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Abstract Most decline curve methods have two main

limitations; the model parameters as a rule are not func-

tions of reservoir parameters and may yield unrealistic

(nonphysical) values of expected ultimate recovery (EUR)

because boundary-dominated flow may not develop in

unconventional reservoirs. Over the past few years, several

empirical models have emerged to address the second

limitation, but they are challenged by the time to transition

from infinite-acting flow period to the boundary-dominated

flow. In this study, we performed statistical and model-

based analysis of production data from hydraulically frac-

tured horizontal oil wells and present a method to mitigate

some of the limitations highlighted above. The production

data were carefully analyzed to identify the flow regimes

and understand the overall decline behavior. Following this

step, we performed model-based analysis using the parallel

flow model (sum of exponential terms), and the logistic

growth model. After the model-based analysis, the model

parameters were analyzed statistically and cross-plotted

against available reservoir and well completion parameters.

Based on the conclusion from the cross-plots and statistical

analysis, we used design of experiments (DoE) and

numerical reservoir simulations to develop functions that

relate the model parameters and reservoir/well completion

properties. Results from this work indicate that the pro-

duction characteristics from these wells are highly variable.

In addition, the parallel flow model indicates that there are

at least two to three different time domains in the pro-

duction behavior and that they are not the result of oper-

ational changes, such as well shut-in or operating pressure

changes at the surface. All the models used in this study

provide very good fits to the data, and all provide realistic

estimates of EUR. The cross-plots of model parameters and

some reservoir/well completion properties indicate that

there is some relationship between them, which we

developed using DoE and flow simulations. We have also

shown how these models can be applied to obtain realistic

estimates of EUR from early-time production data in

unconventional oil reservoirs.

Keywords Unconventional reservoirs � Decline curve

analysis � Tight rock production forecast

List of symbols

s1 Time constant one (days)

s2 Time constant two (days)

Di Initial decline rate (day-1)

b Derivative of inverse of initial decline rate (unitless)

qi Initial production rate (STB/D)

Np Cumulative production (STB)

qD Dimensionless flow rate (dimensionless)

tD Dimensionless time (dimensionless)

pwD Dimensionless wellbore pressure (dimensionless)

qT Production rate from fractured horizontal well (STB/

D)

Ne Number of discrete reservoir elements (unitless)

qik Initial production rate from reservoir element

k (unitless)

sk Time constant for reservoir element k (days)

N Carrying capacity (STB)

a Constant a
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n Hyperbolic constant (unitless)

M Number of data points (unitless)

t Time (days)

fm Normalized data initial production rate (fraction)

fk Normalized model initial production rate (fraction)

kf Fracture permeability (md)

km Matrix permeability (md)

Lw Well length (ft)

pi Initial reservoir pressure (psi)

pwf Wellbore flowing pressure (psi)

h Reservoir thickness (ft)

u Porosity (fraction)

Introduction

According to Lee and Sidle (2010), decline curve analysis

is the most widely used method of forecasting production

from shale gas wells. The empirical decline curve equation

presented by Arps (1945) has the following general form:

q ¼ qi

1þ bDitð Þ
1
b

ð1Þ

Np tð Þ ¼
Z t

0

qdt ¼ qi

Di b� 1ð Þ 1þ bDitð Þ1�
1
b�1

h i
ð2Þ

where q is the production rate, qi the initial production, Di

the initial decline rate, and b is the derivative of the of Di

and Np is the cumulative production.

In typical applications, Eq. 1 is fitted to the production

data to determine parameters b and Di. Once the parame-

ters are obtained, the equation is used to forecast the well/

reservoir performance and also to estimate the ultimate

recovery (EUR). When applied to unconventional pro-

duction, the parameter b is often [1, which makes the

cumulative production estimated from Eq. 2 at large time

(t ? ?) to be infinite; that is, limt??Np(t) ? ?.

Fetkovich (1980) pointed out that any analysis with Eq. 1

that returned a b value[1 is a consequence of flow that is

still dominated by transient effects. Several authors (Can and

Kabir 2014; Ilk et al. 2008; Rushing et al. 2007) have

pointed out that Eqs. 1 and 2 will yield optimistic results

when applied to unconventional formations. Several authors

(Harrell et al. 2004; Cheng et al. 2008) have suggested ways

to overcome some of these problems. The different methods

suggested by these authors have proved satisfactory but they

lack a physical basis (Lee and Sidle 2010).

In recent years, more empirical models have been put

forward to address the nonphysical reserves extrapolation

problem of the Arps model when b[ 1. Clark et al. (2011)

introduced the logistic growth model, which has the

desirable property of yielding physical values of reserves

recovery. Ilk (2010), after analyzing production (rate) data

from shale gas wells, developed a power-law model and a

method of applying the model that arbitrarily switched

from the power-law decline behavior to an exponential

decline behavior. Duong (2011) also observed that a log–

log plot of q/Np versus time was a straight line. Based on

this observation, he developed a power-law type model and

a procedure for its application. Valko (2010) presented an

application of the stretched exponential decline model, a

model which Johnston (2006) described as the expected

decline function for a system that constrains many inde-

pendently declining species, where each specie declines

exponentially at a specific decline rate. All of these models

were derived empirically; consequently, the model

parameters are not functions of reservoir and/or well

completion parameters.

This study has three main objectives: first, to understand

the decline behavior and characteristics of oil wells by

analyzing field production data (rate and wellhead pres-

sures); second, to investigate the existence of a relationship

between the empirical model parameters and the reservoir

and/or well completion properties; third, to demonstrate the

use of the relationship identified or developed in the second

step in rate forecasting. This study explores the applica-

tions of both the logistic growth model and the parallel

(sum of exponential terms) model.

Methodology

The data used for this study come from a liquid-rich shale

play in North America. This dataset contains data from 80

wells of varying length and completion properties. These

wells have also been on production for varying amount of

time, ranging from 50 to 1500 days. Water production

from these wells was relatively low, with average water cut

ranging from 0.1 to 0.3. These high-frequency data are

reported on a daily basis.

The work flow used for this study is summarized as

follow:

1. Analyze oil rate and well head pressure data to identify

the predominant flow regime and signatures from this

dataset.

2. Perform model-based data analysis by fitting oil rate to

empirical models to estimate the model parameters.

3. Analyze and cross-plot the model parameters obtained

in step 2 against available reservoir and well comple-

tion properties. This step enabled investigation of the

existence of any relationship between the empirical

model parameters and the reservoir and well comple-

tion properties.

4. Use design of experiment (DoE) and numerical

reservoir flow simulations to develop relationships
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between the model parameters and the reservoir and

well completion properties.

Theoretical basis for flow regime identification

Wattenbarger et al. (1998) presented an application of the

solution to the one-dimensional diffusivity (linear coordi-

nates) equation for a closed rectangular boundary to

facilitate analysis of production data in tight gas wells. The

solution shows that for the constant pressure inner

boundary condition, a log–log plot of rate versus time plots

as a straight line with a slope of one-half at early times and

as an exponential curve at late times. This solution is given

by the following expression:

qD ¼ �2
X1
n¼1

�1ð Þne�
2n�1ð Þp

2½ �2tD
� �

sin
2n� 1ð Þp

2
ð3Þ

where qD is the dimensionless production rate and tD is the

dimensionless time.

For the constant rate inner boundary condition, a log–

log plot of wellbore pressure versus time also plots as a

straight line with a slope of one-half and transitions to

another straight line with unit slope. The solution for this

case is given as

pwD ¼ � tD

2
� 1

p2
X1
n¼1

�1ð Þn

n2
1� e�n2p2tD

� �
cos np½ � ð4Þ

where pwD is the dimensionless pressure at the wellbore.

Plots of these solutions are presented in Fig. 1. The

characteristics of these solutions have been observed in

production data from many hydraulically fractured hori-

zontal wells in unconventional formations. Patzek et al.

(2014) analyzed production data from 8294 stimulated

horizontal wells in North America and observed that the

flow rate from these wells obeyed a simple scaling theory

where the flow rate is proportional to the inverse of the

square root of time.

Cinco-Ley and Samaniego (1981), Kuchuk and Bir-

yukov (2014) and Bello (2009) have shown that a quarter

slope on a log–log plot of rate versus time (constant

pressure inner boundary condition) can be interpreted as

the simultaneous linear flow of fluid in the fracture and

reservoir matrix. We analyzed the dataset on this basis.

The dataset had production rates and tubinghead pres-

sures. Consequently, we used the tubinghead pressure as a

proxy for the bottomhole well flowing pressure by

assuming that there is a constant pressure difference

between the tubinghead pressure and the bottomhole

pressure because of the pressure head of fluids in the

wellbore. Figure 2 shows a typical dashboard from the flow

regime identification exercise.

We make the following observations from the log–log

plots of rate versus time and tubinghead pressure versus

time for all the wells in the dataset:

1. The rate–time plots showed slopes of one-half, one,

one-and-a-half and exponential decline in no particular

order. But in general the wells exhibit a power-law

behavior with the one-half slope being the predomi-

nant slope observed.

2. The plot of the tubinghead pressures versus time shows

the existence of at least two-time scales in most of the

wells. We make this conclusion because we observe a

one-half slope followed by an exponential curve and

this is followed by a constant tubinghead pressure. The

exponential curve defines the fracture boundary, and

Fig. 1 A log–log plot of the

solutions to the diffusivity

equation in one dimension for a

no-flow outer boundary

condition. The dashed line

represents the constant rate

inner boundary condition, and

the solid line represents the

constant pressure inner

boundary condition
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the constant tubinghead pressure indicates flow from

the reservoir matrix.

Model-based analysis

This section presents the results of model-based analysis.

We considered two empirical models in this analysis, the

logistic growth model and parallel flow model (sum of

exponential terms). These models were fitted to rate and

cumulative production data to obtain the model parameters,

which were statistically analyzed. We then investigated the

existence of any relationship between the model parame-

ters and the reservoir and well completion properties by

cross-plotting them against available well completion and

reservoir properties.

The parallel flow model or sum of exponential model is

based on the conception that when a horizontal well is

hydraulically fractured, the reservoir rock is broken and

subdivided into discrete blocks, each of which makes

independent flow contribution to the fractures. The flow

from each piece block is assumed to have an exponential

decline, which is consistent with boundary-dominated flow.

The mathematical expression for rate is then given by

qT ¼
XNe

k¼1

qike
� t

sk ð5Þ

where qT = production rate from the fractured horizontal

well, qik = initial production rate from the reservoir matrix

element k, sk = time constant for reservoir matrix k,

defined mathematically as
vpct
J
, vp is the matrix pore volume,

ct is the total matrix compressibility and J is the produc-

tivity index of the matrix. This definition is identical to that

used in the capacitance–resistance model, espoused by

Sayarpour et al. (2009), Nguyen (2012), Cao et al. (2014).

Logistic growth models are often used to model growth

(population, market penetration of new products and

technologies) Tsoularis and Wallace (2002). Clark et al.

(2011) presented the first application of the logistic growth

model in production forecasting in unconventional reser-

voirs. The logistic growth model is given as

Np tð Þ ¼ Ntn

aþ tn
ð6Þ

where N = carrying capacity, a = constant, n = hyper-

bolic exponent and t = time.

An expression for production rate, q, is obtained by

differentiating Eq. 6 with respect to time:

q ¼ Nantn�1

aþ tnð Þ2
ð7Þ

Clark et al. (2011) described the carrying capacity in

Eqs. 6 and 7 as the estimated ultimate recovery for a well

without an economic constraint, and it acts as an upper

limit on the cumulative production. Note that

Np ? N because t ? ?.

For the parallel flow model, the model parameter esti-

mation was done by minimizing the problem defined below

min e ¼
XM
m¼1

fm �
XNe

k¼1

fke
� t

sk

" #

m

" #2

subject to:

XNe

k¼1

fk ¼ 1

ð8Þ

where fk ¼
qik
qiT
; qiT is the maximum value of production rate

in the dataset.
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Fig. 2 Diagnostic figures for a

well in the dataset. a Log–log

plot of oil rate versus time and

the log–log plot of the

tubinghead pressure versus

time, b cross-plot of the oil rate

versus tubinghead pressure
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In formulating the model fitting problem in Eq. 8, we

have normalized the model and data with the maximum

value of production rate and then included the constraint

such that the coefficient of the exponential terms must be

fractions that sum up to 1. The objective of this formulation

is that we do not have to specify the number of exponential

terms in the model beforehand, that is, Ne can be set to

large number and the optimization process would return a

value for Ne that will give the best fit to the data. The

number of terms required is obtained by determining the

number of fractional coefficient (fk) of the exponential

terms that are not equal to zero. The model was fitted to

data by finding values of fk and sk that minimize Eq. 8.

For the logistic growth model, we applied Eqs. 6 and 7

to the dataset by finding the values of the model parameters

that minimized the squared difference between model

predictions and field data.

Results of model-based analyses

Example application of parallel flow model

In estimating the model parameters with the parallel flow

model, Ne (the number of exponential terms) was ini-

tially set equal to four. An example application of the

model to a well (UT-ID4) in the dataset is in Fig. 3. As

shown in Fig. 3a, the parallel flow model gives a good fit

to production data. Figure 3b shows that the coefficient

of determination is large at a value of 0.94. Figure 3d is

a plot of the error versus time; error is defined as the

difference between the model predictions and data. The

error is larger at early time because there is more scatter

in the data at early time compared to late time. A

summary of the model parameters obtained for this case

is in Table 1.
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Fig. 3 Example application of the parallel flow model. a Normalized

rate/time plot for the data and model history match and c normalized

rate/cumulative plot for the data and model history match. b Cross-

plot of the normalized rate data and the normalized model rate

prediction. d Plot of the error in normalized rate prediction (qD-

Data - qD-Model) versus time

Table 1 Summary of model fitting parameters obtained for the parallel flow model applied to a well in the dataset

qoiT (STB/

D)

f1 f2 f3 f4 fT qi1 (STB/

D)

qi2 (STB/

D)

qi3 (STB/

D)

qi4 (STB/

D)

s1 (days) s2 (days) s3 (days) s4 (days)

557 0.3 0 0 0.7 1 151 0 0 407 1020 – – 59
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This well only needs two exponential terms in the par-

allel flow model to obtain a good fit with data. In all

likelihood, the initial condition contributed to the fact that

f2 and f3 turned out to be zero. The estimated EUR for this

well is 1.77 9 105 STB.

Results of statistical analysis of model parameters:

parallel flow model

After applying the parallel flow model to all the 87 wells in

the dataset, we observed that 58 wells required only three

exponential terms, 28 wells required only two exponential

terms, and only one well required four exponential terms.

Figure 4 presents the resulting distribution of the fitting

parameters. Specifically, Fig. 4a, c, e presents the distri-

bution of initial production rates for each term in the par-

allel flow model that was not equal to zero. From these

figures, we conclude that all of the distributions are log-

normal; therefore, initial production rates with values close

to the mean value are more frequent than initial production

rates with high values. Figure 4b, d, f is the corresponding

distributions of time constants for the initial productions

rates in Fig. 4a, c, e, respectively. The distributions of the

time constants also appear to follow a log-normal distri-

bution. The values of the time constants in Fig. 4d, f appear

to have the same order of magnitude with mean values of

4.7 9 104 and 4.1 9 104, respectively. The values of time

constants in Fig. 4d, f appear to be an order of magnitude

greater than those in Fig. 4b, and the mean value of the

time constants in Fig. 4b is 381. This observation suggests

that the time constants in Fig. 4d, f are from the same

distribution and the time constants in Fig. 4b are from

another distribution.

Physically, the time constants can be interpreted as a

measure of how fast the fluids in a reservoir would drain;

small values indicate that the fluids would drain very fast

and large values imply that it would take a longer time for

the fluids to drain from the reservoir (Ogunyomi et al.
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Fig. 4 Probability density function (PDF) and cumulative distribution function (CDF) obtained for the parallel flow model applied to the dataset
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2016). Based on this definition of the time constant, we can

state that there are at least two-time scales in the dataset,

one-time scale accounts for the high-transmissivity, low-

storativity fractures (s1) and the second-time scale accounts

for the low-transmissivity, high-storativity reservoir matrix

(s2 and s3).
Table 2 presents the statistical summary of the model

parameters for the parallel flow model. The range of each

of parameter in this table is quite large, thereby indicating

that there is a great degree of variability in well perfor-

mance in this dataset.

Example application of logistic growth model

Figure 5 presents an example application of the logistic

growth model to the same well in the dataset. This fig-

ure suggests that the coefficient of determination is highwith

a value of 0.83, but not as large as 0.94 obtained with the

parallel flow model. Data scatter at early times increases the

error bounds. Table 3 summarizes the model parameters.

The carrying capacity obtained for this well is 1.1 9 105

STB; therefore, the EUR from this well based on the

logistic growth model is 1.1 9 105 STB.

Table 2 Statistical summary of model fitting parameters for the parallel flow model

qi1 (STB/D) qi2 (STB/D) qi3 (STB/D) s1 (days) s2 (days) s3 (days)

Mean 398 182 62 381 2.7 9 104 2.1 9 104

Median 289 119 20 57 448 222

Standard deviation 391 201 116 2570 1.6 9 105 1.1 9 105

Kurtosis 5 5 21 86 45 39

Skewness 2 2 4 9 7 6

Range 2 9 103 1 9 103 7 9 102 2 9 104 1 9 106 7 9 105

Minimum 14 0 0 0 0 0

Maximum 2 9 103 1 9 103 7 9 102 2 9 104 1 9 106 7 9 105
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Fig. 5 Example application of the logistic growth model. a Rate–

time plot for the data and model history match and c rate–cumulative

plot for the data and model history match. b Cross-plot of the

normalized rate data and the normalized model rate prediction. d Plot

of the error in rate prediction (qData - qModel) versus time
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Results of statistical analysis of model parameters:

logistic growth model

Figure 6 presents the distribution (PDF and CDF) of the

model parameters obtained for the logistic growth model.

A general observation from this figure is that they all

appear to be log normally distributed.

Table 4 presents the statistical summary of the logistic

growth model parameters for wells in the dataset. The

mean value of the carrying capacity is 1.3 9 105 with a

standard deviation of 6.9 9 104. It has a range of

4.1 9 105. The hyperbolic constant and the constant a have

mean values of 0.62 and 5897, respectively. The range of

n and a is 2.13 and 4.8 9 105, respectively. This outcome

can also be interpreted as the result of high degree of

variability in well performance.

Table 3 Summary of logistic growth model parameters obtained for

a well in the dataset

N (STB) n a

112,631 0.54 52
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Fig. 6 Probability density

function (PDF) and cumulative

distribution function (CDF)

obtained for the logistic growth

model applied to the dataset.

a PDF and CDF for the carrying

capacity, b PDF and CDF for

the hyperbolic exponent and

c PDF and CDF for the constant

a
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Correlation between model parameters
and the reservoir and well completion properties

We investigate the existence of any relationship between

the model-derived parameters and the reservoir and well

completion properties with two methods. For the first

method, we investigated the existence of a linear rela-

tionship by computing the correlation coefficient between

the variables. Navidi (2008) defined the correlation coef-

ficient q as a measure of the degree of linear relationship

between two variables, and it varies between ?1 and -1. A

value of ?1 implies a strong positive linear relationship,

whereas a value of -1 means a strong negative linear

relationship. A value of zero suggests that there is no linear

relationship between the two variables.

With the second method, nonlinear relationships were

investigated by making cross-plots of the model parameters

(including its transforms) and the reservoir and well com-

pletion properties. These cross-plots are then evaluated for

any recognizable functional relationship.

Parallel flow model

The computed correlation coefficients for the parallel flow

model and the reservoir and well completion properties are

summarized in Table 5 in which we have highlighted

values of |q| C 0.2.

This table suggests that the initial production rates show

some level of correlation with most of the reservoir and

well completion properties. In contrast, the time constants

does not show the same level of correlation.

Logistic growth model

Table 6 presents the computed correlation coefficients

between the model parameters and the reservoir and well

completion properties. In this table, we have highlighted

|q| C 0.2. Based on these criteria, the carrying capacity

possibly has a linear relationship with well spacing,

porosity, average injection pressure, total injected fluid and

the mass of sand injected. The fact that the carrying

capacity correlates with well spacing and porosity suggests

that there is a relationship between the carrying capacity

and the drainage volume of the well. The hyperbolic con-

stant n and the constant a do not have any linear rela-

tionship with the reservoir and well completion properties.

No obvious nonlinear relationship emerged from the cross-

plots.

Table 4 Statistical summary of model fitting parameters for the

logistic growth model

N (STB) n a

Mean 133,135.35 0.62 5897.30

Median 111,940.75 0.58 75.96

Standard deviation 69,011.60 0.23 52,876.12

Kurtosis 3.12 63.29 84.00

Skewness 1.32 7.47 9.16

Range 408,248.15 2.13 484,738.60

Minimum 20,000.00 0.46 4.52

Maximum 428,248.15 2.59 484,743.12

Table 5 Summary of the computed correlation coefficient between the model parameters and the reservoir and model completion properties for

the parallel flow model

qi1 (STB/D) qi2 (STB/D) qi3 (STB/D) s1 (days) s2 (days) s3 (days)

Number of stages 0.47 0.43 0.31 -0.07 -0.10 -0.06

Lateral length (ft) -0.19 -0.21 -0.30 -0.13 0.15 0.03

Spacing (acres) 0.32 0.35 0.22 -0.34 0.10 0.09

Initial water saturation (fraction) -0.35 -0.54 -0.30 0.18 -0.18 -0.02

Porosity (fraction) 0.28 0.21 0.27 -0.09 -0.12 0.22

TVT (ft) -0.40 -0.59 -0.40 0.29 -0.03 -0.11

Net to gross (fraction) 0.15 0.21 0.29 -0.14 -0.18 0.32

Overpressure (psi) 0.18 0.33 0.19 -0.02 0.07 -0.12

Pressure (psi) 0.18 0.33 0.19 -0.02 0.07 -0.12

Depth (ft) 0.15 0.30 0.17 -0.05 0.14 -0.14

Average injection pressure (psig) 0.35 0.36 0.16 -0.21 0.09 0.02

Total fluid injected 0.46 0.44 0.30 -0.37 0.08 0.12

Sand (lbs) 0.48 0.40 0.36 0.02 -0.12 -0.06

The italic values indicate |q| C 0.2
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Development of mathematical relationships
between empirical model parameters
and reservoir and well completion properties

The results of the statistical analysis of the model param-

eters in the previous sections show that the model param-

eters correlate to some degree with the reservoir and well

completion properties. In this section, we use design of

experiment (DoE), numerical reservoir simulation and

response surface modeling (RSM) to develop functional

relationships between the model parameters and the

reservoir and well completion properties. More details on

the theory of DoE and RSM can be found in Box et al.

(2005) and Myers and Montgomery (2002).

We developed the functional relationship by:

1. Generating data from numerical reservoir simulation

where we built the numerical simulation models based

on the result of a fractional factorial design experiment.

We used a 29�2
VI fractional–factorial design, which

resulted in 256 numerical reservoir simulation runs.

The reservoir and well properties used for this exper-

iment are in Table 7. Figure 7 is a schematic represen-

tation of the process described , and Fig. 8 is one of the

numerical simulation models used for data generation.

2. After generating the synthetic data, we estimated the

parameters for the empirical models (logistic growth

and parallel flow model) by fitting them to data using

the method described earlier. Rate and cumulative

production data were used in the fitting exercise.

3. Identify the reservoir and well completion properties

that have the strongest effects on each parameter in the

empirical models. We identified the strongest effects

by performing regression analysis on each parameter

in the empirical model and all the variables in Table 7.

Using the t statistic from the regression analysis, we

eliminate those variables whose coefficient is most

likely equal to zero based on their P values. The

P value is the probability that the coefficient of a

variable is equal to zero. The larger the P values the

more likely the coefficient is equal to zero and the

smaller it is the less likely the coefficient is equal to

zero. A P value of 0.0001 was chosen as cutoff, if the

P value is[0.0001, the coefficient of that variable is

not significantly different from zero and we can

eliminate such variables from further analysis.

Table 8 provides a summary of the result of this step;

the solid dots indicate that the reservoir/well property

that has a strong effect on the value of the corre-

sponding model parameter. For example, fracture half-

length has a strong effect on the value of the carrying

capacity for the logistic growth model.

4. After step 3, we have a list of variables that have the

strongest effect on each model parameter. We then

performed a full factorial design of experiment with

the variables in this list for each model parameter and

then build the numerical reservoir model to generate

data with those results. Note that the unimportant

properties were kept unperturbed at their expected

values. Table 9 presents the design table for the

carrying capacity N; this design is for a 23 full

factorial experiment with 8 numerical simulation

models.

Table 6 Summary of the computed correlation coefficient between

the model parameters and the reservoir and model completion prop-

erties for the logistic growth model

N (STB) n a

Number of stages 0.14 0.02 -0.02

Lateral length (ft) 0.00 -0.13 -0.09

Spacing (acres) 0.25 0.02 0.04

Initial water saturation (fraction) -0.11 -0.09 -0.01

Porosity (fraction) 0.46 -0.12 -0.05

TVT (ft) -0.05 -0.09 0.02

Net to gross (fraction) 0.19 0.02 0.01

Overpressure (psi) -0.04 0.10 0.00

Pressure (psi) -0.04 0.10 0.00

Depth (ft) -0.03 0.10 0.02

Average injection pressure (psig) 0.23 -0.02 0.09

Total fluid injected 0.39 -0.02 -0.02

Sand injected (lbs) 0.26 0.02 0.01

The numbers in italics signify parameters that have been deemed

important in the logistic growth model

Table 7 Reservoir and well completion properties used in the frac-

tional factorial design of experiments used to build the numerical

simulation model

Property Max (?) Min (-)

Fracture half-length, xf (ft) 1000 150

Fracture permeability, kf (md) 150 15

Initial oil saturation, Soi (fraction) 0.70 0.48

Initial reservoir pressure, Pi (psi) 7700 5500

Wellbore pressure, Pwf (psi) 2000 50

Matrix permeability, km (md) 5 9 103 5 9 10-4

Number of fracture cluster per stage 5 1

Number of fracture stages 5 3

Porosity, u (fraction) 0.08 0.04

Reservoir thickness, h (ft) 100 30

Well length, L (ft) 3600 900

Fracture width, w (ft) 0.2 0.05

Fracture spacing (ft) 100 400

Viscosity, l (cp) 2 1

Compressibility, ct (psi
-1) 1 9 10-5 1 9 10-6
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Because the constant a has all its main effect variables

in common with the hyperbolic constant, we used the same

design table for their experiments. Table 10 is the design

table for n and a, and the experiment design was for a 24

full factorial design with 16 numerical simulation models.

We also combined the design table for the parallel flow

model parameters because they have many of the main

effects variables in common. The design for the parallel

flow model parameters was a 27 full factorial design with

128 numerical simulation models.

Fig. 7 Schematic diagram of the process used in developing the mathematical relationship between the model parameter and the reservoir and

well completion properties

Fig. 8 Pressure distribution in

one of the numerical simulation

models and showing the number

of fracture stages and the

number of hydraulic fracture

clusters
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5. Repeat step 2 to obtain the model parameters that

would be used to develop the response surface

function.

6. Using regression analysis. we develop a functional

relationship between each of the model parameters and

the reservoir and well completion properties. The

developed relationship is then validated with synthetic

examples.

The results obtained for step 6 are presented below.

Logistic growth model

Carrying capacity, N

N0:17 ¼ 5:74þ 2:63� 10�2hþ 2:1� 10�4Lw þ 1:1

� 10�3xf ð9Þ

Equation 9 is the response surface function for carrying

capacity that shows a relationship between the carrying

capacity and the reservoir thickness (h), well length (Lw) and

the fracture half-length (xf). Different transformations of the

carrying capacity were evaluated; we chose the

transformation that gave the largest coefficient of variation

when the model predictions are cross-plotted against actual

values. This transformation has a coefficient of variation of

Table 8 Summary of reservoir and well properties that have the strongest effect on the model parameters

Property Parallel flow model Logistic growth model

qi1 (STB/D) qi2 (STB/D) s1 (days) s2 (days) N (STB) n a

Fracture half-length, xf (ft) •
Fracture permeability, kf (md) • • • •
Initial oil saturation, Soi (fraction)

Initial reservoir pressure, Pi (psi) • • •
Flow well pressure, Pwf (psi) • •
Matrix permeability, km (md) • • • •
Number of fracture cluster per stage

Number of fracture stages

Porosity, u (fraction) •
Thickness, h (ft) • • •
Well length, L (ft) • • • • • • •
Width, w (ft)

Fracture spacing (ft)

Viscosity, l (cp)

Compressibility, ct (psi
-1)

Table 9 Design table for variables with the main effect on the car-

rying capacity, N

Run number Thickness Well length Fracture half-length N (STB)

1 ? - ? 497,338

2 ? - - 453,284

3 - ? ? 319,600

4 - - ? 177,726

5 - - - 82,599.3

6 ? ? ? 956,178

7 ? ? - 434,510

8 - ? - 117,092

Table 10 Design table for variables with the main effect on the

hyperbolic constant n and a

Run

number

Fracture

permeability

Matrix

permeability

Well

pressure

Well

length

n a

1 - - - ? 0.67 1104.20

2 ? ? - - 0.63 569.14

3 ? ? ? ? 0.69 1052.55

4 ? - ? - 0.57 741.38

5 - - - - 0.63 838.84

6 - ? - - 0.77 2995.93

7 - ? ? ? 0.79 3236.21

8 - - ? ? 0.67 1371.62

9 ? - - ? 0.57 516.44

10 - - ? - 0.70 1729.04

11 ? ? - ? 0.69 1558.57

12 ? ? ? - 0.62 815.20

13 ? - - - 0.56 562.49

14 - ? ? - 0.77 2192.00

15 - ? - ? 0.79 3830.52

16 ? - ? ? 0.57 502.11
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0.95. Figure 9a shows a cross-plot of the predicted values of

carrying capacity using Eq. 9 and the actual values. Figure 9b

presents the residuals plotted on a normal probability graph,

wherein the straight-line signature indicates normal

distribution. Figure 10a, b is response surfaces constructed

with Eq. 9, and they show how the carrying capacity varies

with the changes in independent variables. Note that Fig. 10a

reflects the response surfacewhen the fracture half-length is at

its smallest value, whereas Fig. 10b shows the samewhen the

fracture half-length is at its largest value.

Hyperbolic exponent, n

n ¼ 6:6� 10�1 � 8:2� 10�4kf þ 2:03� 10�5km þ 8:8

� 10�6Lw

ð10Þ

Equation 10 is the developed relationship between the

hyperbolic exponent and the reservoir and well properties.

A linear relationship has the highest coefficient of variation

of 0.95 when compared to the other transformations

evaluated. We evaluated a linear, quadratic, power and

logarithmic transforms.

Constant, a

a�0:26 ¼ 1:5� 10�1 þ 2:9� 10�4kf � 5:5� 10�6km

ð11Þ

Equation 11 is the relationship developed for the

constant a. This relationship had the highest coefficient

of variation of 0.81 from the transforms evaluated.
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Fig. 9 Validation of developed relationship for carrying capacity. a Cross-plot of the predicted values carrying capacity versus the actual values

of the carrying capacity. b Diagnostic plot that shows that the residuals of the regression are normally distributed
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Parallel flow model

Initial production rate one, qi1

ln qi1ð Þ ¼ 6:4� 10�2 þ 6:7� 10�3kf þ 4:0km þ 1:8

� 10�4pi � 5:4� 10�4pwf � 2:1� 10�3h

� 3:9/� 1:1� 10�4Lw þ 7:4� 10�5kfh

þ 3:6� 10�7kfLw þ 2:3� 10�2kmLw

þ 4:7� 10�8pipwf þ 5:4� 10�6hLw � 2:1

� 10�8kfhLw ð12Þ

Equation 12 is the response surface function for the

initial production rate, qi1. It shows a relationship between

the initial production rate one and the reservoir thickness

(h), fracture permeability, matrix permeability, porosity,

well length (Lw), initial reservoir pressure and the

bottomhole flowing pressure. Different transformations of

the initial production rate one were evaluated, and the

transformation that gave the highest value of coefficient of

variation is the natural-log transform. This transformation

has a coefficient of variation of 0.98.

Time constant one, s1

s1:121 ¼ 6:9� 102 � 3:8kf þ 4:2� 105km � 16:1hþ 1:3

� 104/� 1:5� 10�2Lw � 5:9� 106km/
� 4:5hLwa

ð13Þ

Equation 13 is the response surface function for time

constant one, s1. A power transformation gave the highest

value of coefficient of variation when the model

predictions are cross-plotted against actual values. This

transformation has a coefficient of variation of 0.73.

Initial production rate two, qi2

ln qi2ð Þ ¼ �1:7þ 2:0� 10�3kf þ 1:7� 10km

þ 2:4� 10�4pi � 2:1� 10�4pwf

þ 1:6� 10�2hþ 6:4/þ 6:1� 10�5Lw

þ 5:9� 10�1kfkm

ð14Þ

Equation 14 is the response surface function for initial

production rate two, qi2. It shows a relationship between

the initial production rate two and the reservoir thickness

(h), fracture permeability, matrix permeability, porosity,

well length (WL), initial reservoir pressure and the

bottomhole flowing pressure. The log transformation gave

the highest coefficient of variation of 0.99.

Time constant two, s2

s0:672 ¼ 7:6� 102 � 9:7� 10�1kf � 7:4� 103km þ 2:3h

þ 4:3� 10�3Lw � 2:3� 102kfkm þ 18:4kmLw
� 6:5� 10�4hLw

ð15Þ

Equation 15 is the response surface function for time

constant two, s2. A power transformation gave the highest

value of the coefficient of variation when the model

predictions are cross-plotted against actual values. This

transformation has a coefficient of variation of 0.82.

Discussion

Both models used in this study can predict the EUR; for the

logistic growth model the carrying capacity is a parameter

in the fitting, and for the parallel flow model the function

converges to a finite value when extrapolated to infinity.

Because both methods require numerical fitting of model

parameters, neither offers a clear advantage over the other.

The logistic growth model does not have physically

meaningful parameters (except for the carrying capacity)

and does not fit the data as well as does the parallel flow

model, although both results in good fits. Note that the

parallel flow model has more parameters, four for the two-

compartment model, as opposed to three for the logistic

model. Therefore, the latter approach is less likely to result

in nonunique solutions. The logistic model does not have

the multiple scales that are such a prevalent feature of the

data.

The model-based analysis with the parallel flow model

clearly indicates the existence of multiple-time scales in

the production profiles of these wells. The parallel flow

model is based on the concept that the reservoir contains

multiple independently declining reservoir elements

(compartments) that have different and unique time con-

stants, representing declining characteristics. Therefore,

when two or more reservoir compartments are present, this

will be reflected in the number of terms in the parallel flow

model. The observed time scales also highlight the

importance of high-frequency data and integrating all

available information in analyzing production data. Most

analysis techniques ignore the early-time production data

(which we included in our analysis) because of wellbore

effects (wellbore storage or skin and flow back of fracture

fluids) and noise, thereby missing the first-time scale and

only analyzing data that are dominated by production from

the second-time scale. While it is possible that these phe-

nomena affect early-time production only, it does not

eliminate the possibility of analyzing early-time data to

estimate the dimensions of the reservoir element/com-

partment (this could be the fracture or fracture network)

that accounts for early-time flow. Ogunyomi (2014) pre-

sented a rate–time relation capable of modeling flow from a

double-porosity model that typically exhibits two-time

scales. The model they presented is also valid for early-

and late-time flow (transient and boundary-dominated

flow).
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Analysis of the model parameters for the logistic growth

and parallel flow models showed that they have some

correlation with the reservoir and well completion prop-

erties. For example, the carrying capacity in the logistic

growth model correlated with the well spacing, total fluid

injected and the mass of sand injected. In an ideal situation,

these properties can be used to define the drainage volume

of a well. It therefore seems reasonable, as suggested by

Clark et al. (2011), to use the carrying capacity as a con-

straint on the recoverable reserves from a well.

Conclusions

This study presents the results of a detailed statistical and

model-based analysis of production data from an uncon-

ventional oil reservoir. We also analyzed this production

dataset to identify different flow regimes and flow signa-

tures using the linear flow concept. The following con-

clusions appear pertinent based on the results of these

analyses:

1. Production performance from wells in unconventional

reservoirs should be expected to be highly variable.

The production signatures show varying slopes on a

diagnostic log–log plot that ranges from one-half to

one-and-a-half. However, the one-half slope signature

dominated in most cases. This observation corrobo-

rates the notion that 1D linear flow is adequate in

modeling recovery from these reservoirs although this

might underestimate production because it ignores the

first-time scale.

2. The analysis showed that at least two exponential

terms of the parallel flow model are needed to

adequately model production from these reservoirs.

A statistical analysis of the time constants confirms

that there are two distributions of time constants.

Therefore, we can conclude that there are at least two-

time scales in the production history from these wells.

An important corollary of this observation is that any

forecasting effort that does not account for the

multiple-time scales will result in conservative EUR

predictions.

3. Based on the general observation that the parameters

from the empirical models correlated with the reser-

voir and well completion properties in the dataset, we

developed functions that relate the model parameters

to reservoir and well properties by using design of

experiments and numerical reservoir flow simulations.

If the reservoir and well properties are known, these

relations can be used to compute the model param-

eters, which can then be used in the models to

forecast production profiles. Of course, these relations

are only valid within the range that was used to

develop them.
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