubing

Riser
SCW injection

Fig. 1   A schematic of SCW flow in offshore wells
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researchers (Gu et al. 2014; Dong et al. 2016; Wei 2015; Sun 
et al. 2018a, b, c, d, e, f, g, h).

Firstly, an equation describing the mass change process 
is developed. The gradient of mass flow rate in the vertical 
offshore tube is equal to zero.

Based on the energy conservation law (Sun et al. 2018i), 
the heat transfer rate from wellbore to seawater/formation 
should be equal to the total energy change in SCW in well-
bores. The energy balance equation can be expressed as:

where QSCW denotes the heat transfer rate from SCW to 
seawater/formation (Willhite 1967; Cheng et al. 2012; Liu 
2013; Huang et al. 2015) (J/s).

The flowing process of SCW in the vertical offshore tube 
is subjected to the law of momentum conservation.

where f  denotes the shear force (Yuan 1982) (N).

Numerical solution of the mathematical 
model

In order to obtain the numerical solutions of the model, the 
governing equations are expressed in the form of difference 
equations, as expressed below:

The model is solved under the boundary condition. The 
boundary condition (injection pressure and temperature con-
ditions) at the platform is shown below:
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p(wellhead) = p0
T(wellhead) = T0

For a small segment, the injection values at the inlet 
surface is assumed to be given. Therefore, the outlet 
values are calculated based on the difference equations 
shown above. Next, the calculated values at the outlet 
surface are regared as new input values of the following 
segment, and the same calculation method is adopted. 
Finally, the entire distributions of pressure and tem-
perature values along the offshore tube are obtained. In 
conclusion, the model is solved with straight forward 
numerical method.

A calculation flowchart for the above discussion is 
presented in Fig. 2.

Results and discussion

Type curve analysis

Based on the discussion above, the obtained values are 
shows as curves for discussion. The injection pressure, 
temperature and mass flow rate of SCW at wellhead are 
23 MPa, 700 K and 216 t/d. The other basic parameters 
used for calculation are shown in Table 1. The predicted 
results from the model are shown in Fig. 3.

It is observed from Fig. 3a that: (a) The value of 
pressure gradient in the seawater section of the well-
bores (from 0 to 150 m) is close to the that in the for-
mation section of the wellbores (from 150 to 1350 m). 
Therefore, it is concluded that the effect of seawater 
on SCW pressure in wellbores is negligible. (b) SCW 
pressure increases with well depth. This is because the 
SCW density increases with well depth, as shown in 
Fig. 3b.

It is observed from Fig. 3b that: (a) SCW density 
increases with well depth. This is because there always 
exists heat loss from SCW to seawater/formation, which 
causes the decrease in SCW volume. Therefore, the 
SCW density increases with decreasing of SCW tem-
perature. (b) There exists a turning point where SCW 
reaches the seabed (the depth of 150 m). The gradient 
of density curve in the seawater section of the well-
bores is larger than that in the formation section of the 
wellbores. This is because the SCW temperature drops 
faster in the seawater section of the wellbores, as shown 
in Fig. 3c.

It is observed from Fig. 3c that: (a) SCW temper-
ature always decreases with well depth no matter in 
the seawater section of the wellbores or in the forma-
tion section of the wellbores. This is because there 
always exists a temperature difference between SCW 
in wellbores and seawater/formation, which leads to 
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heat conduction of the wellbore/seawater system. (b) SCW 
temperature decreases rapidly in the seawater section of the 
wellbores. This is because the seawater is always flowing, 
which breaks the temperature field around the wellbores. 
Therefore, the temperature difference between wellbore and 
seawater is larger than that between wellbore and formation, 
which causes a higher heat loss rate in the seawater section 
of the wellbores. In conclusion, in order to obtain a better 
oil recovery effect, high-quality insulation material should 
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the wellbore and formation 
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Fig. 2   Numerical solution for the mathematical model

Table 1   Basic parameters used for calculation

Parameter Unit Value

Inside radius of inner tubing ( r
ai

) m 0.0380
Outside radius of inner tubing ( r

ao
) m 0.0440

Inside radius of outer tubing ( r
bi

) m 0.0509
Outside radius of outer tubing ( r

bo
) m 0.0572

Inside radius of casing ( r
ci
) m 0.0807

Outside radius of casing ( r
co

) m 0.0889
Outside radius of the wellbore ( rcem) m 0.1236
Outside radius of the riser ( rriser) m 0.0978
Riser length ( Lsea) m 160
Mud segment length ( Lmud) m 10
Depth of seawater ( hsea) m 150
Well depth ( hwell) m 1200
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Fig. 3   Type curve of SCW flow in offshore wellbores
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be adopted to decrease the heat loss rate in the seawater 
section of wellbores.

It is observed from Fig.  3d that: (a) SCW enthalpy 
decreases with well depth. This is because there always 
exists heat loss from SCW to seawater/formation due to tem-
perature difference. (b) The enthalpy gradient in the seawater 
section of the wellbores is larger than that in the formation 
section of the wellbores.

In conclusion, effect of seawater on the profiles of SCW 
pressure in wellbores is negligible. However, the flow of sea-
water results in a rapid decline in the temperature/enthalpy 
of SCW in wellbores.

Sensitivity analysis

Injection rate

In this section, effect of injection rate on the profiles of ther-
mophysical properties of SCW is discussed in detail. Differ-
ent injection rates (90, 140, 190, 240, 290 and 340 t/d) input 
into the model under the condition that the injection pressure 
and temperature are kept unchanged. The predicted results 
are shown in Fig. 4.

It is observed from Fig. 4a that SCW pressure decreases 
with increasing of injection rate. In fact, the form of SCW 
pressure curve is the comprehensive effect of injection rate 
and SCW density. The increase in injection rate leads to 
pressure drop, while the increase in SCW density leads to 
pressure increase.

It is observed from Fig. 4b that (a) the density gradient 
in the seawater section of wellbores is always larger than 
that in the formation section of wellbores. (b) SCW density 
increases rapidly when the injection rate is small. Taken 
90 t/d as an example, the SCW density has an increase of 
72.03% from wellhead to well-bottom. However, it is 13.45% 
when the injection rate is 340 t/d. This is because the SCW 
temperature drops rapidly when the injection rate is small, 
which causes the rapid decrease in SCW volume.

It is observed from Fig. 4c that (a) the temperature gra-
dient in the seawater section of wellbores is always larger 
than that in the formation section of wellbores under various 
values of injection rate. (b) SCW temperature increases with 
increasing of injection rate. (c) When the injection rate is 
large enough (larger than 240 t/d), the rate of temperature 
rise decreases.

It is observed from Fig. 4d that (a) the enthalpy gradient 
in the seawater section of wellbores is always larger than that 
in the formation section of wellbores under various values of 
injection rate. (b) SCW enthalpy increases with increasing 
of injection rate. (c) When the injection rate is large enough 
(larger than 240 t/d), the rate of enthalpy rise decreases.

In conclusion, heat loss is the dominant factor of physical 
parameter distribution in wellbores. When the injection rate 
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Fig. 4   Effect of injection rate on the profiles of thermophysical properties 
of SCW in offshore wellbores: a SCW pressure; b SCW density; c SCW 
temperature; d SCW enthalpy
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is relatively small, heat loss results in a rapid decrease in 
temperature and enthalpy, which causes the rapid increase 
in SCW density. As a result, SCW pressure increases rapidly 
with well depth.

Injection pressure

In this section, effect of injection pressure on the profiles 
of thermophysical properties of SCW is discussed in detail. 
Different injection pressure (23, 24, 25, 26 and 27 MPa) is 
input into the model under the condition that the injection 
rate and temperature are kept unchanged. The predicted 
results are shown in Fig. 5.

It is observed from Fig. 5a that effect of seawater on SCW 
pressure is negligible under various values of injection pres-
sure. Pressure gradient in the seawater section of wellbores 
is almost equal to that in the formation section of wellbores.

It is observed from Fig. 5b that (a) the density gradient 
in the seawater section of wellbores is always larger than 
that in the formation section of the wellbores under various 
values of injection pressure. (b) SCW density increases with 
increasing of SCW pressure. This is because the volume 
becomes smaller under a higher pressure. As a result, the 
flow velocity decreases with increasing of density.

It is observed from Fig. 5c that (a) the temperature gra-
dient in the seawater section of wellbores is always larger 
than that in the formation section of wellbores under various 
values of injection pressure. (b) SCW temperature increases 
with increasing of injection pressure. This is because when 
the injection pressure is small, the SCW density is small. At 
this point, heat loss has an obvious influence on temperature 
drop of SCW with a small density.

It is observed from Fig. 5d that (a) the enthalpy gradient 
in the seawater section of wellbores is always larger than that 
in the formation section of wellbores under various values 
of injection pressure. (b) The SCW enthalpy decreases with 
increasing of injection pressure. This is because the pres-
sure is decreasing while the injection temperature is kept 
unchanged at wellhead.

In conclusion, heat loss has an obvious influence on 
temperature drop when SCW is sparse in volume. In order 
to bring more heat to well-bottom (reservoir condition), a 
smaller injection pressure is recommended.

Injection temperature

In this section, effect of injection temperature on the pro-
files of thermophysical properties of SCW is discussed in 
detail. Different injection temperature (690, 700, 710, 720, 
730 and 740 K) is input into the model under the condition 
that the injection rate and pressure are kept unchanged. The 
predicted results are shown in Fig. 6.
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It is observed from Fig.  6a that the SCW pressure 
decreases with increasing of injection temperature. This is 
because SCW density decreases with increasing of injection 
temperature, as shown in Fig. 6b.

It is observed from Fig. 6b that (a) the density gradient in 
the seawater section of wellbores is always larger than that in 
the formation section of the wellbores under various values 
of injection temperature. (b) The SCW density decreases 
with increasing of injection temperature. This is because the 
SCW volume per unit mass increases under the condition 
that the SCW pressure is kept unchanged.

It is observed from Fig. 6c, d that (a) the temperature/
enthalpy gradient in the seawater section of wellbores is 
always larger than that in the formation section of wellbores 
under various values of injection temperature. (b) The SCW 
temperature increases with increasing of injection tempera-
ture. As a result, SCW enthalpy increases with increasing of 
temperature, as shown in Fig. 6d.

Conclusions

In this paper, a series of works were done to study the effect 
of seawater on SCW flow in offshore wellbores. Besides, 
effect of injection parameters of the profiles of thermophysi-
cal properties of SCW in wellbores was discussed in detail. 
Some main findings are summarized below:

(a)	 Effect of seawater on the profiles of SCW pressure in 
wellbores is negligible. However, the flow of seawater 
results in a rapid decline in the temperature/enthalpy 
of SCW in wellbores.

(b)	 Heat loss is the dominant factor of physical parameter 
distribution in wellbores. When the injection rate is 
relatively small, heat loss results in a rapid decrease 
in temperature and enthalpy, which causes the rapid 
increase in SCW density. As a result, SCW pressure 
increases rapidly with well depth.

(c)	 Heat loss has an obvious influence on temperature drop 
when SCW is sparse in volume. In order to bring more 
heat to well-bottom (reservoir condition), a smaller 
injection pressure is recommended.

(d)	 The SCW pressure decreases with increasing of 
injection temperature. This is because SCW density 
decreases with increasing of injection temperature.
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Fig. 6   Effect of injection temperature on the profiles of thermophysical 
properties of SCW in offshore wellbores: a SCW pressure; b SCW den-
sity; c SCW temperature; d SCW enthalpy
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Appendix: Physical property of SCW

The calculation tables for SCW properties can be found 
online: http://webbo​ok.nist.gov/chemi​stry/fluid​/.
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