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Abstract This paper develops ensemble machine learning

model for the prediction of dead oil, saturated and undersat-

urated viscosities. Easily acquired field data have been used as

the input parameters for the machine learning process. Dif-

ferent functional forms for each property have been consid-

ered in the simulation. Prediction performance of the

ensemble model is better than the compared commonly used

correlations based on the error statistical analysis. This work

also gives insight into the reliability and performance of dif-

ferent functional forms that have been used in the literature to

formulate these viscosities. As the improved predictions of

viscosity are always craved for, the developed ensemble

support vector regressionmodels could potentially replace the

empirical correlation for viscosity prediction.

Keywords PVT � Dead oil � Bubble point � Empirical �
Viscosity � Undersaturated � Black oil � Ensemble

List of symbols

APE Average per cent error

AAPRE/Ea Average absolute per cent error

RMSE Root mean squared error

Emax Maximum absolute per cent error

Emin Minimum absolute per cent error

SD Standard deviation of absolute per cent error

P Reservoir pressure, psia

T Reservoir temperature, 0F

Pb Bubble-point pressure, psia

cg Dissolved gas relative density (air = 1)

co Oil gravity, stock tank oil relative density

(water = 1)

cAPI API gravity, 0API

Rs Solution gas/oil ratio, scf/STB

Rsb Solution gas/oil ratio at bubble point,

scf/STB

lo Oil viscosity, cp

lod Dead oil viscosity, cp

lob Saturated oil viscosity, cp

loa Undersaturated oil viscosity, cp

Introduction

Knowledge of oil pressure–volume–temperature (PVT)

properties is of great interest to petroleum engineers as they

are critical in performing most reservoir engineering

studies. Viscosity is one of these PVT properties and it

controls the fluid flow through the porous media. It is

therefore important to be able to estimate crude oil vis-

cosity at different stages of oil exploration. Empirical

correlations, based on easily acquired field data, are usually

employed to estimate dead oil, bubble-point and under-

saturated viscosities. However, performance of these

empirical correlations is not usually satisfactory and

improved predictions are always sought.
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In general, viscosity can be defined as the internal

resistance to the flow of fluid. Crude oil viscosity is an

important physical property that controls and influences the

flow of oil through porous media and pipes (Ahmed 2010).

It is also an important parameter when developing reservoir

models to predict ultimate recovery, in designing enhanced

oil recovery operations and when designing pipelines for

effective fluid flow.

The viscosity of a liquid is related directly to the type

and size of the molecules which make up the liquid

(McCain Jr 1991). Crude oil viscosity can be categorised

into three classes depending on the reservoir pressure,

namely dead oil viscosity, saturated oil viscosity and

undersaturated oil viscosity.

• Dead oil viscosity (lod) is the viscosity of the crude oil

with no free gas at atmospheric pressure and

temperature.

• Saturated/bubble-point oil viscosity (lob) is the viscos-

ity of the crude oil at the bubble-point pressure and the

reservoir temperature.

• Undersaturated oil viscosity (loa) is the viscosity of the

crude oil at a pressure and temperature above the

bubble-point pressure and reservoir temperature.

Oil viscosity can ideally be determined by laboratory

experimentation. However, this is always costly and time

demanding and a high technical speciality is required. The

primary alternatives to this are the use of equations of

states (EOS) and empirical correlations. Unfortunately, the

EOS do require crude oil compositions which can only be

determined through laboratory analysis; thus, they do not

eliminate the requirement for laboratory analysis. This has

paved way for the adoption of empirical correlations over a

period of time. Likewise, some machine learning (ML)

techniques have been used to improve the prediction of oil

viscosity. However, stand-alone ML techniques or their

hybrid systems can become stuck in local minimal, hin-

dering the generalisation capability of such systems.

However, this local minima problem can be addressed by

ensemble systems (Dietterich 2000).

ML is the process of writing computer programs to

optimise a performance criterion using example data or

past experience (Alpaydin 2014). Learning involves cre-

ation of a system which applies past experience to analo-

gous new situations. Learning can be in or through many

forms; it can be through new knowledge acquisition, cog-

nitive skills acquisition, effective representation of new

knowledge or new fact discovery through observation and

experimentation (Carbonell et al. 1983). Hybrid ML sys-

tem involves fusion of two or more ML techniques with the

aim of strengthening one another. An example is the fusion

of genetic algorithm (GA) with support vector machines

(SVMs). The GA is used to optimise the learning

parameters of SVM. However, such hybrid system might

have assumed a local minima since a given space of

hypotheses must have been searched for a given data set.

On the other hand, effectively constructed ensemble system

of SVM can overcome this problem since it involves fusion

of systems that should have been constructed on different

spaces of hypotheses searched by the learning algorithm on

the training data set (Dietterich 2000).

ML techniques usually utilise input variables similar

to the empirical correlations. Mostly, petroleum fluid

properties which are easily measured in the field and

which have direct physical relationship with the target

output are used as the correlating variables (Standing

1947; Chew and Connally 1959). Also, a trial and error

method can be used to eliminate any correlating variable

that does not improve the performance of the correlation

significantly (Chew and Connally 1959). Pruning of the

correlating variables, often referred to as feature selec-

tion, can be achieved by some statistical tools to select

input variables that are used in the regression analysis to

develop the empirical correlations or by common feature

selection techniques such as neighbourhood component

analysis (NCA), sequential feature selection and LASSO.

NCA is an embedded and nonparametric feature selec-

tion method. NCA mainly learns the feature weights

with the aim of minimising the objective function that

measures the mean leave-one-out regression or classifi-

cation loss over the given training data set (Goldberger

et al. 2005; Yang et al. 2012). LASSO minimises the

residual sum of squares subject to the sum of the

absolute value of the coefficients being less than a

constant. LASSO includes a penalty term that constrains

the size of the estimated coefficients to produce some

coefficients that are exactly zero in order to trim the

selected features for prediction (Tibshirani 1996, 2011).

Sequential feature selection in its basic form involves

minimisation of an objective function over all feasible

feature subsets by adding or removing features from a

candidate subset while evaluating the criteria (Liu and

Motoda 2007; Stańczyk and Jain 2015).

This paper develops ensemble ML model based on SVM

to predict dead oil, saturated and undersaturated viscosities.

For each property, different functional forms were explored

to determine its best correlating variables. The prediction

results of the ensemble models are compared with the most

commonly used correlations in the petroleum industry.

Literature review

A review of empirical correlations and ML techniques that

have been developed for viscosity predictions is explored

in this section.
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Viscosity correlations

A brief review of the available correlations in the literature

for the estimation of crude oil viscosities is presented in

tabular forms. The adopted functional form(s), API range,

origin of the data sets and reported statistical errors are

included in the review.

Dead oil viscosity correlation

Correlation for lod is usually developed with the API

gravity (cAPI) and T as the independent variables.

lod ¼ f cAPI; Tð Þ ð1Þ

cAPI is calculated using the specific gravity of an oil (co)
which is the ratio of oil density to that of water. Specific

gravity for API is normally determined at 60 degrees

Fahrenheit. It is thus given as:

cAPI ¼
141:5

co
� 131:5 ð2Þ

Correlations for lod usually introduce large errors when

applied to data sets which are different from the ones used

to develop the original correlations. The difference in the

results is related to the difference in the oil base (asphaltic,

paraffinic or mixed base) (Labedi 1992).

Some other correlations have included additional cor-

relating variables such as average temperature, critical

temperature, Watson characterisation factor (Kw), bubble-

point pressure (Pb) and bubble-point gas/oil ratio (Rsb).

Bergman and Sutton (2009) indicated that most of the

correlations that use only cAPI and T usually have large

errors and they are the least accurate compared to other

methods that have additional correlating property. Alter-

native methods that could possibly give improved accuracy

are the use of EOS or correlations that use crude oil

compositions, though these are not usually available.

Hence, the need to use simple methods that utilise easily

acquired properties (cAPI and T).

Table 1 presents a concise review of some common

correlations for lod.

Gas-saturated viscosity correlations

Gas-saturated viscosity (lob) can be defined as the viscosity
of the crude oil with dissolved gas, just above the lod, up to
the bubble-point pressure at the reservoir temperature. The

dissolved gas in crude oils reduces the observed value of

the lod. Correlations for lob are usually developed as a

function of lod and gas oil ratio (Rs) or P.

lob ¼ f lod;Rsð Þ ð3Þ

Some other forms of correlations based on different input

variables have also evolved for lob. Table 2 presents some

of these common correlations.

Undersaturated viscosity correlations

Beal (1946) was the first to develop a correlation for

undersaturated lo and noted that the crude oil viscosity in

this region increases proportionally with the increase in

pressure. He used 52 data points of crude oil from the USA

to develop the correlation and reported an Ea of 2.7% on

the data set. Subsequently, different undersaturated vis-

cosities with different correlating variables have been

presented in the literature. Table 3 presents some of these

correlations.

Machine learning for viscosity predictions

Viscosity prediction has also benefitted from the machine

learning (ML) modelling capability. ML techniques that

have been used for viscosity modelling include radial basis

function neural network (RBFNN), artificial neural net-

work (ANN), fuzzy logic (FL), functional networks (FN),

genetic algorithm (GA), SVM and group method of data

handling (GMDH) (Table 4).

Overview of ensemble models

Ensemble ML is a combination of multiple base models of

classifiers or regressors for classification and regression

problems, respectively. Each base model covers a different

part of the input space or the complete input space.

Although there is no defined taxonomy for building the

ensemble models, some successful approaches and

methodologies have been widely adopted (Dietterich 2000;

Zhou 2012; Bader-El-Den and Gaber 2012; Perry et al.

2015; Bader-El-Den et al. 2016).

After generating a set of base learners, the ensemble

method will then be formed by combining the base models

or a subset of them based on defined criteria or algorithm to

form a generalised prediction model. Three main benefits

of the combination can be attributed to statistical, compu-

tational and representational issues (Dietterich 2000; Zhou

2012).

• Statistical Issue: there is always a large space of

hypotheses for the base model to choose from. There is

a chance that the base learning algorithm has not

chosen the most efficient of these possible hypotheses.

The combination approach tends to reduce the risk of

choosing the wrong hypotheses for formulating the

prediction models.
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• Computational Issue: ML algorithms usually involve

searching for optimal parameters which may get stuck

in local optima. Combination of different models

reduces the risk of choosing a wrong local minimum.

• Representational Issue: In many ML problems, the true

unknown hypothesis cannot be truly modelled in the

hypothesis space. However, combination of different

hypotheses may be able to form a more accurate

representative function that learns the problem.

The most common ways of combining base models in

ensemble modelling are averaging and voting. Averaging is

the most fundamental and common combination method for

numeric output (i.e. regression problem), while voting is a

common combination method for nominal output (i.e. classi-

fication problem).Averaging can either be simple orweighted.

There are two main ensemble paradigms: sequential

ensemble methods and parallel ensemble methods (Zhou

2012). Sequential ensemble methods are where the base

learners are generated sequentially with boosting as a

representative, while parallel ensemble methods are where

the base learners are generated in parallel, with Bagging as

a representative.

Bagging (Breiman 1996) which is also known as boot-

strap aggregation involves training multiple models with

training sets of data randomly drawn with replacement

from the base training data sets. The training data sets for

the base models are called bootstraps. Hence, bagging

involves training different models with different samples

and usually predictions are obtained by averaging the

results of the different base models for a regression

problem.

Boosting involves training and improving a weak

learning algorithm into a strong one (Schapire 1990). In

boosting, the training data set for each subsequent model

increasingly focuses on instances wrongly predicted by the

previous weaker model. ADABOOST (adaptive boosting

algorithm) is one of the most used boosting algorithms

which automatically adapts to the data given to it.

Proposed ensemble model

An ensemble model based on SVM regression has been

developed. The steps for the algorithm will be given and

discussed.

Table 4 Machine learning techniques for viscosity prediction

References cAPI range Region of data

source

Data

points

Comment

Elsharkawy (1998) 20–45 – – RBFNN was used to predict viscosity across different ranges. Input

parameters to the model were reservoir P, T, stock tank co, and
separator cg. AAPRE = 8.72% in testing

Elsharkwy and Gharbi

(2001)

24.51–39.81 Kuwait 805 Four different ANN models were developed to predict the oil viscosity

with AAPRE of 9.39, 12.17, 14 and 19.18% in testing. In total, 700

and 105 data points were used for training and testing the models,

respectively

Ayoub et al. (2007) 29–43.8 Pakistan 99 ANN model was developed for viscosity below bubble point.

AAPRE = 3.4%

Hajizadeh (2007) – Iran 89 GA was used to model oil viscosity with correlation coefficient of

0.9974. The region of reservoir viscosity covered by the data was

not stated

Omole et al.(2009) 19–45.4 Nigeria 32 ANN model was developed for lob with AAPRE of 6.781%

Oloso et al. (2009) 24.2–48 Middle East 99 SVM and FN models were developed to predict the entire viscosity

curve. The learning parameters are the variables of the fitted

viscosity curves. AAPRE of 8.5514% was reported for testing on 29

data points

Al-Marhoun et al. (2012) – Canada 100 Approach similar to (Khoukhi et al. 2011) was used in predicting the

entire crude oil viscosity. Eight different ML techniques were

explored in the work. A variant of FN gave the best performance

Ghorbani et al. (2014) 21.55–37.62 Iran 600? 365, 287 and 57 data points were used for developing hybrid models

of GA and GMDH for viscosity below bubble point, loa and lb with
AAPRE of 13.57, 10.95 and 12.48%, respectively

Hemmati-Sarapardeh et al.

(2016)

20–50 Worldwide 1497 Hybrid model of GA and SVM was used to predict lod. AAPRE of

17.17 was reported

Ghorbani et al. (2016) 21.55–37.62 Iran 600? 365, 287 and 57 data points were used for developing new multi-

hybrid models with GA and GMDH for viscosity below bubble

point, loa and lb with AAPRE of 3.77, 0.268 and 0.01058%,

respectively
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Ensemble support vector regression

The version of SVM that is used for regression problem is

known as support vector regression (SVR). SVM is a sta-

tistical machine learning method that generates input–

output mapping functions from a set of training data. It

uses the principle of structural risk minimisation, seeking

to minimise the upper bound of the generalisation error

rather than just minimising the training error. In a simple

pattern recognition problem, SVM uses a linear separating

hyperplane to create a classifier with a maximal margin.

When the input cannot be linearly transformed (e.g. com-

plex classification problem or regression problem), SVM

first nonlinearly transforms the input space into a higher-

dimensional feature space. The transformation is achieved

by using nonlinear mapping functions which are generally

referred to as kernel functions. Typical kernel functions

include RBF, Gaussian and polynomial functions. The

steps for creating the SVR ensemble model are highlighted

in Algorithm 1. Ensemble pruning has been performed

using Ea. It is observed that similar performance is

achieved when root mean squared error (RMSE) is used for

the pruning. Ensemble pruning is basically the determina-

tion and selection of the final base models that will form

part of the ensemble model.

The stratification process of selecting the sample input

data ensures that random rows are selected. The four main

parameters that control each SVR model are C, k, k and e.
‘‘C’’, the penalty factor, is the trade-off between achieving

minimal training error and the complexity of the model. If

it is too large, there is a high penalty for non-separable

points which may result in overfitting. If it is too small,

there may be underfitting (Alpaydin 2014). The options for

the kernel, k, have been limited based on a preliminary

experimentation on the data set. Based on preliminary

investigation, k assumes the value of e in each iteration.

The developed ensemble SVR has n numbers of based

models which are selected from the simulated SVR

models based on Ea ranking. The base SVR models are

ranked based on the values of Ea to form an ensemble

SVR model which is henceforth referred to as Ensem-

ble_SVR_APRE. For analysis and error sensitivity test,

RMSE is also used for pruning based on the same

algorithm to generate another model which is called

Ensemble_SVR_RMSE.

This innovative way of creating ensemble models will

also give us the opportunity to compare the two error

evaluation criteria, Ea and RMSE, as there is no consensus

on which of these two error evaluating criteria is the best

(Chai and Draxler 2014).

Algorithm 1: Ensemble support vector machine

regression

1. Select x data sets as 70% of the entire data sets (X) using

stratification and the corresponding y from the output (Y)

2. Iterate for C = 1 to N

3. Iterate for kernel, k ? {RBF, Gaussian, polynomial}

4. Iterate for e 2 10�3; 10�4; 10�5; 10�6; 10�7
� �

5. Compute each SVR model F(C, k, e)

6. Evaluate each SVR model using Ea

7. Continue for the next e

8. Continue for the next k

9. Continue until C = N

10. Give ranks to the SVR model based on Ea

11. Choose the best n models based on their ranks to form the

ensemble models based on Ea ranking

12. Predict the testing target Y from the testing input X using the

n base SVM models

13. Compute each ensemble output 1
n

Pn
i¼1 Ŷi, where Ŷi is the

predicted target by the ith SVR base model

Implementation

This section focuses on data acquisition, feature extrac-

tions, simulation of the ensemble algorithm and statistical

evaluation of the prediction results. To focus on the results

of different functional forms for predicting oil viscosity,

the ensemble SVR will only be compared with empirical

correlations. Recently, the advantages of ensemble SVM

compared to stand-alone SVM have been discussed (Oloso

et al. 2016).

Data sets and input features selection

A total of 286 data points were available for the lod and lob
simulations. Among these, only about 250 data points have

been used as other rows have missing values. For the loa
simulation,910data pointswere used.A statistical summaryof

the data is presented in Appendix A. In each case, approxi-

mately 70% of the data has been used for training the models

and 30% for testing. A stratification process which involves

random selection of non-sequential rows is used to divide the

data into training and testing sets. Before the simulation

exercise, some common feature extraction techniques were

used to examine the inputs that are likely to be mostly corre-

lated and influential for each of the desired output. This would

have possibly reduced the dimension of the input matrix.

However, no consensus was reached among the methods.

Experimental work

For each of the PVT properties considered in this paper,

more than one functional form, that is, combination of

correlating variables has been used in the literature. Ini-
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tially, some feature selection methods (such as NCA,

LASSO and sequential feature selections) were investi-

gated. However, all the investigated functional forms have

been implemented for the ensemble SVM to allow fair

comparison with the empirical correlations. Also, the listed

feature selection techniques favoured different input

variables.

A. Investigated functional forms for lod

lod ¼ f cAPI ; Tð Þ
lod ¼ f cAPI ; T;Rsbð Þ
lod ¼ f cAPI ; T;Pbð Þ
lod ¼ f cAPI ; T;Rsb;Pbð Þ

B. Investigated functional forms for lob

lob ¼ f cg;Rs; co; T
� �

lob ¼ f cg;Rs; cAPI ; T
� �

lob ¼ f cAPI ; lod;Pbð Þ
lob ¼ f lod;Rsð Þ

C. Investigated functional forms for loa

loa ¼ f lob;Pb;Pð Þ
loa ¼ f lob; lod;Pb;P; cAPIð Þ
loa ¼ f lob; lod;Pb;Pð Þ

The proposed ensemble SVM model is simulated for all

these functional forms and the results are compared with

the available empirical correlations in the literature that

utilise these functional forms.

During experimentation, it was noted that the results of the

two ensemble SVRmodels are essentially the same. The ranks

of the base models using RMSE andEa for rankingmay not be

the same, but the ordering of the samples is almost always the

same. In other words, the results of both Ensem-

ble_SVR_APRE and Ensemble_SVR_RMSE are essentially

the same. Hence, results of only Ensemble_SVR_APRE

model are used and reported. Henceforth, the model will

simply also be referred to as ensemble SVRor ensemble SVM.

Three error statistical criteria are primarily used to

evaluate the performances of the simulated ensemble SVR

and the compared empirical correlations. These are RMSE,

Ea and maximum absolute error (Emax). The best model is

expected to give the lowest values across these three

parameters or two. Emax has been chosen as the third cri-

terion to eliminate any tie between two models when both

RMSE and Ea are not minimum for a particular model. It

should also be noted that a model with minimum Emax is

likely to have good prediction across the data points than

the one with higher value.

Comparison with the previous ML studies

for viscosity prediction

Commonly, an ML model for predicting oil viscosity

assumes a particular functional form based on some

empirical correlations. That is, the selected input variables

in the ML model are similar to some correlations (El-

sharkwy and Gharbi 2001; Omole et al. 2009). Contrary to

this, different functional forms are selected for dead oil,

saturated and undersaturated viscosities.

A novel approach was introduced in (Khoukhi et al.

2011) to predict the entire viscosity by training the

parameters of the curve and bubble-point viscosity. How-

ever, the caveat to this method is its dependent on oil

compositions which cannot be determined easily on the

field, limiting the potential adoption of such methods for

industrial application. Also, other works on viscosity pre-

diction a stand-alone ML technique or hybrid systems have

mainly adopted a single functional form (Elsharkwy and

Gharbi 2001; Ghorbani et al. 2016; Hemmati-Sarapardeh

et al. 2016). This paper aims to solve the problem of local

minima by using ensemble model rather than a stand-alone

SVM and the problem of preferential adoption of a single

functional form by using different functional forms found

in the literature for the prediction of oil viscosity.

Results and discussion

The simulation results for all the given functional forms for

each of the three investigated PVT properties are presented.

The developed ensemble SVR model clearly gives better

performances than the compared empirical correlations in

estimating the three viscosity variables.

Experimental results for lod

The results for the ensemble SVR in modelling lod using all
the four stated functional forms are shown in Table 5. It is

noticed that the functional form that gives the best result is

f(cAPI, T) with RMSE = 0.38784, Ea = 10.31983 and

Emax = 29.1723. This result is followed by the functional

form that incorporates Rsb as the additional correlating

variable. However, it is important to note that the additional

variable has not essentially improved the simulation results.

Table 6 shows the performance of some common

empirical correlations. Correlation of Naseri et al. (2005)

gives the best results among these lod correlations, fol-

lowed by the correlation of Beal (1946). The additional

correlating parameters in the correlation of Dindoruk and

Christman (2004) have not improved its results compared

to others.
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Comparing the ensemble SVR model with the listed

empirical correlations, the results of all the functional

forms simulated by the ensemble SVR model are better

than the results of all the empirical correlations in Table 6.

Meanwhile, the same functional form f(cAPI, T) gives the

best result for both the ensemble model and the empirical

correlation. It is noted that the correlation of Naseri et al.

(2005) has lower RMSE than the ensemble simulation for

f(cAPI, T, Rsb, Pb), but the latter has both lower Ea and Emax.

Hence, the ensemble SVR model with functional form

f(cAPI, T, Rsb, Pb) is better than the leading correlation

method of Naseri et al. (2005). The results in Table 5

compared to Table 6 show that the ensemble SVR has

better strength to model the uncertainties of lod with

overall best result from ensemble SVR with the functional

form f(cAPI, T). Figure 1 gives a graphical comparison of

the ensemble SVR results with different functional forms

for lod prediction.

Experimental results for lob

Results of the ensemble SVR model for predicting lob
based on the previously stated four functional forms are

given in Table 7. Among all the investigated functional

forms for lob, the best result is given by f(cAPI, lod, Pb)

with RMSE = 0.063275, Ea = 7.036263 and

Table 5 Performance of the ensemble SVR for the functional forms for lod

Inputs RMSE Ea Emin Emax SD

cAPI, T 0.387841 10.31983 0.693987 29.17233 0.070013

cAPI, T, Rsb 0.373729 13.46401 0.540048 42.76276 1.952884

cAPI, T, P 0.413581 11.47461 0.369173 44.49372 1.998002

cAPI, T, Rsb, P 0.448936 11.27015 0.515526 40.92204 1.612681

Statistical measures for the best functional form are shown in bold

Table 6 Performance of lod empirical correlations

Correlation method Inputs RMSE Ea Emin Emax SD

Beal (1946) cAPI, T 0.632632 69.64603 30.41812 87.02458 2.065349

Beggs and Robinson (1975) cAPI, T 1.441646 170.5397 43.91294 316.8668 16.30285

Glasø (1980) cAPI, T 0.988133 122.7806 21.80753 229.3247 18.38978

Dindoruk and Christman (2004) cAPI, T, Pb, Rsb 0.866464 111.7765 13.43371 213.3762 16.38136

Naseri et al. (2005) cAPI, T 0.438342 30.84382 0.192923 103.9341 11.82092

Kartoatmodjo and Schmidt (1991) cAPI, T 0.887462 101.5805 7.035991 213.2981 17.51733

Petrosky Jr and Farshad (1995) cAPI, T 1.113549 147.6598 39.49423 246.1332 19.75435

Labedi (1992) cAPI, T 2.211061 285.9099 57.93207 445.5494 43.08376

Elsharkawy and Alikhan (1999) cAPI, T 1.710592 225.0537 79.80017 351.5815 27.45034

Statistical measures for the best correlation are shown in bold

Fig. 1 Results of different functional forms for lod prediction with

ensemble SVR

Table 7 Performance of the ensemble SVR for the functional forms for lob

Inputs RMSE Ea Emin Emax SD

lod, Rs 0.089441 9.34957 0.250187 49.06225 0.098373

cg, Rs, T, cAPI 0.143147 11.53513 1.37779 33.28361 0.104083

cAPI, lod, Pb 0.063275 7.036263 0.268153 23.35724 1.446165

cg, Rs, T, co 0.105525 12.79756 0.030471 43.23039 2.174104

Statistical measures for the best functional form are shown in bold

540 J Petrol Explor Prod Technol (2018) 8:531–546

123



Emax = 23.35724. This is followed by the results of the

functional form f(lod, Rs). From Table 4, poorer perfor-

mances are displayed by the functional forms which

include T.

Results of some empirical correlations for lob using the

four functional forms are italicized in Table 8. The corre-

lation of Chew and Connally (1959) which uses the func-

tional form f(lod, Rs) gives the best performance among the

empirical correlations for lob with RMSE = 0.090067,

Ea = 9.278021 and Emax = 30.27401. The second best

result among the empirical correlations is given by the

correlation of Al-Khafaji et al. (1987) which also uses the

functional form of f(lod, Rs).

Clearly, the results show that the ensemble SVR with

the functional form f(cAPI, lod, Pb) is the best in modelling

the uncertainty in lob as it has given the lowest values of

RMSE, Ea and Emax. This outperforms all the empirical

correlations in Table 8. Figure 2 gives a graphical com-

parison of the ensemble SVR results with different func-

tional forms for lob prediction.

Experimental results for loa

Ensemble SVR experimental results for predicting loa
based on the considered three functional forms are shown

Table 8 Performance of lob empirical correlations

Correlation method Correlating variables RMSE Ea Emin Emax SD

Chew and Connally (1959) lod, Rs 0.090067 9.278021 0.034077 30.27401 2.241977

Al-Khafaji et al. (1987) lod, Rs 0.093328 9.813704 0.574959 32.96323 2.380144

Khan et al. (1987) cg, Rs, T, co 0.112715 10.95839 0.133493 39.01657 1.792076

Dindoruk and Christman (2004) lod, Rs 0.128336 14.44536 0.238722 41.73317 2.425695

Elsharkawy and Alikhan (1999) lod, Rs 0.146096 15.38488 0.649525 36.19894 2.01021

Beggs and Robinson (1975) lod, Rs 0.234077 23.9186 3.099475 42.13191 2.027648

Labedi (1992) lod, cAPI, Pb 0.245091 25.19667 2.490099 64.07069 1.844393

Almehaideb (1997) cg, Rs, T, cAPI 0.324045 34.14632 0.662503 51.31924 1.35145

Statistical measures for the best correlation are shown in bold

Fig. 2 Results of different functional forms for lob prediction with

ensemble SVR

Table 9 Performance of the ensemble SVR for the functional forms for loa

Inputs RMSE Ea Emin Emax SD

lob, Pb, P, lod, cAPI 0.016043 1.189452 0.003476 7.945602 0.267682

lob, Pb, P 0.017461 1.353631 0.011328 15.18432 0.410537

lob, Pb, P, lod 0.015435 1.211996 0.004035 15.42525 0.310108

Statistical measures for the best functional form are shown in bold

Table 10 Performance of loa empirical correlations

Correlation method Correlating variables RMSE Ea Emin Emax SD

Beal (1946) lob, Pb, P 0.026831 2.002863 0.015063 8.917567 0.311456

Vazquez and Beggs (1980) lob, Pb, P 0.076335 3.859566 0.005598 52.02459 0.639844

Labedi (1992) lob, Pb, P, lod, cAPI 0.022716 1.713268 0.001569 7.621104 0.064843

Elsharkawy and Alikhan (1999) lob, Pb, P, lod 0.030771 2.474925 0.001203 16.15609 0.228751

Statistical measures for the best correlation are shown in bold
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in Table 9. The functional form f(lob, lod, Pb, P, cAPI) has
the best result with RMSE = 0.016043, Ea = 1.189452

and Emax = 7.945602. The second best performance is

given by the functional form f(lob, lod, Pb, P).

Results of the investigated empirical correlations with

different functional forms for modelling loa are shown in

Table 10. The correlation of Labedi (1992) gives the best

performance among the empirical correlations with

RMSE = 0.022716, Ea = 1.713268 and Emax = 7.621104.

It is noted that additional correlating variables in the loa
modelling has improved the prediction results and the

functional form of the best ensemble SVR model is the

same as that of the best empirical correlation.

Similar to other two previous viscosity variables, lod
and lob, the ensemble SVR is again giving the best per-

formance for loa prediction. The overall best performance

is given by the ensemble SVR of functional form f(lob, lod,
Pb, P, cAPI) with lowest values of RMSE, Ea and Emax

among all the ensemble SVR models, and lowest RMSE

and Ea among all methods. In fact, the results of other

functional forms, f(lob, Pb, P) and f(lob, lod, Pb, P) in

modelling loa are also better than all the empirical corre-

lations since they have lower RMSE and Ea. This again

shows consistency, reliability and good performing capa-

bility of the developed ensemble SVR in modelling the

crude oil viscosity property. Figure 3 gives a graphical

comparison of the ensemble SVR results with different

functional forms for loa prediction.

Conclusion

The following conclusions can be drawn from this work.

(1) This paper has presented a novel ensemble SVR

model which uses Ea in ranking and building the final

ensemble model. It was observed during experimen-

tation that using RMSE for selecting the base models

for the ensemble system also gives similar and

consistent results.

(2) Different functional forms that are used for predicting

lod, lob and loa have been investigated.

(3) In all cases, the ensemble SVR model gives the best

results in predicting lod, lob and loa with the least

statistical error values.

(4) For lod modelling, the best result is given by

ensemble SVR with functional form f(cAPI, T). This
is an indication that additional correlating variable

may not necessarily improve the performance of a

model.

(5) For the lob prediction, the best functional form for the

ensemble SVR simulation is f(cAPI, lod, Pb). Among

the investigated lob correlations, Chew and Connally

(1959) give the best performance and it is based on

the functional form f(lod, Rs).

(6) For the loa modelling, ensemble SVR with respect to

all the three investigating functional forms, f(lob, lod,
Pb, P, cAPI), f(lob, Pb, P) and f(lob, lod, Pb, P), gives

better performance than all the compared empirical

correlations. The overall best performance for loa
modelling is given by the ensemble SVR with

functional form f(lob, lod, Pb, P, cAPI).
(7) It can be noted that the errors are very high for the lod

predictions from the empirical correlations. This has

been noted by the previous works (Bergman and

Sutton 2009). These are significantly reduced in the

ensemble SVR model.

(8) Finally, it can be satisfactorily concluded that the

ensemble SVR has better ability to model the

uncertainties in the prediction of dead, saturated and

undersaturated oil viscosity.
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Appendix 1

Statistical descriptions of the data sets used for this study

are presented in Table 11.

Fig. 3 Results of different functional forms for loa prediction with

ensemble SVR
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Appendix 2

The PVT correlations evaluated in this study are given

below.

Dead oil viscosity

Beal (1946)

lod ¼ z� 360= T þ 200ð Þ
� �X

ð4Þ

where

z ¼ 0:32þ 1:8� 107=c4:53API ;

X ¼ ey; and

y ¼ 2:302585 0:43þ 8:33

cAPI

� 	
:

Beggs and Robinson (1975)

ln ln lod þ 1ð Þð Þ ¼ a1 þ a2cAPI þ a3 ln T ð5Þ

where

a1 ¼ 7:816432; a2 ¼ �0:04658 and a3 ¼ �1:163

Glasø (1980)

ln lod ¼ a1 þ a2ln T þ a3lnðln cAPIð Þ þ a4 ln Tð Þ
� lnðln cAPIð Þ ð6Þ

where a1 ¼ 54:5680543, a2 ¼ �7:1795304, a3 ¼ �36:447

and a4 ¼ 4:478879

Kartoatmodjo and Schmidt (1991)

lod ¼
16� 108

T2:8177

� 	
logcAPIð ÞX ð7Þ

where

X ¼ 5:7536logT � 26:9718:

Labedi (1992)

ln lod ¼ a1 þ a2lncAPI þ a3 ln T ð8Þ

where

a1 ¼ 21:23904; a2 ¼ �4:7013; a2 ¼ �0:6739

Petrosky Jr and Farshad (1995)

lod ¼ 2:3511� 107T�2:10255 logcAPIð ÞX ð9Þ

where

X ¼ 4:59388logT � 22:82792:

Elsharkawy and Alikhan (1999)

lod ¼ 10X � 1 ð10Þ

where

X ¼ 10y; ðandÞ
y ¼ 2:16924� 0:02525cAPI � 0:68875logT

Dindoruk and Christman (2004)

lod ¼
a3T

a4 logcAPIð ÞA

a5P
a6
b þ a7R

a8
sb

ð11Þ

where

A ¼ a1logT þ a2:

Naseri et al. (2005)

lod ¼ 10X ð12Þ

where

X ¼ 11:2699� 4:2699logcAPI � 2:052logT:

Saturated viscosity

Chew and Connally (1959)

lob ¼ XlYod ð13Þ

Table 11 Data set for viscosity modelling

Variable Minimum value Maximum value

T 83 330

cAPI 15.5 49.5

Rs 25 2944

Pb 319 10,326

P[Pb 450 18,894.3

cg 0.85289 1.63131

lod 0.736 23.652

lob 0.08 10

lo[lob 0.09 11.5

Coefficient Value

a1 14.505357625

a2 -44.868655416

a3 9.36579e?09

a4 -4.194017808

a5 -3.1461171e-09

a6 1.517652716

a7 0.010433654

a8 -0.000776880
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where

X ¼ a1 þ a2e
a3Rs

Y ¼ a4 þ a5e
a6Rs

Beggs and Robinson (1975)

lob ¼ XlYod ð14Þ

where

X ¼ a1 Rs þ a2ð Þa3 ;

Y ¼ a4 Rs þ a5ð Þa6

a1 ¼ 10:715; a2 ¼ 100; a3 ¼ �0:515;

a4 ¼ 5:44; a5 ¼ 150; a6 ¼ �0:338:

Al-Khafaji et al. (1987)

lob ¼ AlBod ð15Þ

A ¼ 0:247þ 0:2824X þ 0:5657X2 � 0:4065X3

þ 0:0631X4;

B ¼ 0:894þ 0:0546X þ 0:07667X2 � 0:0736X3

þ 0:01008X4;

X ¼ logRs;

Khan et al. (1987)

lob ¼ 0:09c0:5g R
1
3
sh

�4:5
r 1� coð Þ�3 ð16Þ

where

hr ¼
T þ 459:67

459:67
:

Labedi (1992)

ln lob ¼ a1 þ a2cAPI þ a3ln lod þ a4lnPb ð17Þ

where

a1 ¼ 5:397259; a2 ¼ �0:081557; a3 ¼ 0:6447; a4
¼ �0:426

Almehaideb (1997)

ln lob ¼ 13:4� 0:597627lnRs � 0:941624ln T
� 0:555208ln cg � 1:487449ln cAPI ð18Þ

Elsharkawy and Alikhan (1999)

lob ¼ A lodð ÞB ð19Þ

where

A ¼ 1241:932 Rs þ 641:026ð Þ�1:12410;

B ¼ 1768:841 Rs þ 1180:335ð Þ�1:06622 ð:Þ

Dindoruk and Christman (2004)

lob ¼ AlBod ð20Þ

where

A ¼ a1

exp a1Rsð Þ þ
a3R

a4
s

exp a5Rsð Þ ;

B ¼ a6

exp a7Rsð Þ þ
a8R

a9
s

exp a10Rsð Þ :

Undersaturated viscosity

Beal (1946)

l
oa¼lobþ P�Pbð Þ a1l

a2
ob
þa3l

a4
obð Þ ð21Þ

a1 ¼ 24e� 06; a2 ¼ 1:6; a3 ¼ 38e� 6; a4 ¼ 0:56

Vazquez and Beggs (1980)

loa ¼ lob P=Pbð Þm ð22Þ

where

lnm ¼ a1 þ a2Pþ a3 lnP;

a1 ¼ �10:55749; a2 ¼ �89:8e� 06; a3 ¼ 1:187

Labedi (1992)

lo ¼ lob þ m P� Pbð Þ ð23Þ

where

lnm ¼ a1 þ a2cAPI þ a3ln lod þ a4 lnPb

a1 ¼ �5:728832; a2 ¼ �0:045361; a3 ¼ 0:9036; a4
¼ �0:3849

Elsharkawy and Alikhan (1999)

lo ¼ lob þ 10�2:0771 P� Pbð Þl1:19279od l�0:40712
ob P�0:7941

b

ð24Þ

Coefficient Value

a1 1

a2 4.740729e-04

a3 -1.023451e-02

a4 6.600358e-01

a5 1.075080e-03

a6 1

a7 -2.191172e-05

a8 -1.660981e-01

a9 4.233179e-01

a10 -2.273945e-04
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Appendix 3

Statistical measures for the performance analysis

Average per cent relative error

Er ¼
1

n

Xn

1

Ei ð25Þ

where

Ei ¼
Xexp � Xpred

Xexp

� 	

i

�100 ð26Þ

i ¼ 1; 2; . . .; n

Average absolute per cent relative error

Ea ¼
1

n

Xn

1

Eij j ð27Þ

Maximum absolute per cent relative error

Emax ¼ max
i

Eij j ð28Þ

Standard deviation

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1ð Þ
Xn

i¼1

Ei � Erð Þ2
s

ð29Þ

where

Er ¼
1

n

Xn

i¼1

Ei:

Root mean squared

RMSE ¼ 1

n

Xn

i¼1

Ei

" #0:5

ð30Þ
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