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Abstract Aperture, which refers to the opening size of a

fracture, is a critical parameter controlling rock mass per-

meability. Moreover, distribution of permeability within

the reservoir is commonly affected by natural fracture

occurrences. In a water-based mud environment, borehole-

imaging tools are able to identify both location and aper-

ture size of the intersected fractures, whereas in oil-based

environment, due to invasion of resistive mud into the

fractures, this technique is impractical. Recently, some

artificial intelligence techniques facilitated reliable esti-

mations of reservoir parameters. In this paper, a teaching–

learning-based optimization algorithm (TLBO) trained an

initial fuzzy inference system to estimate hydraulic aper-

ture of detected fractures using well logs responses.

Comparing the results with real measurements revealed

that the model can provide reliable estimations in both

conductive and resistive mud environments, wherever the

aperture size is unknown. TLBO, besides of its easier

application, outperformed earlier optimization algorithms,

which were used to evaluate the method effectiveness.

Keywords Aperture size � Fracture permeability � Fuzzy
logic � Image logs � TLBO

Introduction

Natural fractures can affect essential reservoir character-

istics tremendously. As a fluid conduit, natural open frac-

tures can control the reservoir permeability (Boro et al.

2014). Conventional techniques of oil recovery may drain

fractured reservoirs inefficiently, leading to early break-

through in the secondary recovery (Alvarado and Manrique

2010; Speight 2016). In these cases, where production

substantially takes place through fracture networks, aper-

ture size is one of the basic parameters controlling reservoir

permeability (Nelson 2001; Tiab and Donaldson 2015).

Mechanically, aperture is defined as the physical sepa-

ration of the fracture walls (Fossen 2010). Moreover, the

equivalent open part of the aperture is an indication of

roughness characteristics, through which fluid can flow,

and it is assumed as the hydraulic aperture as illustrated in

Fig. 1 (Klimczak et al. 2010; Dardashti and Ajalloeian

2015).

Witherspoon et al. (1980) and Klimczak et al. (2010)

indicated that the cubic law accurately describes the rela-

tionship between fluid flow and aperture size, considering

fracture walls as smooth parallel plates. Accordingly,

fracture permeability is related to the square of aperture

size. Nevertheless, asperity and aperture size variation are

commonly observed (Klimczak et al. 2010). Thus, the

equivalent hydraulic aperture can express the relationship

more accurately as follows (Sarkar et al. 2004; Watanabe

et al. 2008; Ishibashi et al. 2012):

k ¼ w2
h

12
ð1Þ

where K is the fracture permeability (millidarcy) and wh is

the hydraulic aperture size (microns).
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During fracture characterization, the aperture size is

commonly characterized with the image logs. In conduc-

tive mud environments, imaging tools can determine

fracture aperture on the order of microns (Tiab and Don-

aldson 2015), whereas in oil-based mud environments, due

to the invasion of resistive mud into the fracture planes, the

imaging tools such as Oil-Base Micro Imager (OBMI)

display the same appearance for both the open and healed

fractures (Bishop 2015). In addition, the vast majority of

natural fractures have an aperture size less than the OBMI

tool pixel width (Cheung et al. 2001). Statistics have shown

that the most frequent range of aperture size is between 10

and 40 microns (Golf-Racht 1982). Therefore, the presence

of a quick and cost-effective method to estimate aperture

size of detected fractures can be useful, wherever the

aperture size is unknown.

Nakashima and Kikuchi (2007) performed a quantitative

estimation of fracture apertures, of a size higher than

0.2 mm, using NMR logging data. They showed that there

is a linear relationship between fracture aperture size and

bulk-fluid porosity. Wu (2013) proposed a workflow to

determine the relationship between aperture size and a

fracture indicator value by using measurements from multi-

axial electromagnetic induction well logging instruments.

Ramandi et al. (2016) used X-ray micro-computed

tomography to measure fracture apertures in a fractured

coal sample from digital images. Shalaby and Islam (2017)

have shown that fractured zones can be detected by using

conventional well logs.

Recently, artificial intelligence techniques were utilized

successfully for prediction of different reservoir parameters

(Ahmadi 2011; Wang et al. 2013; Anifowose et al. 2017).

El Ouahed et al. (2005) developed a 2-D fracture network

map and fracture intensity map in Hassi Messaoud oil field

by using fuzzy logic and artificial neural network. Ja’fari

et al. (2012) suggested a model to estimate fracture

intensity from conventional well logs by employing the

adaptive neuro-fuzzy inference system. Accordingly, a

fuzzy system maps input space to an output space using a

set of fuzzy rules.

In this paper, a new method is introduced to estimate

aperture size from well log data. The proposed method is

an integration of fuzzy inference system and teaching–

learning-based optimization algorithm (TLBO), in which

the TLBO is utilized to train an initial fuzzy structure.

TLBO is one of the most recent algorithms (Rao

et al. 2011), which stands out as a powerful technique for

optimization problems (Satapathy and Naik 2015; Kotha-

vade and Deshpande 2016).

In order to evaluate the method effectiveness, various

optimization algorithms available in the literature were

employed to train the same fuzzy structure. Comparing the

results indicated that the hybrid TLBO-Fuzzy Inference

System (TLBOFIS) provides a higher level of accuracy.

Finally, by estimating aperture size of detected fractures in

both conductive and resistive mud environments, valida-

tion of the model was verified.

Methodology

Fuzzy inference system

Fuzzy set theory was first introduced by Zadeh (1965) as a

method for handling data uncertainty. Unlike the Boolean

logic, where variables take only a true or false value (1 or

0), fuzzy logic deals with the degree of truth and variables

may have any value between 0 and 1. Capability of fuzzy

sets to express gradual transitions from membership to non-

membership provides a powerful representation of mea-

surement uncertainties (Klir and Yuan 1995).

In fuzzy logic, the fuzzy inference system performs a

formulation between the given input–output data, using a

series of fuzzy if–then rules. As illustrated in Fig. 2, fuzzy

inference system comprises five functional blocks: rule

base, database (or dictionary), fuzzifier, inference engine,

and defuzzifier. The rule base contains a selection of fuzzy

rules, and the database defines their membership functions.

Rule base and database together are usually known as the

knowledge base (Jang 1993). By using membership func-

tions in the fuzzifier block, the crisp (non-fuzzy) input data

Fig. 1 A schematic illustration

of fracture hydraulic and

mechanical apertures with flow

(Q) passing through them
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are transformed into the fuzzy sets; the fuzzy systems

require a fuzzy input to be applied. The membership

function defines how each point in the input space is

mapped to a degree of membership between 0 and 1

(Matlab Users Guide 2013). Consequently, a set of if–then

rules will be constructed, which relates the input and output

datasets. The inference engine performs inference opera-

tion on the fuzzy rules. Finally, if a crisp output is required,

defuzzifier transforms the fuzzy conclusions into the crisp

values.

There are three types of fuzzy inference systems:

Mamdani (Mamdani and Assilian 1975), Tsukamoto

(Tsukamoto1979), and Takagi–Sugeno–Kang (Sugeno

1985). Sugeno system is a more compact and computa-

tionally efficient model, in which its output membership

functions are either constant or linear (Matlab Users Guide

2013). Considering x and y as the input values and z as the

crisp output, a typical rule in the Sugeno model has the

form of:

If x is A and y is B, then z 5 f(x,y)

where A and B are fuzzy sets and f(x,y) is a function in

consequent. Once the fuzzy structure initialized, the

membership function parameters can be trained by

employing optimization algorithms.

Teaching–learning-based optimization algorithm

(TLBO)

TLBO is a metaheuristic algorithm, recently developed by

Rao et al. (2011) as a method for constrained optimization

problems. The TLBO inspired by the process of teaching

and learning within a classroom works on the effect of

influence of a teacher on learners and learners on each

other. This algorithm comprises two parts: ‘‘teacher phase’’

and ‘‘learner phase.’’ During the teacher phase, a teacher

tries to increase the mean result of the class from the initial

level to his own level (Rao 2015). The algorithm considers

the most knowledgeable learner as the teacher. In this

phase, existing solution updates according to the following

expression:

X0
j;k;i ¼ Xj;k;i þ Dj;k;i ð2Þ

where X0
j;k;i is the updated value of Xj;k;i in subject j,

learners k, and iteration i. Dj;k;i is the difference between

existing mean result and corresponding result of teacher in

each subject.

Local search of the TLBO occurs during the learner

phase. This phase uses accepted function values at the end

of teacher phase as its own input. In this phase, learners

enhance their knowledge by interacting randomly with

themselves. A learner enhances knowledge of other

learners, when he or she has more knowledge than they do.

The TLBO is a population-based evolutionary algo-

rithm, which uses a population of solutions to proceed to

the global solution (Ganesh and Reddy 2014). It is inter-

esting to note that the TLBO does not require any algo-

rithm-specific parameter. Common controlling parameters,

such as the population size and number of iterations, are

sufficient for its performance (Rao 2015). This ability of

TLBO makes it an efficient tool, over the other algorithms,

especially when dealing with multi-objective optimization

problems (Zuperl and Cus 2016; Rai 2017).

Hybrid TLBO-Fuzzy Inference System (TLBOFIS)

Training of the initial fuzzy inference system may be

assumed as an optimization problem to be solved using

optimization techniques. Firstly, by applying subtractive

clustering, an initial Sugeno fuzzy system is generated.

Then, the TLBO is employed to train the initialized fuzzy

model. Figure 3 illustrates the flowchart of the proposed

hybrid TLBO-Fuzzy Inference System approach (TLBO-

FIS). The methodology may be divided into three stages:

(1) data preparation; (2) initializing fuzzy inference sys-

tem; and (3) optimizing the fuzzy system using TLBO. The

following subsections explain each stage, respectively.

Fig. 2 Basic structure of fuzzy

inference system
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Data preparation

Here, Electrical Micro Imaging (EMI) logs along with the

conventional well logs from the same intervals were the

used data for initializing fuzzy model. These data were

acquired from five wells drilled into two different hydro-

carbon fields. The study area lies in the Zagros Basin in the

Fars Province of Iran. The first field contains three wells

with recorded well logs ranging in depths between 3050

and 3500 m. In the second field, which includes the other

two wells, studied depths range between 2500 and 2850 m.

Lithology of the logged intervals consists of anhydrite,

bedded dolomite, limestone, and shale, assigned to the

Permo-Triassic Dehram Group.

EMI is a water-based formation-imaging tool, which

performs a qualitative micro-resistivity reading around the

borehole. Six imaging pads of the EMI, in contrast to four-

arm tools, provide more accurate hole volumes and diam-

eter computations (Changxiong 2004).

Available image logs were processed using CIFLog-

GeoMatrix software, in order to obtain static and dynamic

wellbore images. Using these images, several features such

as the natural fractures, bed boundaries, and faults can be

discriminated. Figure 4 displays EMI static and dynamic

images in cross section of a studied well. Commonly,

higher conductivities are illustrated by darker colors;

therefore, the open fractures appear as dark-colored sinu-

soidal features, due to the mud conductivity (Fig. 4).

By processing available image logs, a total number of

132 conductive fractures were detected and their hydraulic

aperture sizes were calculated. In the first studied hydro-

carbon field, fractures show a NEE-SWW dominant strike,

southeast azimuth, and dip inclination ranging between 75�
and 85�. Fracture orientations in the second hydrocarbon

field are disordered. Nevertheless, NE–SW strike, mean

azimuth of 110� and mean dip of 78�, is dominant.

Luthi and Souhaité (1990) and Faivre (1993) showed

that in a conductive mud environment, imaging tools

measure the fracture aperture size as follows:

W ¼ c � A � Rb
m � R1�b

xo ð3Þ

whereW refers to fracture width (i.e., aperture); Rm and Rxo

indicate the resistivity of mud and shallow rock, respec-

tively; c is tool constant; and b is a value slightly smaller

than 1. Excess current A is caused by the presence of

fracture.

In the literature, various empirical models were pro-

posed in order to relate the mechanical and hydraulic

Fig. 3 Flowchart of the

proposed hybrid TLBOFIS

approach

146 J Petrol Explor Prod Technol (2018) 8:143–154

123



apertures (Renshaw 1995; Zimmerman and Bodvarsson

1996; Li and Jiang 2013). The CIFLog-GeoMatrix com-

putes the average hydraulic aperture as the cubic mean

value of fracture trace aperture.

In the next step, image logs were correlated against

petrophysical well log and responses at the exact depth of

each fracture were specified. In Fig. 5, measured aperture

values are compared against acoustic travel time (DT),

bulk density (RHOB), deep laterolog (LLD), gamma ray

(GR), neutron porosity (NPHI), and photoelectric factor

(PEF) logs. Among the available logs, LLD, NPHI, DT,

and RHOB showed the highest correlations with aperture

size and therefore, they were chosen as the input of the

fuzzy model:

• LLD measures formation deep resistivity and, among

other well logs, has the highest correlation with

aperture size. Generally, wider apertures show lower

resistivities (Fig. 5).

• NPHI tracks hydrogen concentration in the formation

and shows a linear relationship with measured aperture

sizes, as illustrated in Fig. 5.

• DT displays travel time of elastic wave through the

formation rock. Generally, void spaces reduce the

speed of the sound (Serra 2008). Bigger apertures

accompany with slower velocity records.

• RHOB is a record of formation bulk density and is

related to the rock porosity. As seen in Fig. 5, lower

densities imply bigger aperture sizes.

Final data sets, consisting of measured hydraulic aper-

ture and well log responses, were merged and divided into

two groups: a group including 98 sets for training the

model and another group with 34 sets for testing.

In order to remove the effect value dimensions and

achieve a better estimation, all input data were normalized

between 0 and 1. Normalization was performed by the

following expression:

xi;norm ¼ xi �min xið Þ
max xið Þ �min xið Þ ð4Þ

where xi is the data point to be normalized and min xið Þ and
max xið Þ are the minimum and maximum values.

Initializing fuzzy inference system

In order to generate the initial fuzzy inference system and

define membership functions, a fuzzy clustering technique

Fig. 4 A cross section of the

studied wells, showing the EMI

static and dynamic images.

Additionally, a conductive

fracture is specified
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may be used. Subtractive clustering and Fuzzy C-Means

are two basic methods of fuzzy clustering. Here, a sub-

tractive clustering method was employed to determine the

fuzzy rules. In a set of data, subtractive clustering defines

the number of clusters and cluster centers and returns a

fuzzy structure that contains fuzzy if–then rules. This

method eliminates the need of specifying grid resolution, in

which the agreement between the accuracy and computa-

tional complexity must be regarded (Bataineh et al. 2011).

Membership functions define each crisp data with a

degree of membership. The membership functions can

have different forms, such as the triangular, trapezoidal,

and Gaussian. Here, the Gaussian membership function

shows the best fit to the input well logs (Fig. 6). Gaussian

membership function is represented by center and width

values:

lAi
xð Þ ¼ exp � 1

2

x� ci

ri

� �2
" #

ð5Þ

where ci and ri are the mean (center) and standard devia-

tion (width) of the ith fuzzy set, respectively.

In subtractive clustering, cluster radius determines the

range of influence of a cluster. The optimum clustering

Fig. 5 Cross-plots of well logs responses versus the measured hydraulic aperture (H. Aperture) for detected fractures in the studied wells. R2

indicates the coefficient of determination
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radius can be determined by trial and error. As discussed,

the teaching–learning-based optimization algorithm is

needless of any algorithm-specific parameter. However,

common controlling parameters such as the population size

and number of iterations can be modified in order to

enhance the model accuracy. TLBO considers the number

of learners as the population size (Rao 2015).

Optimizing the fuzzy system using TLBO

By training an initial fuzzy inference system, its member-

ship function parameters are adjusted until the optimal

solution is achieved. This tuning process can be performed

utilizing various optimization algorithms. Sugeno fuzzy

inference system trained with the neuro-adaptive learning

was introduced by Jang (1993) as the adaptive neuro-fuzzy

inference system (ANFIS). In this study, the optimization

of initial Sugeno fuzzy system was performed using TLBO,

rather than the classic neuro-adaptive method. The opti-

mization process was repeated until a solution with desired

satisfaction was achieved or the maximum number of

iterations was reached. Figure 7 displays root-mean-square

errors (RMSE) obtained by each iteration of hybrid

TLBOFIS. Accordingly, RMSE declined mostly in the

early iterations.

Fig. 6 Histograms showing the fitted Gaussian membership function to the RHOB, NPHI, DT, and LLD well logs

Fig. 7 Acquired RMSE by each iteration epoch of TLBOFIS

(clustering radius = 0.6) in training data
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Results and discussion

By applying subtractive clustering, a Sugeno fuzzy infer-

ence system was initialized. The cluster radius was varied

gradually from 0.1 to 1 by intervals of 0.1, in order to find

the optimal radius. As given in Table 1, clustering with a

radius of 0.6 provides the hybrid TLBOFIS with the

highest accuracy. For evaluating the method, several opti-

mization algorithms were employed to train the fuzzy

structure using the same database. These algorithms con-

tain Neuro-Fuzzy (ANFIS), Genetic Algorithm (GA),

Artificial Bee Colony (ABC), and Ant Colony Optimiza-

tion (ACO). For all these algorithms, including TLBO, the

population size and maximum number of iterations were

considered as 800 and 350, respectively. Associated

Table 1 Correlation coefficients (R), RMSE, and number of fuzzy

rules achieved by each clustering radius

Clustering radius Fuzzy rules RMSE R

0.1 92 0.0056 0.7999

0.2 65 0.0052 0.8041

0.3 39 0.0049 0.8357

0.4 11 0.0050 0.8200

0.5 7 0.0044 0.8668

0.6 6 0.0044 0.8735

0.7 4 0.0050 0.8546

0.8 2 0.0045 0.8665

0.9 2 0.0048 0.8581

1 2 0.0055 0.7816

The optimum radius and corresponding parameters are bolded

Table 2 Algorithm-specific parameters and the highest accuracy achieved by each method, in test data

Used method RMSE R Algorithm-specific parameters

ABC-FIS 0.0055 0.7902 Number of onlooker bees = 800

Trial limit (L) = 600

Acceleration coefficient upper bound (a) = 1

ACOFIS 0.0059 0.0804 Sample size = 400

Intensification factor (q) = 0 .5

Deviation–distance ratio (zeta) = 1

ANFIS 0.0061 0.7556 Optimization method = hybrid

GA-FIS 0.0048 0.8414 Crossover percentage (pc) = 0.5

Number of parents (nc) = 400

Mutation percentage (pm) = 0.6

Number of mutants (nm) = 480

Mutation rate (mu) = 0.25

Selection pressure (beta) = 6

Gamma = 0.8

TLBOFIS 0.0044 0.8735 Needless

Fig. 8 A comparison between the measured hydraulic aperture and TLBOFIS predicted values for fractures in the test datasets

150 J Petrol Explor Prod Technol (2018) 8:143–154

123



Fig. 9 Cross-plots showing correlation between the measured and estimated values of aperture size, for each methods
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algorithm-specific parameters and the highest accuracy of

each method are presented in Table 2.

Estimated hydraulic aperture (by TLBOFIS method) and

measured values (from EMI log) are compared in Fig. 8.

Integration of the fuzzy inference system with TLBO

resulted in a correlation coefficient of 0.8735 and RMSE

equal to 0.0044 that significantly improved compared to the

other methods. Cross-plots of all methods are illustrated in

Fig. 9.

In the next step, a new wellbore from a different

hydrocarbon field (the third field) was selected to evaluate

the model performance in an oil-based environment. The

field was located in Fars Province in southern territories of

Iran. Mud system used for drilling was oil based, with an

oil–water ratio of 70/30. The studied well contained both

the OBMI and UBI image logs and a full set of conven-

tional well logs. The RCAL and SCAL core test data, also,

were available for recovered cores from a 50-m interval.

Fig. 10 Processed image logs, conventional well logs, and estimated hydraulic aperture for each fracture plane. The last column shows the

comparison between core permeability and derived values
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The cored interval lies in the Upper Dalan Formation (of

Upper Permian age) with a lithology consisting of car-

bonate and anhydrite.

By processing available image logs on the cored inter-

val, a total number of seven intersected fractures were

detected. Afterward, well log records (RHOB, NPHI, DT,

and LLD) at the exact depth of each fracture were speci-

fied. By normalization of input data, the developed

TLBOFIS model was applied and the hydraulic aperture

size of intersected fractures was estimated. The core per-

meability to the air (from SCAL data) was employed in

order to relate estimated values to real measurements.

Using Eq. (1), the estimated hydraulic aperture was con-

verted to permeability values. Figure 10 illustrates the

processed image logs and petrophysical well logs in the

studied interval. The estimated hydraulic aperture and

permeability for each fracture plane are also presented.

Comparing the measured permeability (from core test data)

and estimated permeability (from cubic law) showed a

coefficient of determination (R2) equal to 0.82 that indi-

cates a strong relationship.

Conclusion

Aperture size is a key parameter to indicate the influence of

natural fractures on reservoir performance, and borehole

imaging is the basic method for its measurement. In oil-

based mud environment, however, image logs are unable to

specify this parameter. In this paper, a novel method was

introduced to estimate hydraulic aperture of detected

fractures using conventional well logs. Required well logs

are usually available in most of the drilled wells. The

proposed method utilized the TLBO algorithm, in order to

optimize an initial Sugeno fuzzy inference system. The

TLBO does not need of any algorithm-specific parameter,

and this feature makes it a useful tool for optimization

problems. Examination of the developed model, in both

conductive and resistive mud environments, confirmed that

the estimated values are in a good agreement with real

measurements. The proposed hybrid method, as an easy-

going tool, may also be employed to estimate other reser-

voir parameters.
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