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Abstract Steam Assisted Gravity Drainage (SAGD) and

Solvent Vapor Extraction (VAPEX), both of the techniques

have been proved to be successful for the exploitation of

heavy oil reservoirs. Field development of heavy oil

reservoirs requires careful determination of optimal

parameters, well locations and control setting of producers

and injectors. In recent years, field development decisions

based on sensitivity studies have been shifting toward

automated optimization. In this paper, we present the

optimal parameter selection for SAGD and VAPEX. We

performed the search of optimum parameters; the vertical

separation between injector and producer, well controls and

well locations. All these parameters have been simultane-

ously optimized to study and compare the performance of

both processes. Also, we present an efficient method to

constrain horizontal wells to preset minimum well spacing

constraints. This method was then applied to constrain the

well spacing between different peers of horizontal wells in

the SAGD and VAPEX processes. The particle swarm

optimization was used as an optimizer to determine the

optimum parameters. The results indicated that the method

could successfully determine the optimal parameters while

satisfying the spacing constraint imposed by the user. The

comparison of the results showed the better performance of

SAGD over VAPEX process.

Keywords Optimization � Well Placement � Well Controls

� Well Spacing � Steam assisted gravity drainage (SAGD) �
Vapor extraction (VAPEX)

Introduction

The global attention gained by unconventional resources is

due to its huge number of Original Oil in Place, (OOIP).

The heavy oil resources comprise of over six trillion bar-

rels, nearly three or four times of the conventional OOIP in

the world. However, high-viscosity and high-density fluid

poses numerous operational and economic challenges to

produce from the reservoir. Methods for heavy oil extrac-

tion include steam injection, cold heavy oil production with

sand, steam assisted gravity drainage, vapor extraction,

Toe-to-Heel Air Injection (THAI) and open-pit mining for

extremely sandy and oil-rich deposits. SAGD technique is

a technically effective process for extracting heavy oil from

the reservoirs. This process has been successfully executed

in different projects to recover heavy oil across the world

(Komery et al. 1999; Butler and Jiang 1997; AED 2004;

Yee and Stroich 2004; Scott 2002). The VAPEX technique

is emerging as an alternate method for heavy oil extraction;

however, it has not been tested at field scale (Butler and

Mokrys 1998). This process is the modified form of SAGD

in which the solvent is injected as an injection fluid instead

of steam. In both methods, a pair of horizontal wells

(producer/injector) are used to produce heavy oil. The

injection fluid is injected into the reservoir by an injector;

this fluid then dilutes the oil lowering its viscosity. Gravity-

assisted flow directs the oil toward the lower well, and the

displaced oil is then extracted from a producer positioned

underneath the injector; both wells are parallel to each

other typically having a well length of 500–1000 m and a
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vertical separation of 5–10 m (Singhal et al. 1998; Komery

et al. 1999) as shown in Fig. 1. In the process of SAGD, the

injection fluid (steam) transfers heat into the heavy oil to

dilute it, while in the VAPEX process, injected solvent

vapors dissolve in bitumen at the interface between the

solvent and heavy oil and diffuse into the bitumen, thus

diluting the oil as shown in schematic in Fig. 2. The key

parameters to optimize in both processes include the

location of the wells as well as the controls by which to

operate the wells. In this study, we considered SAGD and

VAPEX processes to determine optimal parameters

because both of these processes are similar in operation and

have been successfully proven.

Different authors have focused on the optimal parameter

selection for SAGD and VAPEX processes (Kisman and

Yeung 1995; Butler 1998; Ito and Suzuki 1999; Suggett et al.

2000; Egermann et al. 2001; Edmunds and Chhina 2001;

Queipo et al. 2002; Gates and Chakrabarty 2006; Card et al.

2006;Das andButler 1995;Butler and Jiang1997, 2000;Butler

and Mokrys 1998; Jin 1999; Jiang and Butler 1996; Oduntan

et al. 2001; Karmaker and Maini 2003; Yazdani and Maini

2004; Upreti et al. 2007). However, most of them considered

sensitivity analysis as a tool for the selection of parameters

while very few discussed the importance of automated opti-

mization. In both SAGD and VAPEX processes, researchers

have studied the different well configuration to observe the

effect on reservoir performance. (Edmunds 1994; Jiang and

Butler 1996; Birrell and Putnam 2000; Larter et al. 2008;

Parappilly and Zhao 2009; Stalder 2007; Mojarab et al. 2011;

Tamer and Gates 2012; Akhondzadeh and Fattahi 2015).

To the best of our knowledge, no work has been

reported regarding the optimization of the well locations in

SAGD or VAPEX processes. However, significant amount

of work has been done in the area of well placement/rate

optimization for different field development methods

which uses both gradient-based and gradient-free

(stochastic) optimization methods. Examples of works in

which gradient-based algorithms were used to optimize

well locations and/or well rates include Badru and Kabir

2003; Wang et al. 2007; Sarma and Chen 2008; Zandvliet

et al. 2008; Forouzanfar et al. 2010. Other works used

stochastic algorithms such as GA (Guyaguler et al. 2000;

Artus et al. 2006; Ozdogan and Horne 2006; Farshi 2008;

Bukhamsin et al. 2010), PSO (Onwunalu and Durlofsky

2010), CMAES (Bouzarkouna et al. 2012; Forouzanfar

et al. 2010, 2015; Awotunde and Sibaweihi 2014; DE

(Awotunde 2016; Awotunde and Sibaweihi 2014) to solve

the well management problem. Stochastic optimization

algorithms are considered more robust in solving multidi-

mensional, discontinuous and nonconvex optimization

problems. The optimization technique has aided in the

enhancement of decision-making process. However, the

optimization tools rarely enforce minimum well spacing

constraints during the optimization process. In some cases,

the optimized results show well locations having higher net

present value (NPV) but with the physical limitation of

well positioning. Few authors have discussed the impor-

tance of well spacing in well placement optimization

problem; however, they only focused their study on vertical

wells (Emerick et al. 2009; Li et al. 2013; Awotunde and

Naranjo 2014; Jesmani et al. 2015).

Fig. 1 Well configuration of SAGD and VAPEX (Jorshari and

O’Hara 2013)

Fig. 2 Sketch of SAGD and

VAPEX configuration (Butler

and Mokrys 1991)
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Theoretical background

Constrained optimization

A constrained optimization problem (COP) is the technique

in which an objective function is to be optimized with

respect to specific design variables subjected to some

constraints. Mathematically, a constrained optimization

problem (COP) can be stated as:

minUðj~Þ ð1Þ

subject to

f~ðj~Þ ¼ 0 ð2Þ
g~ðj~Þ� 0 ð3Þ

where j~ 2 RM is the vector of design variables and U j~ð Þ :
RX ! R is the objective function. The functions f~ j~ð Þ :
RX ! RY and g~ j~ð Þ : RX ! RZ define the equality and

inequality constraints, respectively. X, Y and Z are the

number of design variables, number of equality constraints

and number of inequality constraints, respectively.

Optimization algorithm: particle swarm

optimization (PSO)

Optimization is a process of finding and comparing feasible

solutions until no better solution can be found. Global

optimization algorithms are based on stochastic processes

and are considered to be more effective in finding optimal

solutions of nonsmooth, nonconvex or multimodal prob-

lems. These optimization algorithms have the ability to

move randomly from one region of the problem space to

another and hence tend to cover a broader space in their

search for optimal solutions. Such algorithms do not

require the computation of derivatives and have a higher

likelihood of finding the optimum solutions in complex

problems. Nevertheless, there is no guarantee that these

algorithms will find the overall optimum in a problem

space. Also, a major limitation of such algorithms is the

computational expense incurred in running them. Particle

swarm optimization (PSO) is one of the recently developed

optimization algorithm, and it has been used as the global

optimizer. In this study, we have only chosen PSO as an

optimizer and any other global optimization algorithm can

be used instead.

Particle swarm optimization (PSO) is a robust stochastic

optimization technique based on the movement of swarms

(Eberhart and Kennedy 1995). This technique was moti-

vated by the behavior of organisms as observed in fish

schooling and bird flocking in which the fish or birds learn

from the successes of one another as they move about in

search of food in their respective ecosystem. Thus, the PSO

technique searches for the optimum solution using a pop-

ulation of particles, each particle being a vector whose

coordinates are the unknown variables of the system. Each

particle is thus represented as j~j 2 RM , where j is the

particle’s index in the swarm and M is the dimension of the

problem. In a PSO system, particles in a swarm change

their positions by flying around in a multidimensional

search space until a relatively unchanging position is

encountered or until computational limitations are met. The

movements of the particles are both cognitive and social.

The cognitive aspects involve each particle learning from

its previous successes. On the other side, the social com-

ponent suggests that individuals ignore their own experi-

ence and adjust their behavior according to the successful

beliefs of individuals in the neighborhood. These two

aspects enable the algorithm to be flexible and well-bal-

anced between global exploration for optimum solutions

and local exploitation for desirable solutions. The position

attained by each particle is a possible solution to the

optimization problem.

In PSO algorithm, the population has Np particles that

represent candidate solutions’ particles are randomly gen-

erated within a predetermined lower and upper bounds and

subsequent particle positions are not allowed to all outside

these bounds. In the PSO algorithm, each particle, j~j, is a

M-dimensional real-valued vector and assigned a zero or

random velocity, v~j
j , initially. As the particles move around

in the problem space, each maintains a memory of its

previous best position j~p;j and the current overall best

position ever attained by the entire swarm, j~g. The velocity

of the jth particle is updated as

v~cþ1
j ¼ xv~c

j þ c1r1 j~c
p;j � j~c

j

� �
þ c2r2 j~g � j~c

j

� �
ð4Þ

where x is the inertial factor, c1 and c2 are the cognitive

and social parameters, and r1 and r2 are vectors of

uniformly generated random numbers between 0 and 1.

Each particle’s position is then updated by Eq. 5 as shown

in Fig. 3.

j~cþ1
j ¼ j~c

j þ v~cþ1
j : ð5Þ

An objective function by which particles’ fitness values

are ranked is set. Thus, j~g is the position with the best

objective function value ever visited by any particle in the

problem space and j~p;j is the position with the best

objective function value ever witnessed by the jth particle

during its movement in the problem space.

Like other algorithms, the PSO performance also depends

on the assigned values of the parameters in the algorithm. In

this work, the value of c1 and c2 was set to 1.494 and the

weight xð Þ parameter was chosen to be 0.729; these

parameter values were recommended by Clerc (1999) which
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were shown to perform well for these problems Fernandez

Martiınez andGarcıaGonzalo (2011) showed that the choice
of PSO parameters (x = 0.729, c1 = c2 = 1.494) lies in

the region of second-order stability in the PSO parameter

space. This implies that the PSO particles have stable tra-

jectories in the optimization space and that the swarm will

eventually collapse (Isebor et al. 2014).

Objective function

Objective functions (fitness, cost, error function) are perfor-

mance measures that indicate the quality of different alter-

natives, thereby guiding an optimization algorithm toward

finding the optimal solution(s) to a problem. To assess the

viability of the different EOR scenarios, NPV becomes a

critical yardstick and should be ranked up with the best

alternative. The thought supporting the use of NPV as

objective functions is to takes more consideration of the

economics of the project rather than representing a single

value if consider cumulative oil production or else. It recog-

nizes the time value ofmoney and applies the sameweighting

to all future income. In SAGD/VAPEX project, the capital

cost at the project’s beginning consists of the exploration cost,

the drilling andwell completion cost, steam generators capital

cost, water treatment capital cost and solvent injection capital

cost. The expenditure includes the cost of steam generation,

steam injection, produced water treatment, solvent handling

and recompression, solvent cost and operating costs including

well remediation and human resources.

In an EOR project, the net present value (NPV) is

assessed by relationship as

NPV ¼
XT
t¼1

CFt

1þ rð Þt
� Ccapex ð6Þ

where T represents total production time in years; r denotes

as annual discount rate; Ccapex is the capital expenditure,

which combines surface facility installation and the total

cost to drill and complete all of the wells; and CFt

represents the cash flow at time t. The capital expenditure

Ccapex

� �
is incurred at time t ¼ 0 and is calculated as:

Ccapex ¼
XNwell

m¼1

½Cver
m þ Lhorm Cdrill� þ Cfacility þ Cexp þ CSG=SO

ð7Þ

where Nwell is the number of wells, Cver
m is the price to drill

the vertical section (from surface to the top of the reservoir)

($), Cdrill represents the drilling cost per foot to drill hori-

zontal section of the reservoir ($/ft.), Lhorm is the length of

the horizontal section (ft.), whereas Cfacility represents the

cost of facility to process oil to the sales point. Cost of

exploration well is specified by Cexp, where CSG=SO repre-

sent cost of steam generation facility in SAGD while in

VAPEX it acts a cost of solvent processing facility.

At time tð Þ, the cash flow CFt is given by

CFt ¼ Rt � Et ð8Þ

where Et and Rt stand for operating expenses ($) and

revenue ($), respectively, which are functions of fluid

production volumes at time tð Þ:
Rt ¼ poQ

o
t þ pgQ

g
t : ð9Þ

In Eq. 9, po and pg denote the oil price ($/STB) and gas

price ($/SCF), Qo
t and Q

g
t symbolize for the total oil

volume (STB) and gas volume (SCF) produced at time tð Þ.
In all cases, there is no gas production, so Q

g
t ¼ 0. The total

operating expense at time tð Þ, Et is calculated for SAGD

and VAPEX processes by Eqs. 10 and 11, respectively.

Et;sagd ¼ pwpQ
w;p
t þ psteaminjQ

w;i
t þ popQ

o
t ð10Þ

Et;vapex ¼ pwpQ
w;p
t þ psolinjQ

sol;i
t þ popQ

o
t þ psolrecQ

sol
t

ð11Þ

where pop is the operating cost, pwp symbolizes for the costs

of water production ($/STB); psteaminj represents steam

injection costs ($/STB) whereas psolinj represents cost of

solvent injection ($/STB); Q
w;p
t ;Qw;i

t and Qsol
t signify the

total volumes of water produced (STB) and injected (STB)

and the amount of solvent produced, respectively, at time

tð Þ. The solvent injection cost and solvent recycling cost

are represented by psteaminj and psolrec, respectively. In all

cases, we assume po; pg; pwp; pwi to be constant with time.

The oil price and miscellaneous costs used in calculation of

NPV are presented in Table 1.

Fig. 3 Representation for PSO particle velocity and particle position

update for single particle xi (k) in a two-dimensional search space

(Onwunalu and Durlofsky 2010)
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Problem formulation

The decision variables in well placement and rate opti-

mization problem are locations, type, and injection and

production rates. In this study, horizontal wells are placed

in the x–y plane of the reservoir and the parameterization of

their placement in this work is done by using the formu-

lation defined by Farshi (2008). The trajectory of a hori-

zontal well in three-dimensional (3D) space can be mapped

as straight line connecting two points in 3D space as shown

in Fig. 4. Five design variables are used to define hori-

zontal well, i.e., the three coordinates of heel x1; y1; zð Þ,
total well length lhð Þ and the counterclockwise angle hð Þ
from the x-axis. Other dependent parameters that are nec-

essary to define horizontal well such as coordinates of toe

can be calculated during optimization, from the indepen-

dent variables stated above according to the following

equations:

x2 ¼ x1 þ lh cos hð Þ ð12Þ
y2 ¼ y1 þ lhsin hð Þ: ð13Þ

In both SAGD and VAPEX processes, injectors and

producers are parallel to each other. Thus, we only
optimize the location of horizontal injector and the

producer is placed at the same location (x and y) but in a

different layer. In this study, we only consider horizontal

well which represent SAGD and VAPEX processes.

However, inclined wells can be incorporated with an

additional variable in the optimization process.

Well spacing and reservoir boundary constraints

Intrinsically, global optimization algorithms, including

PSO, perform the search for optimum design variables

within preset upper and lower bounds on each variable. In

addition to this, the optimization routine should be able to

Table 1 Cost parameters

Parameters Value Unit

Parameters Value Unit

Cfacility 1.00E ? 06 USD

CSG 2.26E ? 06 USD

CSO 100000 USD

Cm
ver 6.00E ? 05 USD

Cdrill 600 USD/ft.

po 65 USD/bbl.

pg 3 USD/MScf

pop 3 USD/bbl.

pwp 5 USD/bbl.

psteaminj 8 USD/bbl.

psolinj 2 USD/bbl.

psolrec 0.17 USD/bbl.

r 10 %

Fig. 4 Representation of horizontal well

Fig. 5 Repair method illustration for boundary constraint

Fig. 6 Horizontal well spacing constraint

Fig. 7 Vertical well spacing constraint
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handle all structural constraints specified for the horizontal

and vertical wells. First, the wells must be placed within

the reservoir. In particular, no part of a horizontal well

must fall outside the reservoir or cross any external

reservoir boundary. This is important because the toe-end

of the well may still fall outside the reservoir even if the

lower and upper bounds imposed on the optimization

variables are met. Thus, there is a need to define additional
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constraints within which the optimization problem must be

solved. This, inevitably, leads to a constrained optimization

problem.

The optimization algorithm inherently ensures that a

vertical well stays within the reservoir. It also ensures that

the heel of the horizontal well falls in the reservoir.

However, to ensure that the toe of a horizontal well stays

within the reservoir is handled by the repair method (Or-

vosh and Davis 1993; Engelbrecht 2005) of constraint

optimization. In this case, if the toe of the horizontal well

falls outside the reservoir, then the angle is regenerated

randomly so that the well-toe is rotated into the reservoir

and the other well parameters are recomputed to check that

all parameters are within the preset bounds. This method is

illustrated with a diagram as shown in Fig. 5; the red line

shows the horizontal well obtained from the optimizer

which were repaired as green line.

In this study, we suggested a method based on penalty

approach (Coello and Carlos 1999; Byrne 2008) to apply

well spacing constraint in a horizontal well. To enforce

spacing constraint, an ellipse is defined around each hori-

zontal well i, estimated by the optimizer. Every point i,

representing a single vertical well or one of the points on

any other horizontal well, is checked against the horizontal

well j to ensure the point does not fall within the defined

ellipse. Thus, the constraint placed on every horizontal well

is

xi � xj
� �2

a2
þ

yi � yj
� �2

b2
� 1 ð14Þ

where xj; yj
� �

are the coordinates of the center of the

horizontal well j, xi; yið Þ are the coordinates of the point i

that is checked against well j, a and b are the major and

minor axes of the ellipse defined around horizontal well j.
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The half-length of major and minor axis of ellipse can be

calculated with equations as

a ¼ ðlj þ 2tÞ
2

ð15Þ

b ¼ 2t ð16Þ

where lj represents the length of well j and t is the tolerance

value. We note that the x-axis of the ellipse defined around

each horizontal well aligns with the well (regardless of the

orientation of the well) so that a is always the major axis

and b is always the minor axis. Also, there is no need to

consider rotated axes in defining the ellipse as what we

needed are simple distances of points from the center of the

horizontal well. We have considered a fixed number of

points on each horizontal well when checking for violation.

The reason for this is that it is possible that several points

on a horizontal well will violate the minimum spacing

constraint. In fact, it is possible that a horizontal well

crosses the minimum circle defined around a vertical well

(or the minimum ellipse defined around a horizontal well)

at two ends. In this case, we divide every horizontal well

into an equal number of points. The points on each hori-

zontal well are equally spaced, and the two ends of the

horizontal wells are also considered as two of such points.

However, the spacing between the points in one horizontal

well can be different from the spacing between the points

in another horizontal well as shown in Fig. 6. Also, Fig. 6

shows the intensity in the violation of well spacing con-

straints; it can be seen that well (W-1) satisfies the spacing

constraint, while other two well (W-2 and W-3) violate

Fig. 9 Porosity (fraction)

distribution in z-direction for

both models (SAGD and

VAPEX)
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spacing constraint with W-3 having large number of

violations.

In this problem, the vertical section (heel point) of

horizontal well is also tested for spacing constraint. First, a

minimum radius rmin is specified for vertical section (heel

point) that is estimated by the optimizer. Every point j,

representing one of the points on any of the estimated

horizontal wells is checked against the vertical section

(heel point) i to be placed in the reservoir. Any such point

that comes within the specified minimum radius is said to

violate the minimum spacing of vertical section (heel

point) i as represented in Fig. 7.

Thus, the imposed well constraint on any optimized

vertical section xi; yið Þ is

xi � xj
� �2þ yi � yj

� �2 � r2min ð17Þ

where xj; yj
� �

is the coordinate of the point j that is checked

against well i.

Each of these points is then checked against every other

well in the reservoir, and where a point violates the
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Fig. 12 Fluid properties of gas, oil and solvent used in VAPEX model
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minimum spacing constraint defined in Eq. 14 or 17, a

violation value (a small positive value preset by the user) is

assigned to the point. Every violation gets the same value.

The total sum of violation recorded by a candidate solution

is then applied as a penalty to the objective function

(-NPV). Thus, if a candidate solution incurs several

penalties, the overall objective function (-NPV ? penalty)

for that candidate may be poor even if its primary objective

function (-NPV) is very good. Thus, the search is gradu-

ally guided toward the acceptable region of search space.

Implementation

In this study, we tested the effectiveness of the solution

on a heterogeneous reservoir. The algorithm was run

over 2000 function evaluations. Each particle in the

population has one NPV value and corresponding pen-

alty values. In all cases, objective function is composed

of the sum of NPV and the penalty values (after both

have been properly scaled) are used. At the first itera-

tion, the median and mean value is selected as the

scaling factor for NPV and violations, respectively. The

Table 2 Properties used in SAGD and VAPEX models

Reservoir properties

Reservoir depth 396 m

Reservoir thickness 25 m

Average porosity 31.30%

Oil viscosity* (RC) 6000 cp

Oil saturation 0.80

Initial pressure 450 psi

Initial temperature 64.4 �F
Oil density* (RC) 20 API

Thermal conductivity 33 Btu/ft/day/�F
Rock heat capacity 41 Btu/ft3/�F
Overburden thermal conductivity 30 Btu/ft/day/�F
Overburden volumetric heat capacity 38 Btu/ft3/�F
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price and cost functions were assumed to be constant

throughout the operating duration.

In this work, the maximum possible length of any well is

specified as 2500 ft. A minimum well spacing of 10 acres

was enforced around each vertical well. In enforcing a

minimum well spacing around any well that is estimated by

the optimizer to be a horizontal well, an ellipse surrounding

the well is formed. The area corresponding to this ellipse is

dependent on the estimated length of the horizontal well.

Because the horizontal well length varies from one well to

the other, the areas of the ellipse for different wells also

vary. A tolerance of 200 ft. was added to the half-length of

each horizontal well to obtain the half-length of the major

axis of the ellipse that forms the constraining area around

the corresponding horizontal well. The half-length of the

minor axis of this ellipse was set as 400 ft.

Example 1: reservoir with distributed permeability

field

This example demonstrates the synthetic reservoir with a

randomly distributed permeability field used for
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numerical simulation of SAGD and VAPEX processes,

and its log permeability distribution is shown in Fig. 8.

The reservoir model is divided into 32 9 32 9 10 grid

cells. The dimension of each grid in x and y direction is

200 ft., while in z-direction it is 8.2 ft. (2.5 m). The

porosity of both models is different in different layers

but within the layer it remains constant; the porosity

distribution is shown in Fig. 9. The pertinent fluid and

fluid-rock properties are illustrated in Figs. 10, 11 and

12. The reservoir properties of both SAGD and VAPEX

models are shown in Table 2 (Awotunde et al. 2014).

The producing duration of both SAGD and VAPEX

processes was considered as 10 years in the optimization

problem. The steam quality of eighty-five percent (85%)

and injection temperature of four fifty degree Fahrenheit

(450 �F) was used. For the simulation of SAGD process

to commence effectively, it is necessary to preheat both

Fig. 20 Schematic for well spacing effect
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Fig. 21 Cumulative oil production, SAGD and VAPEX
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injector and producer with the help of either steam

injection or heater. The preheating of the grid blocks

connected to wells creates communication of fluids in

the vicinity of the wells and helps in the mobilization of

oil toward the producer. It was reported that the heating

period should be uniform otherwise it would cause

failure to the SAGD process (Akinboyewa et al. 2010).

To simulate the heating period, heaters were used in the

simulator (Eclipse 300, Thermal). The heating rate of

4E6 Btu/day and a preheating period of 60 days were

used in SAGD simulations.

Example 2: reservoir with distributed permeability

field

In this example, a synthetic channel reservoir is used for

numerical simulation of SAGD and VAPEX processes. The

reservoir is discretized into 40 9 40 9 8 grid blocks, each

block of size 160 ft 9 160 ft 9 10.25 ft. The permeability

distribution of layer 1–2, layer 3–4, layer 5–6 and layer 7–8

is same, and the different distribution between layers is

shown in Fig. 13. Other reservoir and fluid properties were

same as described in Example 1. The NPV was computed

Table 3 Optimized parameters of SAGD and VAPEX processes, Example 1

Well SAGD VAPEX

Rate (STB/D) Vertical separation (ft.) Well length (ft.) Rate (STB/D) Vertical separation (ft.) Well length (ft.)

P1 863 8.2 2000 431 41 2059

I1 0 835

P2 1000 8.2 2126 266 8.2 2040

I2 0 745

P3 1000 8.2 2059 915 41 2059

I3 117 1000

P4 807 8.2 2000 593 8.2 2088

I4 0 1000

P5 905 8.2 905 811 41 2000

I5 0 1000

Table 4 Optimized parameters of SAGD and VAPEX processes, Example 2

Well SAGD VAPEX

Rate (STB/D) Vertical separation (ft.) Well length (ft.) Rate (STB/D) Vertical separation (ft.) Well length (ft.)

P1 717 10.25 2080 234 30.75 2080

I1 957 990

P2 947 10.25 2080 304 20.5 1946

I2 740 1000

P3 969 10.25 2005 1000 10.25 2049

I3 168 1000

P4 39 41 2086 875 10.25 2080

I4 161 913

P5 208 10.25 1979 972 30.75 2086

I5 95 893
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for a 10-year operating period, and approximately 2000

function evaluations were used in the search for the highest

NPV. We estimate the well controls, well locations and the

vertical separation between injector and producer

simultaneously.

Sensitivity analysis

In this study, we conducted the sensitivity study of SAGD

and VAPEX processes for the parameters that are; well

length, vertical separation and well spacing on Example 2.

For well length and vertical separation, we used single well

to calculate the NPV. However, for the well spacing four

well are used to test the spacing effect as per the procedure

described in the well constraint section. The effect of

vertical separation on NPV was analyzed at different well

lengths as shown in Fig. 14 and Fig. 15 for SAGD and

VAPEX processes, respectively. At higher vertical sepa-

ration, NPV starts decreasing for each well length in SAGD

while the opposite is observed in VAPEX process.
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Therefore, vertical separation between injector and pro-

ducer was chosen as a vital parameter in the performance

of SAGD and VAPEX processes. The effect of well length

on NPV is shown in Fig. 16 and Fig. 17 for SAGD and

VAPEX processes, respectively. As expected, oil reservoirs

with larger well length yield higher NPV as compared to

lower well lengths. However, the probability of constraint

violation increases with the increase in well length. Due to

the limitation of reservoir area and the largest probability

of constraint violation, the maximum well length was

limited to 2500 ft. Fig. 18 and Fig. 19 presented the effect

of well spacing on NPV for SAGD and VAPEX processes,

respectively. The spacing schematic is presented in Fig. 20,

and the tolerance (t) between the two well is varied to

observe the change in well spacing. Lower well spacing

yields higher NPV in SAGD process, while the results

show negative effect on VAPEX process. As spacing

between the wells increases, increase in NPV becomes

negligible in SAGD. Conversely, the optimum value

should be obtained for the VAPEX process. The higher

NPV value in SAGD process at lower spacing could be due

to the higher temperature near the surrounding grids around

the well which can form large steam envelope; however,

there could be interference between the wells in VAPEX

process which results in the lower NPV. In this study, the

well spacing tolerance (t) was chosen to be 200 ft.

In this study, we also tested the performance of SAGD

and VAPEX by keeping all the parameters same such as

well placement, well control, well spacing and vertical

separation. The graph of total oil production between
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SAGD and VAPEX processes for 10 years is shown in

Fig. 21. Based on oil production, SAGD has higher

cumulative production than VAPEX but when we calcu-

lated the NPV of both processes we found that VAPEX

(-9.6 MM$) is cheap as compared to SAGD

(-26.5 MM$). High operating cost associated with SAGD

and amount of water production is the crucial factor. From

Fig. 22, it was observed that the SAGD process takes about

3.2 years to produce the same amount of oil the VAPEX

process does in 10 years. So it is more accurate to find the

NPV values at the same production. Thus, the NPV cal-

culated for the SAGD process is -7.7 MM$ which is

cheaper than VAPEX. Based on this, it is important to

optimize the critical parameters in both processes for better

performance.

Optimization of vertical separation, injection

and production rates with horizontal well pair

location

In both examples, a total of five well parameters were

simultaneously optimized; these parameters are the vertical

separation between an injector and producer, injection and

production rates, and well locations of the injector and

producer. Six variables were used for each well pair, i.e.,

two parameter for heel coordinates, one for the layer, and

one for well length, one for vertical separation, and two

parameters for injection and production rates of each well.

Since both the injector and producer are placed parallel to

each other, only the location of horizontal injector is

optimized and the vertical separation is added to the layer
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value of injector well to get the layer location of the pro-

ducer while the other parameters which are chosen by the

optimizer for the injector remain the same for the producer.

A total of six parameters for each well pairs and one rate

parameter of each well were optimized that were repre-

sented by forty design variables.

The production wells were controlled under a total liq-

uid rate constraint specified by the optimizer. However, a

secondary control of minimum bottomhole pressure (BHP

of 200 psi) was enforced to ensure the reservoir production

above bubble point pressure. In SAGD process, each

injection well was controlled by the water rate obtained

from the optimizer. This water is injected in the form of

steam while maintaining a maximum BHP limit of 1150

psi. In the VAPEX process, propane is injected as a solvent

instead of injecting steam at the same rate defined for the

SAGD process. In case, any well pressure goes above the

maximum BHP limit, the operating constraint switches

from fixed injection rate to fixed pressure constraint to

ensure that the injection pressure remains below the for-

mation fracture pressure limit.

Results and discussion

The yardstick of performances was chosen solely as the

NPV attained in the optimization scheme. Those runs were

arbitrated to perform better which have higher NPV than

that with a lower NPV if the constraints of well spacing

were satisfied. To account for statistical variations and non-

uniqueness of the process, both SAGD and VAPEX pro-

cesses were run five times using five different sets of

random numbers in the PSO algorithm. In the performance

analysis, only the best, median and worst realizations were

used for comparison. The comparison between SAGD and

VAPEX processes was based on the net present value
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obtained from the results of simulation performed during

the optimization process. The simulation model of both

models was identical, and the important fluid and rock

properties were kept same to make an unbiased

comparison.

The best, median and worst realizations of NPVs

obtained in both examples for SAGD and VAPEX are

shown in Fig. 23 and Fig. 24. In each solution, SAGD

showed better performance in terms of NPV over VAPEX

process. The results show better performance of SAGD

over the VAPEX process when the parameters were opti-

mized which further supports the claims that have already

been presented in the sensitivity analysis. The SAGD

process produces more oil, is cheaper and produces much

faster when compared to the VAPEX process. The

heterogeneity present in both models could be one of the

reasons for low VAPEX performance as it was discussed

by Jiang (1996). However, the performance of both oper-

ations is highly dependent on controls. The optimized

parameters of both processes are listed in Tables 3 and 4

for example 1 and 2, respectively.

For the SAGD process, optimized well locations

obtained from the best realization are presented in Fig. 25

and Fig. 26 for example 1 and 2, respectively. In both

examples of SAGD process, the optimizer placed the

injectors and producers very close to each other for most of

the well pairs having the vertical separation of 8.2 ft. that is

represented in Fig. 27a and Fig. 28a. However, in the

VAPEX process the optimizer placed the injector and

producer apart form each other as compared to SAGD for

most of the well pairs. In both examples of the VAPEX

process, we observed large vertical spacing between the

well pairs as shown in Fig. 27b and Fig. 28b. The opti-

mized well locations obtained in VAPEX process from the

best realization are presented in Fig. 29 and Fig. 30 for

example 1 and 2, respectively.

Conclusions

Based on the results, it is evident that the stochastic opti-

mization performed well in both SAGD and VAPEX

processes.

• In this study, we have presented a method to enforce

minimum well spacing constraint for horizontal well

placement optimization. A well spacing constraint

method based on the penalty approach was used to

constrain the wells in the reservoir. Constraining circles

and ellipses were placed around vertical section and

horizontal wells, respectively, to indicate the areas

within which no other wells should be placed. The

methodology proves to perform well for both processes.

• Particle swarm optimization (PSO) is successfully

implemented to optimize the parameters in Well

Placement Optimization (WPO) and Well Control

Optimization (WCO).

• The comparison of SAGD and VAPEX processes was

conducted based on two examples and sensitivity

analysis.

• The obtained NPV and the outcomes indicate better

performance of SAGD than the VAPEX process.

Acknowledgements The authors would like to acknowledge the

support provided by King Abdulaziz City for Science and Technology

(KACST) through the Science & Technology Unit at King Fahd

University of Petroleum and Minerals (KFUPM) for funding this

work through project No. 12-OIL2998-04 as part of the National

Science, Technology and Innovation Plan.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

AED (Alberta Economic Development). Oil Sands Industry Update.

Available at Alberta Dept. of Energy Website: http://www.

energy.gov.ab.ca/com/default.htm. March 2004

Akhondzadeh H, Fattahi A (2015) Impact of well configuration on

performance of steam-based gravity drainage processes in

naturally fractured reservoirs. J Petrol Explor Prod Technol

5(1):13–25

Akinboyewa J, Das SK, Wu YS, Kazemi H (2010) Simulation of

expanding solvent-steam assisted gravity drainage in a field case

study of a Bitumen oil reservoir. In: SPE Improved Oil Recovery

Symposium. Society of Petroleum Engineers

Artus V, Durlofsky LJ, Onwunalu J, Aziz K (2006) Optimization of

nonconventional wells under uncertainty using statistical prox-

ies. Comput Geosci 10(4):389–404. doi:10.1007/s10596-006-

9031-9

Awotunde AA (2016) Generalized field-development optimization

with well-control zonation. Comput Geosci 20(1):213–230

Awotunde AA, Naranjo C (2014) Well placement optimization

constrained to minimum well spacing. In: SPE Latin America

and Caribbean Petroleum Engineering Conference. Society of

Petroleum Engineers

Awotunde AA, Sibaweihi N (2014) Consideration of voidage-

replacement ratio in well-placement optimization. SPE Econ

Manag 6(01):40–54

Awotunde AA, Sahib Azad M, Naranjo Suarez C (2014) Improving

Steam Drive in Naturally Fractured Reservoirs: A Global

Optimization Strategy. In: SPE Latin America and Caribbean

Petroleum Engineering Conference. Society of Petroleum

Engineers

Badru O, Kabir CS (2003) Well placement optimization in field

development. In: SPE Annual Technical Conference and Exhi-

bition. Society of Petroleum Engineers

840 J Petrol Explor Prod Technol (2017) 7:821–842

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.energy.gov.ab.ca/com/default.htm
http://www.energy.gov.ab.ca/com/default.htm
http://dx.doi.org/10.1007/s10596-006-9031-9
http://dx.doi.org/10.1007/s10596-006-9031-9


Birrell GE, Putnam PE (2000) A Study of the influence of reservoir

architecture on SAGD steam chamber development at the

Underground Test Facility, Northeastern Alberta, Canada, using

a graphical analysis of temperature profiles. In: Canadian

International Petroleum Conference. Petroleum Society of

Canada

Bouzarkouna Z, Ding DY, Auger A (2012) Well placement

optimization with the covariance matrix adaptation evolution

strategy and meta-models. Comput Geosci 16(1):75–92

Bukhamsin AY, Farshi MM, Aziz K (2010) Optimization of

multilateral well design and location in a real field using a

continuous genetic algorithm. Soc Pet Eng. doi:10.2118/136944-

MS

Butler R (1998) SAGD comes of age! J Can Pet Technol 37(7):9–12

Butler AM, Jiang Q (1997) Improved VAPEX performance using

widely spaced horizontal injectors and producers. In: Technical

Meeting/Petroleum Conference Of The South Saskatchewan

Section. Petroleum Society of Canada

Butler RM, Jiang Q (2000) Improved recovery of heavy oil by

VAPEX with widely spaced horizontal injectors and producers.

J Can Pet Technol 39(1):48–56

Butler RM, Mokrys IJ (1991) A new process (VAPEX) for recovering

heavy oils using hot water and hydrocarbon vapour. J Can Pet

Technol 30(1):97–106

Butler RM, Mokrys IJ (1998) Closed-loop extraction method for the

recovery of heavy oils and bitumens underlain by aquifers: the

VAPEX process. J Can Pet Technol 37(04):41–50

Byrne C (2008) Sequential unconstrained minimization algorithms for

constrained optimization. Inverse Probl 24(1):015013

Card CC, Chakrabarty N, Gates ID (2006) Automated Global

Optimization of Commercial SAGD Operations. In: Canadian

International Petroleum Conference. Petroleum Society of

Canada

Clerc M (1999) The swarm and the queen: towards a deterministic

and adaptive particle swarm optimization. In Evolutionary

Computation, 1999. CEC 99. Proceedings of the 1999 Congress

on (Vol. 3). IEEE

Coello CAC, Carlos A (1999). A survey of constraint handling

techniques used with evolutionary algorithms. Lania-RI-99-04,

Laboratorio Nacional de Informática Avanzada
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