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Abstract This paper develops ensemble machine learning
model for the prediction of dead oil, saturated and undersat-
urated viscosities. Easily acquired field data have been used as
the input parameters for the machine learning process. Dif-
ferent functional forms for each property have been consid-
ered in the simulation. Prediction performance of the
ensemble model is better than the compared commonly used
correlations based on the error statistical analysis. This work
also gives insight into the reliability and performance of dif-
ferent functional forms that have been used in the literature to
formulate these viscosities. As the improved predictions of
viscosity are always craved for, the developed ensemble
support vector regression models could potentially replace the
empirical correlation for viscosity prediction.
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RMSE Root mean squared error

Erax Maximum absolute per cent error

E in Minimum absolute per cent error

SD Standard deviation of absolute per cent error

P Reservoir pressure, psia

T Reservoir temperature, Op

P, Bubble-point pressure, psia

Ve Dissolved gas relative density (air = 1)

Yo Oil gravity, stock tank oil relative density
(water = 1)

VAPL API gravity, API

R, Solution gas/oil ratio, scf/STB

Ry, Solution gas/oil ratio at bubble point,
scf/STB

Uo Oil viscosity, cp

Hod Dead oil viscosity, cp

Hob Saturated oil viscosity, cp

Hoa Undersaturated oil viscosity, cp

Introduction

Knowledge of oil pressure—volume—temperature (PVT)
properties is of great interest to petroleum engineers as they
are critical in performing most reservoir engineering
studies. Viscosity is one of these PVT properties and it
controls the fluid flow through the porous media. It is
therefore important to be able to estimate crude oil vis-
cosity at different stages of oil exploration. Empirical
correlations, based on easily acquired field data, are usually
employed to estimate dead oil, bubble-point and under-
saturated viscosities. However, performance of these
empirical correlations is not usually satisfactory and
improved predictions are always sought.
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In general, viscosity can be defined as the internal
resistance to the flow of fluid. Crude oil viscosity is an
important physical property that controls and influences the
flow of oil through porous media and pipes (Ahmed 2010).
It is also an important parameter when developing reservoir
models to predict ultimate recovery, in designing enhanced
oil recovery operations and when designing pipelines for
effective fluid flow.

The viscosity of a liquid is related directly to the type
and size of the molecules which make up the liquid
(McCain Jr 1991). Crude oil viscosity can be categorised
into three classes depending on the reservoir pressure,
namely dead oil viscosity, saturated oil viscosity and
undersaturated oil viscosity.

e Dead oil viscosity (1oq) is the viscosity of the crude oil
with no free gas at atmospheric pressure and
temperature.

e Saturated/bubble-point oil viscosity (i) is the viscos-
ity of the crude oil at the bubble-point pressure and the
reservoir temperature.

e Undersaturated oil viscosity (1,,) is the viscosity of the
crude oil at a pressure and temperature above the
bubble-point pressure and reservoir temperature.

Oil viscosity can ideally be determined by laboratory
experimentation. However, this is always costly and time
demanding and a high technical speciality is required. The
primary alternatives to this are the use of equations of
states (EOS) and empirical correlations. Unfortunately, the
EOS do require crude oil compositions which can only be
determined through laboratory analysis; thus, they do not
eliminate the requirement for laboratory analysis. This has
paved way for the adoption of empirical correlations over a
period of time. Likewise, some machine learning (ML)
techniques have been used to improve the prediction of oil
viscosity. However, stand-alone ML techniques or their
hybrid systems can become stuck in local minimal, hin-
dering the generalisation capability of such systems.
However, this local minima problem can be addressed by
ensemble systems (Dietterich 2000).

ML is the process of writing computer programs to
optimise a performance criterion using example data or
past experience (Alpaydin 2014). Learning involves cre-
ation of a system which applies past experience to analo-
gous new situations. Learning can be in or through many
forms; it can be through new knowledge acquisition, cog-
nitive skills acquisition, effective representation of new
knowledge or new fact discovery through observation and
experimentation (Carbonell et al. 1983). Hybrid ML sys-
tem involves fusion of two or more ML techniques with the
aim of strengthening one another. An example is the fusion
of genetic algorithm (GA) with support vector machines
(SVMs). The GA is used to optimise the learning
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parameters of SVM. However, such hybrid system might
have assumed a local minima since a given space of
hypotheses must have been searched for a given data set.
On the other hand, effectively constructed ensemble system
of SVM can overcome this problem since it involves fusion
of systems that should have been constructed on different
spaces of hypotheses searched by the learning algorithm on
the training data set (Dietterich 2000).

ML techniques usually utilise input variables similar
to the empirical correlations. Mostly, petroleum fluid
properties which are easily measured in the field and
which have direct physical relationship with the target
output are used as the correlating variables (Standing
1947; Chew and Connally 1959). Also, a trial and error
method can be used to eliminate any correlating variable
that does not improve the performance of the correlation
significantly (Chew and Connally 1959). Pruning of the
correlating variables, often referred to as feature selec-
tion, can be achieved by some statistical tools to select
input variables that are used in the regression analysis to
develop the empirical correlations or by common feature
selection techniques such as neighbourhood component
analysis (NCA), sequential feature selection and LASSO.
NCA is an embedded and nonparametric feature selec-
tion method. NCA mainly learns the feature weights
with the aim of minimising the objective function that
measures the mean leave-one-out regression or classifi-
cation loss over the given training data set (Goldberger
et al. 2005; Yang et al. 2012). LASSO minimises the
residual sum of squares subject to the sum of the
absolute value of the coefficients being less than a
constant. LASSO includes a penalty term that constrains
the size of the estimated coefficients to produce some
coefficients that are exactly zero in order to trim the
selected features for prediction (Tibshirani 1996, 2011).
Sequential feature selection in its basic form involves
minimisation of an objective function over all feasible
feature subsets by adding or removing features from a
candidate subset while evaluating the criteria (Liu and
Motoda 2007; Stanczyk and Jain 2015).

This paper develops ensemble ML model based on SVM
to predict dead oil, saturated and undersaturated viscosities.
For each property, different functional forms were explored
to determine its best correlating variables. The prediction
results of the ensemble models are compared with the most
commonly used correlations in the petroleum industry.

Literature review
A review of empirical correlations and ML techniques that

have been developed for viscosity predictions is explored
in this section.
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Viscosity correlations

A brief review of the available correlations in the literature
for the estimation of crude oil viscosities is presented in
tabular forms. The adopted functional form(s), API range,
origin of the data sets and reported statistical errors are
included in the review.

Dead oil viscosity correlation

Correlation for poq is usually developed with the API
gravity (yapy) and T as the independent variables.

toa =F(Vapr, T) (1)

yapr 1s calculated using the specific gravity of an oil (y,)
which is the ratio of oil density to that of water. Specific
gravity for API is normally determined at 60 degrees
Fahrenheit. It is thus given as:

141.5

A
[}

Yap1 = — 1315 (2)
Correlations for p,q usually introduce large errors when
applied to data sets which are different from the ones used
to develop the original correlations. The difference in the
results is related to the difference in the oil base (asphaltic,
paraffinic or mixed base) (Labedi 1992).

Some other correlations have included additional cor-
relating variables such as average temperature, critical
temperature, Watson characterisation factor (K,,), bubble-
point pressure (Pp) and bubble-point gas/oil ratio (Rg).
Bergman and Sutton (2009) indicated that most of the
correlations that use only yap; and 7 usually have large
errors and they are the least accurate compared to other
methods that have additional correlating property. Alter-
native methods that could possibly give improved accuracy
are the use of EOS or correlations that use crude oil
compositions, though these are not usually available.
Hence, the need to use simple methods that utilise easily
acquired properties (yapr and 7).

Table 1 presents a concise review of some common
correlations for piyg.

Gas-saturated viscosity correlations

Gas-saturated viscosity (1,,) can be defined as the viscosity
of the crude oil with dissolved gas, just above the 1,4, up to
the bubble-point pressure at the reservoir temperature. The
dissolved gas in crude oils reduces the observed value of
the po4. Correlations for p,, are usually developed as a
function of u.q and gas oil ratio (Ry) or P.

Hob :f(:uodaRS) (3)

Some other forms of correlations based on different input
variables have also evolved for pi,. Table 2 presents some
of these common correlations.

Undersaturated viscosity correlations

Beal (1946) was the first to develop a correlation for
undersaturated u, and noted that the crude oil viscosity in
this region increases proportionally with the increase in
pressure. He used 52 data points of crude oil from the USA
to develop the correlation and reported an E, of 2.7% on
the data set. Subsequently, different undersaturated vis-
cosities with different correlating variables have been
presented in the literature. Table 3 presents some of these
correlations.

Machine learning for viscosity predictions

Viscosity prediction has also benefitted from the machine
learning (ML) modelling capability. ML techniques that
have been used for viscosity modelling include radial basis
function neural network (RBFNN), artificial neural net-
work (ANN), fuzzy logic (FL), functional networks (FN),
genetic algorithm (GA), SVM and group method of data
handling (GMDH) (Table 4).

Overview of ensemble models

Ensemble ML is a combination of multiple base models of
classifiers or regressors for classification and regression
problems, respectively. Each base model covers a different
part of the input space or the complete input space.
Although there is no defined taxonomy for building the
ensemble models, some successful approaches and
methodologies have been widely adopted (Dietterich 2000;
Zhou 2012; Bader-El-Den and Gaber 2012; Perry et al.
2015; Bader-El-Den et al. 2016).

After generating a set of base learners, the ensemble
method will then be formed by combining the base models
or a subset of them based on defined criteria or algorithm to
form a generalised prediction model. Three main benefits
of the combination can be attributed to statistical, compu-
tational and representational issues (Dietterich 2000; Zhou
2012).

e Statistical Issue: there is always a large space of
hypotheses for the base model to choose from. There is
a chance that the base learning algorithm has not
chosen the most efficient of these possible hypotheses.
The combination approach tends to reduce the risk of
choosing the wrong hypotheses for formulating the
prediction models.
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Table 4 Machine learning techniques for viscosity prediction

Comment

References yapr range  Region of data Data
source points
Elsharkawy (1998) 20-45 - -
Elsharkwy and Gharbi 24.51-39.81 Kuwait 805
(2001)
Ayoub et al. (2007) 29-43.8 Pakistan 99
Hajizadeh (2007) - Iran 89
Omole et al.(2009) 19-45.4 Nigeria 32
Oloso et al. (2009) 24.2-48 Middle East 99
Al-Marhoun et al. (2012) - Canada 100
Ghorbani et al. (2014) 21.55-37.62 Iran 600+
Hemmati-Sarapardeh et al. 20-50 Worldwide 1497
(2016)
Ghorbani et al. (2016) 21.55-37.62 Iran 600+

RBFNN was used to predict viscosity across different ranges. Input
parameters to the model were reservoir P, 7, stock tank y,, and
separator y,. AAPRE = 8.72% in testing

Four different ANN models were developed to predict the oil viscosity
with AAPRE of 9.39, 12.17, 14 and 19.18% in testing. In total, 700
and 105 data points were used for training and testing the models,
respectively

ANN model was developed for viscosity below bubble point.
AAPRE = 3.4%

GA was used to model oil viscosity with correlation coefficient of
0.9974. The region of reservoir viscosity covered by the data was
not stated

ANN model was developed for p,, with AAPRE of 6.781%

SVM and FN models were developed to predict the entire viscosity
curve. The learning parameters are the variables of the fitted
viscosity curves. AAPRE of 8.5514% was reported for testing on 29
data points

Approach similar to (Khoukhi et al. 2011) was used in predicting the
entire crude oil viscosity. Eight different ML techniques were
explored in the work. A variant of FN gave the best performance

365, 287 and 57 data points were used for developing hybrid models
of GA and GMDH for viscosity below bubble point, y,, and g, with
AAPRE of 13.57, 10.95 and 12.48%, respectively

Hybrid model of GA and SVM was used to predict u,q. AAPRE of
17.17 was reported

365, 287 and 57 data points were used for developing new multi-
hybrid models with GA and GMDH for viscosity below bubble
point, f,, and 14, with AAPRE of 3.77, 0.268 and 0.01058%,
respectively

e Computational Issue: ML algorithms usually involve
searching for optimal parameters which may get stuck
in local optima. Combination of different models
reduces the risk of choosing a wrong local minimum.

e Representational Issue: In many ML problems, the true
unknown hypothesis cannot be truly modelled in the
hypothesis space. However, combination of different
hypotheses may be able to form a more accurate
representative function that learns the problem.

The most common ways of combining base models in
ensemble modelling are averaging and voting. Averaging is
the most fundamental and common combination method for
numeric output (i.e. regression problem), while voting is a
common combination method for nominal output (i.e. classi-
fication problem). Averaging can either be simple or weighted.

There are two main ensemble paradigms: sequential
ensemble methods and parallel ensemble methods (Zhou
2012). Sequential ensemble methods are where the base
learners are generated sequentially with boosting as a
representative, while parallel ensemble methods are where
the base learners are generated in parallel, with Bagging as
a representative.

Bagging (Breiman 1996) which is also known as boot-
strap aggregation involves training multiple models with
training sets of data randomly drawn with replacement
from the base training data sets. The training data sets for
the base models are called bootstraps. Hence, bagging
involves training different models with different samples
and usually predictions are obtained by averaging the
results of the different base models for a regression
problem.

Boosting involves training and improving a weak
learning algorithm into a strong one (Schapire 1990). In
boosting, the training data set for each subsequent model
increasingly focuses on instances wrongly predicted by the
previous weaker model. ADABOOST (adaptive boosting
algorithm) is one of the most used boosting algorithms
which automatically adapts to the data given to it.

Proposed ensemble model
An ensemble model based on SVM regression has been

developed. The steps for the algorithm will be given and
discussed.
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Ensemble support vector regression

The version of SVM that is used for regression problem is
known as support vector regression (SVR). SVM is a sta-
tistical machine learning method that generates input—
output mapping functions from a set of training data. It
uses the principle of structural risk minimisation, seeking
to minimise the upper bound of the generalisation error
rather than just minimising the training error. In a simple
pattern recognition problem, SVM uses a linear separating
hyperplane to create a classifier with a maximal margin.
When the input cannot be linearly transformed (e.g. com-
plex classification problem or regression problem), SVM
first nonlinearly transforms the input space into a higher-
dimensional feature space. The transformation is achieved
by using nonlinear mapping functions which are generally
referred to as kernel functions. Typical kernel functions
include RBF, Gaussian and polynomial functions. The
steps for creating the SVR ensemble model are highlighted
in Algorithm 1. Ensemble pruning has been performed
using E,. It is observed that similar performance is
achieved when root mean squared error (RMSE) is used for
the pruning. Ensemble pruning is basically the determina-
tion and selection of the final base models that will form
part of the ensemble model.

The stratification process of selecting the sample input
data ensures that random rows are selected. The four main
parameters that control each SVR model are C, k, / and .
“C”, the penalty factor, is the trade-off between achieving
minimal training error and the complexity of the model. If
it is too large, there is a high penalty for non-separable
points which may result in overfitting. If it is too small,
there may be underfitting (Alpaydin 2014). The options for
the kernel, k, have been limited based on a preliminary
experimentation on the data set. Based on preliminary
investigation, A assumes the value of ¢ in each iteration.

The developed ensemble SVR has n numbers of based
models which are selected from the simulated SVR
models based on E, ranking. The base SVR models are
ranked based on the values of E, to form an ensemble
SVR model which is henceforth referred to as Ensem-
ble_SVR_APRE. For analysis and error sensitivity test,
RMSE is also used for pruning based on the same
algorithm to generate another model which is called
Ensemble_SVR_RMSE.

This innovative way of creating ensemble models will
also give us the opportunity to compare the two error
evaluation criteria, £, and RMSE, as there is no consensus
on which of these two error evaluating criteria is the best
(Chai and Draxler 2014).

Algorithm 1: Ensemble
regression

support vector machine
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1. Select x data sets as 70% of the entire data sets (X) using
stratification and the corresponding y from the output ()

. Iterate for C=1to N

. Iterate for kernel, k — {RBF, Gaussian, polynomial}
. Iterate for ¢ € {10’3, 1074,107>,1079, 10’7}

. Compute each SVR model F(C, k, &)

. Evaluate each SVR model using E,

. Continue for the next ¢

. Continue for the next k

O 0 3 N L AW N

. Continue until C = N
10. Give ranks to the SVR model based on E,

11. Choose the best n models based on their ranks to form the
ensemble models based on E, ranking

12. Predict the testing target Y from the testing input X using the
n base SVM models

13. Compute each ensemble output 1 3~ | Y;, where Y; is the
predicted target by the ith SVR base model

Implementation

This section focuses on data acquisition, feature extrac-
tions, simulation of the ensemble algorithm and statistical
evaluation of the prediction results. To focus on the results
of different functional forms for predicting oil viscosity,
the ensemble SVR will only be compared with empirical
correlations. Recently, the advantages of ensemble SVM
compared to stand-alone SVM have been discussed (Oloso
et al. 2016).

Data sets and input features selection

A total of 286 data points were available for the poq and pop
simulations. Among these, only about 250 data points have
been used as other rows have missing values. For the u,
simulation, 910 data points were used. A statistical summary of
the data is presented in Appendix A. In each case, approxi-
mately 70% of the data has been used for training the models
and 30% for testing. A stratification process which involves
random selection of non-sequential rows is used to divide the
data into training and testing sets. Before the simulation
exercise, some common feature extraction techniques were
used to examine the inputs that are likely to be mostly corre-
lated and influential for each of the desired output. This would
have possibly reduced the dimension of the input matrix.
However, no consensus was reached among the methods.

Experimental work
For each of the PVT properties considered in this paper,

more than one functional form, that is, combination of
correlating variables has been used in the literature. Ini-
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tially, some feature selection methods (such as NCA,
LASSO and sequential feature selections) were investi-
gated. However, all the investigated functional forms have
been implemented for the ensemble SVM to allow fair
comparison with the empirical correlations. Also, the listed
feature selection techniques favoured different input
variables.

A. Investigated functional forms for pyq

Hoa :f(VAPh T)

Hoa = (/APIa TyRsb)
=f(ap> T+ Pp)
Hoa = (VAPla TvRsb; Pb)

B. Investigated functional forms for py
top =f (7 Ry, 70, T)

Hob :f(VgaRsa Yapr> T)

VYap1s oas Pb)

Hoa> Rs)

Hop = (
=f(

C. Investigated functional forms for p,

Hoa :f(:uoknpbap)
Hoa :f(:u’oba :uod’Pb7Pa VAPI)
Hoa :f(:uoba.uodapbvp)

The proposed ensemble SVM model is simulated for all
these functional forms and the results are compared with
the available empirical correlations in the literature that
utilise these functional forms.

During experimentation, it was noted that the results of the
two ensemble SVR models are essentially the same. The ranks
of the base models using RMSE and E, for ranking may not be
the same, but the ordering of the samples is almost always the
same. In other words, the results of both Ensem-
ble_SVR_APRE and Ensemble_SVR_RMSE are essentially
the same. Hence, results of only Ensemble_SVR_APRE
model are used and reported. Henceforth, the model will
simply also be referred to as ensemble SVR or ensemble SVM.

Three error statistical criteria are primarily used to
evaluate the performances of the simulated ensemble SVR
and the compared empirical correlations. These are RMSE,
E, and maximum absolute error (E,,,x). The best model is
expected to give the lowest values across these three
parameters or two. E ., has been chosen as the third cri-
terion to eliminate any tie between two models when both
RMSE and E, are not minimum for a particular model. It
should also be noted that a model with minimum E,,, is
likely to have good prediction across the data points than
the one with higher value.

Comparison with the previous ML studies
for viscosity prediction

Commonly, an ML model for predicting oil viscosity
assumes a particular functional form based on some
empirical correlations. That is, the selected input variables
in the ML model are similar to some correlations (El-
sharkwy and Gharbi 2001; Omole et al. 2009). Contrary to
this, different functional forms are selected for dead oil,
saturated and undersaturated viscosities.

A novel approach was introduced in (Khoukhi et al.
2011) to predict the entire viscosity by training the
parameters of the curve and bubble-point viscosity. How-
ever, the caveat to this method is its dependent on oil
compositions which cannot be determined easily on the
field, limiting the potential adoption of such methods for
industrial application. Also, other works on viscosity pre-
diction a stand-alone ML technique or hybrid systems have
mainly adopted a single functional form (Elsharkwy and
Gharbi 2001; Ghorbani et al. 2016; Hemmati-Sarapardeh
et al. 2016). This paper aims to solve the problem of local
minima by using ensemble model rather than a stand-alone
SVM and the problem of preferential adoption of a single
functional form by using different functional forms found
in the literature for the prediction of oil viscosity.

Results and discussion

The simulation results for all the given functional forms for
each of the three investigated PVT properties are presented.
The developed ensemble SVR model clearly gives better
performances than the compared empirical correlations in
estimating the three viscosity variables.

Experimental results for u,q

The results for the ensemble SVR in modelling y,4 using all
the four stated functional forms are shown in Table 5. It is
noticed that the functional form that gives the best result is
fap, T) with RMSE = 0.38784, E, = 10.31983 and
Eax = 29.1723. This result is followed by the functional
form that incorporates Ry, as the additional correlating
variable. However, it is important to note that the additional
variable has not essentially improved the simulation results.

Table 6 shows the performance of some common
empirical correlations. Correlation of Naseri et al. (2005)
gives the best results among these p.q correlations, fol-
lowed by the correlation of Beal (1946). The additional
correlating parameters in the correlation of Dindoruk and
Christman (2004) have not improved its results compared
to others.
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Table 5 Performance of the ensemble SVR for the functional forms for g

Inputs RMSE E, Erin Ernax SD

yapn T 0.387841 10.31983 0.693987 29.17233 0.070013
vapi Ts Ry 0.373729 13.46401 0.540048 42.76276 1.952884
yap, I, P 0.413581 11.47461 0.369173 44.49372 1.998002
vap T Ry, P 0.448936 11.27015 0.515526 40.92204 1.612681
Statistical measures for the best functional form are shown in bold

Table 6 Performance of fi,q empirical correlations

Correlation method Inputs RMSE E, Ein E nax SD

Beal (1946) yaps T 0.632632 69.64603 30.41812 87.02458 2.065349
Beggs and Robinson (1975) Yarn T 1.441646 170.5397 43.91294 316.8668 16.30285
Glasg (1980) yapn T 0.988133 122.7806 21.80753 229.3247 18.38978
Dindoruk and Christman (2004) yapt T Pp, Ry 0.866464 111.7765 13.43371 213.3762 16.38136
Naseri et al. (2005) yarn T 0.438342 30.84382 0.192923 103.9341 11.82092
Kartoatmodjo and Schmidt (1991) Yarn T 0.887462 101.5805 7.035991 213.2981 17.51733
Petrosky Jr and Farshad (1995) yapn T 1.113549 147.6598 39.49423 246.1332 19.75435
Labedi (1992) yapn T 2.211061 285.9099 57.93207 445.5494 43.08376
Elsharkawy and Alikhan (1999) yapn T 1.710592 225.0537 79.80017 351.5815 27.45034

Statistical measures for the best correlation are shown in bold

Ensemble SVR with Different Functional Forms
for Dead Qil Viscosity Prediction

RMSE(x0.1) Ea(x10) Emin Emax(x10) SD

f(YAPI,T) mf(YAPI,T,Rsb) mf(YAP,T,P) mf(YAPI,T,Rsb,P)

Fig. 1 Results of different functional forms for yu,q prediction with
ensemble SVR

Comparing the ensemble SVR model with the listed
empirical correlations, the results of all the functional
forms simulated by the ensemble SVR model are better
than the results of all the empirical correlations in Table 6.
Meanwhile, the same functional form fiyap;, T) gives the
best result for both the ensemble model and the empirical

correlation. It is noted that the correlation of Naseri et al.
(2005) has lower RMSE than the ensemble simulation for
fap, T, Ry, Pyp), but the latter has both lower E, and E ..
Hence, the ensemble SVR model with functional form
fOapr, T, Ry, Pp) is better than the leading correlation
method of Naseri et al. (2005). The results in Table 5
compared to Table 6 show that the ensemble SVR has
better strength to model the uncertainties of p,q with
overall best result from ensemble SVR with the functional
form f(yapr, 7). Figure 1 gives a graphical comparison of
the ensemble SVR results with different functional forms
for poq prediction.

Experimental results for u,,

Results of the ensemble SVR model for predicting py,
based on the previously stated four functional forms are
given in Table 7. Among all the investigated functional
forms for i, the best result is given by f(yapr, Mod> Po)
with RMSE = 0.063275, E, = 7.036263 and

Table 7 Performance of the ensemble SVR for the functional forms for yp

Inputs RMSE E, Ernin Emax SD

Hods Ry 0.089441 9.34957 0.250187 49.06225 0.098373
Yer Res T, Yapr 0.143147 11.53513 1.37779 33.28361 0.104083
APL Hoas Py 0.063275 7.036263 0.268153 23.35724 1.446165
Ve Ry T, 70 0.105525 12.79756 0.030471 43.23039 2.174104

Statistical measures for the best functional form are shown in bold
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Table 8 Performance of f, empirical correlations

Correlation method Correlating variables RMSE E, Erin E ax SD
Chew and Connally (1959) Hoas Ry 0.090067 9.278021 0.034077 30.27401 2.241977
Al-Khafaji et al. (1987) Lod> R 0.093328 9.813704 0.574959 32.96323 2.380144
Khan et al. (1987) Ver R T, 7o 0.112715 10.95839 0.133493 39.01657 1.792076
Dindoruk and Christman (2004) Lod> R 0.128336 14.44536 0.238722 41.73317 2.425695
Elsharkawy and Alikhan (1999) Lods Ry 0.146096 15.38488 0.649525 36.19894 2.01021
Beggs and Robinson (1975) Hod> Ry 0.234077 23.9186 3.099475 42.13191 2.027648
Labedi (1992) Lods VAPl Po 0.245091 25.19667 2.490099 64.07069 1.844393
Almehaideb (1997) Ve» Rs» T, yapr 0.324045 34.14632 0.662503 51.31924 1.35145

Statistical measures for the best correlation are shown in bold

Ensemble SVR with Different Functional Forms
for Saturated Viscosity Prediction

RMSE(x0.1) Ea(x10) Emin Emax(x10) SD

f(nod,Rs) f(Yg,Rs,T,YAPI) f(YAPI,uod,Pb) f(Yg,Rs,T,Yo)

Fig. 2 Results of different functional forms for p, prediction with
ensemble SVR

Eax = 23.35724. This is followed by the results of the
functional form f{u,q, R). From Table 4, poorer perfor-
mances are displayed by the functional forms which
include 7.

Results of some empirical correlations for p,y, using the
four functional forms are italicized in Table 8. The corre-
lation of Chew and Connally (1959) which uses the func-
tional form f{ 1,4, Rs) gives the best performance among the
empirical correlations for p,, with RMSE = 0.090067,
E, = 9.278021 and E,.x = 30.27401. The second best
result among the empirical correlations is given by the
correlation of Al-Khafaji et al. (1987) which also uses the
functional form of f{ityg, Rs).

Clearly, the results show that the ensemble SVR with
the functional form f(yapr, Logs Pp) 18 the best in modelling
the uncertainty in p,p, as it has given the lowest values of
RMSE, E, and E,.x. This outperforms all the empirical
correlations in Table 8. Figure 2 gives a graphical com-
parison of the ensemble SVR results with different func-
tional forms for u,, prediction.

Experimental results for u,.,

Ensemble SVR experimental results for predicting po,
based on the considered three functional forms are shown

Table 9 Performance of the ensemble SVR for the functional forms for p,,

Inputs RMSE E, Ein Eax SD

Hobs Py, P, Hoas Vapr 0.016043 1.189452 0.003476 7.945602 0.267682
Hob, Pp, P 0.017461 1.353631 0.011328 15.18432 0.410537
Hobs Pos P, Hoa 0.015435 1.211996 0.004035 15.42525 0.310108
Statistical measures for the best functional form are shown in bold

Table 10 Performance of p,, empirical correlations

Correlation method Correlating variables RMSE E, Epin Eax SD

Beal (1946) Lob, Py, P 0.026831 2.002863 0.015063 8.917567 0.311456
Vazquez and Beggs (1980) Uobs Po, P 0.076335 3.859566 0.005598 52.02459 0.639844
Labedi (1992) Hobs Pb, P, Hoa, YaPI 0.022716 1.713268 0.001569 7.621104 0.064843
Elsharkawy and Alikhan (1999) Lobs Pos P, [oa 0.030771 2.474925 0.001203 16.15609 0.228751

Statistical measures for the best correlation are shown in bold

Disase cllod dyao .
KACST a,51é1)lg roglel @ Springer



542

J Petrol Explor Prod Technol (2018) 8:531-546

Ensemble SVR with Different Functional Forms
for Unndersaturated Viscosity

1.8
16
1.4
1.2

0.8
0.6
0.4
0.2

RMSE(x0.01) Ea Emin(x0.01) Emax(x10) SD

f(nob,Pb,P,pod, YAPI) f(nob,Pb,P) f(nob,Pb,P,pod)

Fig. 3 Results of different functional forms for p,, prediction with
ensemble SVR

in Table 9. The functional form f(uoy, tod> P, P, Yapr) has
the best result with RMSE = 0.016043, E, = 1.189452
and E.x = 7.945602. The second best performance is
given by the functional form f{itop, tods Po, P)-

Results of the investigated empirical correlations with
different functional forms for modelling p,, are shown in
Table 10. The correlation of Labedi (1992) gives the best
performance among the empirical correlations with
RMSE = 0.022716, E, = 1.713268 and E,,,,x = 7.621104.
It is noted that additional correlating variables in the p,
modelling has improved the prediction results and the
functional form of the best ensemble SVR model is the
same as that of the best empirical correlation.

Similar to other two previous viscosity variables, g
and /i, the ensemble SVR is again giving the best per-
formance for p,, prediction. The overall best performance
is given by the ensemble SVR of functional form f(giop, Lods
Py, P, yapr) with lowest values of RMSE, E, and E,,.x
among all the ensemble SVR models, and lowest RMSE
and E, among all methods. In fact, the results of other
functional forms, fliton, Py, P) and fllop, tods P, P) In
modelling p,, are also better than all the empirical corre-
lations since they have lower RMSE and E,. This again
shows consistency, reliability and good performing capa-
bility of the developed ensemble SVR in modelling the
crude oil viscosity property. Figure 3 gives a graphical
comparison of the ensemble SVR results with different
functional forms for p,, prediction.

Conclusion

The following conclusions can be drawn from this work.

(1) This paper has presented a novel ensemble SVR
model which uses E, in ranking and building the final
ensemble model. It was observed during experimen-
tation that using RMSE for selecting the base models

igllase clloll dvao .
KACST 3.0:50lq rog sl @ Springer

for the ensemble system also gives similar and
consistent results.

(2) Different functional forms that are used for predicting
Uods Hob and [y, have been investigated.

(3) In all cases, the ensemble SVR model gives the best
results in predicting g, Mob and p,, with the least
statistical error values.

(4) For pu,q modelling, the best result is given by
ensemble SVR with functional form f(yapr, 7). This
is an indication that additional correlating variable
may not necessarily improve the performance of a
model.

(5) For the u,y, prediction, the best functional form for the
ensemble SVR simulation is f{yapr, Hods Pp). Among
the investigated p,y, correlations, Chew and Connally
(1959) give the best performance and it is based on
the functional form f{ueq, Rs).

(6) For the u,, modelling, ensemble SVR with respect to
all the three investigating functional forms, f{iton, HUods
Py, P, yapD), fllob, Po, P) and f(fiob, Hoas Po, P), gives
better performance than all the compared empirical
correlations. The overall best performance for p,,
modelling is given by the ensemble SVR with
functional form f{ttop, tods Pos Py YapD)-

(7) Tt can be noted that the errors are very high for the piyq
predictions from the empirical correlations. This has
been noted by the previous works (Bergman and
Sutton 2009). These are significantly reduced in the
ensemble SVR model.

(8) Finally, it can be satisfactorily concluded that the
ensemble SVR has better ability to model the
uncertainties in the prediction of dead, saturated and
undersaturated oil viscosity.
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Appendix 1

Statistical descriptions of the data sets used for this study
are presented in Table 11.
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Table 11 Data set for viscosity modelling Labedi (1992)
Variable Minimum value Maximum value Inp,y =a) +alnyap +a3InT (8)
T 83 330 where
VARt 155 49:5 ay = 21.23904; ay = —4.7013; ay = —0.6739
R, 25 2944
Py 319 10,326 Petrosky Jr and Farshad (1995)
P> P, 450 18,894.3 S 102ss X
Ve 0.85289 1.63131 Hoa = 23511 X 10°T (logyapr) ©)
Hod 0.736 23.652 Where
Hob 0.08 10 X = 4.59388logT — 22.82792.
Lo > [lop 0.09 115
Elsharkawy and Alikhan (1999)
Appendix 2 fog = 10¥ — 1 (10)
The PVT correlations evaluated in this study are given where
below. X =10, (and)
y = 2.16924 — 0.025257y ,p; — 0.68875l0ogT
Dead oil viscosity
Dindoruk and Christman (2004)
Beal (1946) .
= asT* (logyapr)” (11)
X od = pds |, pds
flog = 2 X (360/(T n 200)) (4) asPy’ + a7Rg
where
where
A = ajlogT + a;.
=032+ 1.8 x 10 /%1,
X—¢'. and Naseri et al. (2005)
8.33 .
y =2.302585(10.43 +—. Coefficient Value
YAPL
a 14.505357625
Beggs and Robinson (1975) @ _44.868655416
In(In(pyg + 1)) = a1 + axyapr +a3InT (5) 4@ 9.36579e+09
ay —4.194017808
where as ~3.1461171e—09
a; = 7.816432, a; = —0.04658 and a3 = —1.163 as 1.517652716
a; 0.010433654
Glasp (1980) a —0.000776880
Inp,y =ar +aInT + azln(In(ysp;) + a4(InT)
x In(In(ypr) (6)
10X
where a; = 54.5680543, ay = —7.1795304, a3 = —36.447  Hoa = 10 (12)
and a4 = 4.478879 where
Kartoatmodjo and Schmidt (1991) X = 11.2699 — 4.2699ogyapy — 2.052logT
16 x 108 R Saturated viscosity
Foa = \ —rzmmm (logyapr) (7)
Chew and Connally (1959)
where
Hop = Xtu(l)/d (13)

X = 5.7536logT — 26.9718.
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where

X = a; + ae®
Y = as + ase®

Beggs and Robinson (1975)

Hop = Xﬂgd

where

X = a;(R; + ar)™;

Y = a4(Ry + as)®

a; = 10.715; a, = 100; a3 = —0.515;
ay = 5.44; as = 150; ag = —0.338.
Al-Khafaji et al. (1987)

Hop = A#fd

A = 0.247 + 0.2824X + 0.5657X> — 0.4065X°
+0.0631X*,;

B = 0.894 + 0.0546X + 0.07667X> — 0.0736X°
+0.01008X*;

X = logRy;
Khan et al. (1987)
oo = 009505 RI43 (1 = 5,)

where

T +459.67
YT 459.67

Labedi (1992)
Inp, = a1 + azyap; + aszln pog + asln Py

where

ai = 5.397259; a» = —0.081557; a5 = 0.6447; a4
= 0426

Almehaideb (1997)

Inp,, = 13.4 — 0.597627In R — 0.941624In T
— 0.5552081n 7, — 1.4874491n 7, py

Elsharkawy and Alikhan (1999)

B
Hop = A (:uod)
where

A = 1241.932(R, + 641.026) 1210,
B = 1768.841(R, + 1180.335) %%

igllase clloll dvao .
KACST 3.0:50lq rog sl @ Springer

(14)

(15)

(16)

(17)

Dindoruk and Christman (2004)

B
Hob = Allog (20)
where
a; a3R{

A= ;

exp(aiRs)  exp(asRs)
B— ae agRgg

exp(a7Rs)  exp(ajoRs)
Coefficient Value
ag 1
a, 4.740729e—04
as —1.023451e—02
ay 6.600358e—01
as 1.075080e—03
dg 1
a —2.191172e—05
ag —1.660981e—01
ag 4.233179e—01
a —2.273945e—04
Undersaturated viscosity
Beal (1946)
Foa=pon +(P—py) (a3 +asi) @y

ay =24e — 06; a; = 1.6; az = 38e — 6; as = 0.56
Vazquez and Beggs (1980)

Hoa = Hob(P/Py)" (22)
where

Inm = a; + a;P 4 a3 In P;

a; = —10.55749; a, = —89.8e — 06; a3 = 1.187

Labedi (1992)

Ho = Hop + m(P — Py) (23)
where

Inm = a; + axypp; + azln piyg + asIn Py

ai = —5.728832; a, = —0.045361; a3 = 0.9036; as
— —0.3849

Elsharkawy and Alikhan (1999)

Lo = Hop 4 1072.0771 (P _ Pb)‘u(l)al'9279'u;b0.40712PE0.7941

(24)
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Appendix 3
Statistical measures for the performance analysis

Average per cent relative error

1 n

E, =— E; 25
> g
where
Xex _Xre
E = (Pipd) %100 (26)
XCXP i
i=12,...n

Average absolute per cent relative error
1 n
E, = ;Z|E1| (27)

Maximum absolute per cent relative error

Enax = max|Ej| (28)

Standard deviation

n

Z(Ei - Er)z (29)

SD=,/—
(n—1) —

Root mean squared

0.5
1 n
RMSE = |- > E; 30
"l (30)
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