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Abstract
Huge amount of efforts were done on saturated steam flow in wellbores with relatively little work on superheated multi-com-
ponent thermal fluid (SMTF) flow in wellbores. In this paper, based on the continuity, energy and momentum balance equa-
tions, a flow model in the vertical wellbores is proposed. Then, coupled with the real gas model and transient heat flow model 
in formation, a comprehensive model is established for estimating thermophysical properties of SMTF in wellbores. Results 
show that (a) the effect of mass content of non-condensing gases on temperature profiles is negligible. The enthalpy of SMTF 
decreases rapidly with increasing of mass content of non-condensing gases. (b) When the injection rate is small, heat loss is 
the main factor on temperature drop, while when the injection rate is large enough, pressure drop becomes the dominant factor 
on temperature drop. (c) The two components of non-condensing gases and superheated steam in SMTF have a relatively inde-
pendent mechanism of enhanced oil recovery, which should be selected based on the unique characteristics of each reservoir.

Keywords  Multi-component · Superheated steam · Non-condensing gases · Thermophysical properties · Real gas effect · 
Vertical wellbores

Introduction

Superheated steam or SMTF comprised of superheated steam 
and non-condensing gases have been proved effective in 
heavy oil recovery by field practices (Sun et al. 2017a, b, c, 
d, e; Sun et al. 2018a). In order to obtain a satisfactory oil 
recovery effect, practicing engineers are requested to predict 
thermophysical properties of SMTF at well-bottom condition. 

Therefore, a series of works are done in this paper to establish 
a mathematical model to analyze flow behaviors of SMTF in 
wellbores.

Modeling of thermal fluid flow in wellbores was firstly con-
ducted in the 1950s. Both analytical and numerical solutions 
were obtained of thermal fluid flow in wellbores. Alves et al. 
(1992) and Hasan and Kabir (1994) presented two rigorous 
models for estimating temperature and steam quality in well-
bores by solving the continuity, energy and momentum balance 
equations simultaneously. Then, huge amount of works were 
done by Hasan et al. (Hasan and Kabir 1996, 2012; Hasan et al. 
2009) and Kabir et al. (1996) on heat conduction rate in radial 
direction and flow models in wellbores under various injection 
conditions, which laid a solid foundation for following studies 
on multiphase flow, coupling effect of wellbore/formation and 
Joule–Thomson effect, etc. (Pourafshary et al. 2009; Livescu 
et al. 2010; Bahonar and Azaiez 2011a, b; Mao and Harvey 
2013; Gu et al. 2014; Sivaramkrishnan et al. 2015).

However, these early models were focused on the conven-
tional saturated steam, which cannot be used to predict ther-
mophysical properties of SMTF in wellbores. In recent years, 
Zhou et al. (2010), and Xu et al. (2013a, b) and Fan et al. (2016) 
proposed models for estimating pressure and temperature of 
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superheated steam in vertical wellbores. However, predicted 
temperature from their models showed deviation from field data 
under high injection rate. Sun et al. (2017f, g, h, i, j) have done a 
series of works on superheated steam flow in onshore, offshore 
and concentric dual-tubing wells, etc. Besides, the predicted 
values of temperature from Sun et al.’s model showed a good 
agreement with field data under high injection rate, which over-
came the technical difficulty in precise estimation of temperature 
values over a wide range of injection rate.

However, these previous models were focused on the 
single-phase flow of superheated steam in wellbores, which 
cannot be used to analyze the effect of non-condensing gases 
on SMTF in wellbores (de Almeida et al. 2017). Dong et al. 
(2014) proposed a numerical model for estimating pressure 
and temperature of SMTF in perforated horizontal wellbores. 
However, the predicted values of temperature from their 
model deviated from field data under high injection rate. At 
present, the study on SMTF flow in wellbores is still at the 
early stage. In this paper, based on the momentum and energy 
balance equations, a flow model in wellbores is established. 
Then, coupled with S-R-K real gas model and transient heat 
conduction model in formation, a comprehensive model is 
proposed. The new model is useful for practicing engineers to 
estimate key parameters of SMTF at well-bottom condition.

Model description

General assumptions

The wellbore structure is shown in Fig. 1. The model is 
established based on the assumptions listed below (Sun et al. 
2017a, b, c, d, e; Sun et al. 2018a):

(a)	 Injection parameters of SMTF at well-head are kept 
unchanged throughout the entire injection period.

(b)	 Heat transfer rate from SMTF to formation is steady 
state.

(c)	 Heat transfer rate in formation is transient state.

Governing equations

The continuity equation. There exists no mass loss during 
the flow process of SMTF in wellbores. Therefore, the conti-
nuity equation can be expressed as (Sun et al. 2017c, g, h, i):

where wSMTF denotes the mass flow rate of SMTF in the ver-
tical wellbores, kg/s; ri denotes the inner radius of the inner 
tubing, as shown in Fig. 1, m; �SMTF denotes the density of 
SMTF in wellbores, which is discussed in “Appendix A in 
Electronic supplementary material”, kg/m3; vSMTF denotes 
the flow velocity of SMTF in wellbores, m/s; z denotes the 
well depth, m.

The energy balance equation. As mentioned in the intro-
duction, Zhou et al. (2010), Xu et al. (2013a, b), Fan et al. 
(2016) and Dong et al. (2014) proposed their energy balance 
equations. However, their energy balance equations showed 
limitation in predicting temperature values at high injection 
rate condition. Therefore, a new energy balance equation is 
established (Sun et al. 2017c, g, h, i):

where Qloss denotes the heat loss rate from SMTF to for-
mation, which is discussed in “Appendix B in Electronic 
supplementary material”, J/s; hSMTF denotes the enthalpy of 
SMTF in wellbores, which is discussed in “Appendix A in 
Electronic supplementary material”, J/kg.

The momentum balance equation can be expressed as 
(Sun et al. 2017c, g, h, i):

where pSMTF denotes the SMTF pressure in wellbores, Pa; 
�f  denotes the shear stress in wellbores, which is discussed 
in “Appendix C in Electronic supplementary material”, N.

Numerical solution of the mathematical 
model

In this paper, the established model is solved by numerical 
method. The energy and momentum balance equations are 
represented as difference equations, as shown below:
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Fig. 1   Vertical section of SMTF flow in wellbores (Sun et al. 2017c, 
g, h, i)
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where pSMTF, out and �SMTF, out denote the outlet pressure and 
density of SMTF, respectively; pSMTF, in and �SMTF, in denote the 
inlet pressure and density of SMTF, respectively; Δz is the length 
of the segment; vSMTF, out and vSMTF, in denote the flow velocity of 
SMTF at the outlet and inlet of the segment, respectively.

where qSMTF, out and qSMTF, in denote the heat transfer rate 
from SMTF to formation per unit depth at the outlet and inlet 
of the segment, respectively, W/m; hSMTF, out and hSMTF, in 
denote the specific enthalpy of SMTF at the outlet and inlet 
of the segment, respectively.

(5)

f
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Given the fact that the injection parameters at well-head 
are known, pressure and temperature at outlet of the first seg-
ment can be calculated using Eqs. (4) and (5) with iteration 
method. Then, this pair of pressure and temperature is input 
for the inlet of the second segment and another iteration 
begins. Finally, distributions of pressure and temperature 
along the entire vertical wellbore are obtained.

Results and discussions

Injection temperature

In order to study the effect of injection temperature, vari-
ous injection temperatures (590, 610 and 630 K) are tested 
based on no change in values of injection pressure and mass 
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Fig. 2   Effect of injection temperature on the profiles of thermophysical properties of SMTF in wellbores under various mass content of non-
condensing gases
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flow rate (Chen et al. 2016, 2017; Zhang et al. 2017a, b; 
Sun et al. 2017k, l, 2018b; Feng et al. 2018; Huang et al. 
2017, 2018a, b). Besides, various values of mass content of 
non-condensing gases are added for comparison. In oil field, 
non-condensing gases are obtained by burning of diesel oil 
and air at a mass ratio of about 1.0:14.9. According to the 
relation of mass fraction of elements, the mass ratio of N2 
and CO2 is about 4: 1 (Cheng and Han 2015). Therefore, the 
mass ratio of 5%:1%, 20%:5% and 40%:10% between N2 and 
CO2 are selected. The predicted results are shown in Fig. 2.

 It is observed from Fig. 2 that: (a) under the condition that 
the mass content of non-condensing gases is kept unchanged, 
SMTF pressure decreases with increasing of injection tem-
perature. This is because the density of SMTF decreases 
with increasing of injection temperature, which causes the 
increase of flow velocity. As a result, a higher flow velocity 

leads to a larger shear stress, which causes a higher pressure 
gradient. (b) Under the condition that injection temperature 
is kept unchanged, SMTF pressure increases with increasing 
of mass content of non-condensing gases. This is because the 
density of SMTF increases with increasing of mass content 
of non-condensing gases, which causes a smaller shear stress, 
and a smaller pressure gradient.

It is observed from Fig. 2b that the effect of mass content 
of non-condensing gases on temperature profiles is negligi-
ble. However, due to the decrease of SMTF pressure, super-
heat degree decreases with increasing of mass content of 
non-condensing gases, as shown in Fig. 2c. It is observed 
from Fig. 2d that under the condition that the mass content 
of non-condensing gases is kept unchanged and the effect 
of temperature increase on enthalpy of SMTF is negligible.
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Fig. 3   Effect of injection rate on the profiles of thermophysical properties of SMTF in wellbores under various mass content of non-condensing 
gases
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Mass injection rate

In order to study the effect of injection rate, various injection 
rate (160, 200 and 240 t/d) is tested based on no change in 
values of injection pressure and temperature. Besides, various 
values of mass content of non-condensing gases are added 
for comparison. The predicted results are shown in Fig. 3.

It is observed from Fig. 3a that under the condition that the 
mass content of non-condensing gases is kept unchanged, SMTF 
pressure decreases with increasing of injection rate. It is observed 
from Fig. 3b that under the condition that the mass content of 
non-condensing gases is kept unchanged, SMTF temperature 
increases at first and then turns to decrease with increasing of 
injection rate. This is because when the injection rate is relatively 
small, heat loss has a significant influence on temperature drop. 
However, the effect of heat loss on temperature drop becomes 
weaker with increasing of injection rate. It is observed from 
Fig. 3c that under the condition that the mass content of non-
condensing gases is kept unchanged, superheat degree increases 
with increasing of injection rate. Besides, under the condition that 
the injection rate is kept unchanged, superheat degree decreases 
with increasing of mass content of non-condensing gases. It is 
observed from Fig. 3d that the effect of injection rate on enthalpy 
profiles is negligible, but the enthalpy decreases rapidly with 
increasing of mass content of non-condensing gases.

Conclusions

In this paper, a comprehensive model is proposed for esti-
mating thermophysical properties of SMTF in wellbores 
under various injection conditions. Some meaningful con-
clusions are listed below:

(a)	 The effect of mass content of non-condensing gases 
on temperature profiles is negligible. The enthalpy of 
SMTF decreases rapidly with increasing of mass con-
tent of non-condensing gases. The non-condensing gas 
content should be selected reasonably in the mine to 
make full use of the superheated steam in the mixed 
steam.

(b)	 SMTF pressure in wellbores decreases with increasing 
of injection rate. SMTF temperature increases at first 
and then turns to decrease with increasing of injection 
rate. When the injection rate is small, heat loss is the 
main factor on temperature drop, while when the injec-
tion rate is large enough, pressure drop becomes the 
dominant factor on temperature drop.

(c)	 The two components of non-condensing gases and 
superheated steam in SMTF have a relatively independ-
ent mechanism of enhanced oil recovery, which should 
be selected based on the unique characteristics of each 
reservoir.
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