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Abstract This study introduces a general regression

neural network (GRNN) model consisting of a one-pass

learning algorithm with a parallel structure for estimating

the minimum miscibility pressure (MMP) of crude oil as a

function of crude oil composition and temperature. The

GRNN model was trained with 91 samples and was suc-

cessfully validated with a blind testing data set of 22

samples. The MMP for six of these data samples was

experimentally measured at the Petroleum Fluid Research

Centre at Kuwait University. The remaining data consisted

of experimental MMP data collected from the literature.

The GRNN model was used to estimate the MMP from the

training data set with an average absolute error of 0.2 %.

The GRNN model was used to predict the MMP for the

blind test data set with an average absolute error of 3.3 %.

The precision of the introduced model and models in the

literature was evaluated by comparing the predicted MMP

values with the measured MMP values and using training

and testing data sets. The GRNN model significantly out-

performed the prominent models that have been published

in the literature and commonly used for estimating MMP.

The use of the GRNN model was reliable over a large

range of crude oil compositions, impurities, and tempera-

ture conditions. The GRNN model provides a cost-effec-

tive alternative for estimating the MMP, which is

commonly, measured using experimental displacement

procedures that are costly and time consuming. The results

provided in this study support the use of artificial neural

networks for predicting the MMP of CO2.

Keywords General regression neural network � Enhanced
oil recovery � Minimum miscibility pressure � Carbon
dioxide � Gas injection

Introduction

Enhanced oil recovery (EOR) using carbon dioxide injec-

tion can increase the oil production of a reservoir to beyond

what it is typically achievable from primary recovery.

Compared to other enhanced oil recovery methods,

supercritical CO2 potentially enters zones that have not

been previously invaded by water and releases trapped oil.

However, a fraction of the injected CO2 remains stored

underground, which is beneficial for the environment. EOR

can be achieved using CO2 injection through two pro-

cesses, miscible and immiscible displacement, which

depend on the reservoir pressure, temperature, and crude

oil composition (Andrei et al. 2010). In the 1950s, when

CO2 injection began as an oil recovery method, the

immiscible process was emphasized as an alternative

recovery scheme for reservoirs where water-based recovery

techniques were inefficient (Jarrell et al. 2002). CO2

flooding is one of the most widely used methods for

medium and light oil recovery in sandstone and carbonate

reservoirs (Moritis 2006; Alvarado and Manrique 2010).

Throughout the last five decades, extensive laboratory

studies, numerical simulations and field applications of

CO2 flooding processes have been reported (Burke et al.

1990; Grigg and Schecter 1997; Idem and Ibrahim 2002;

Moritis 2006; Chukwudeme and Hamouda 2009; Alvarado

and Manrique 2010).

Interest in implementing CO2 injection as a miscible

enhanced oil recovery technique has increased since 1970s

(Mungan 1981). CO2 lowers the interfacial tension (IFT)
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and enhances mobility by reducing oil viscosity and

causing oil swelling (Simon et al. 1978; Green and Willhite

1998).

Previous research indicated that CO2 achieves misci-

bility through multiple contacts with the crude oil in a

reservoir (Jarrell et al. 2002). In multi-contact miscibility,

the composition of the displacing or displaced fluids is

continuously altered. In vaporizing drive by CO2, misci-

bility is obtained by vaporizing the light hydrocarbon

components into the driving gas. Relative to natural gas

and N2, CO2 miscibility occurs at a lower pressure.

Miscible displacement is characterized by the absence of

a phase boundary or interface between the displaced and

displacing fluids (Benham et al. 1960). Two fluids are

miscible when all mixtures of the two fluids remain in a

single phase without any interfaces. In this case, no

interfacial tension occurs between the fluids (Stalkup

1983).

Importance of MMP for CO2 injection

Miscible displacement is only achieved at pressures greater

than a certain minimum. The successful design and

implementation of a miscible gas injection project depend

on the accurate determination of the MMP, which is the

lowest possible operating pressure at which the gas can

miscibly displace oil.

MMP is also defined as the lowest pressure at which a

distinct point of maximum curvature exits in a plot of oil

recovery versus pressure. When the maximum curvature

point is not obvious, the 95 % oil recovery, which corre-

sponds to 1.2 PV of injected solvent, is used to define the

MMP (Lake 1989). A very good oil recovery is guaranteed

if the reservoir pressure is greater than the minimum mis-

cibility pressure. MMP is a function of temperature and

crude oil properties (Mungan 1981). MMP is an important

design factor in the selection of candidate reservoirs for gas

injection in which miscible recovery occurs.

MMP is often experimentally estimated using published

correlations or modeled using equations of state. Equation-

of-state (EOS) calculations are generally conducted by

simplifying multicomponent systems into a light compo-

nent (C1), intermediate pseudo-component (C2–C6), and

heavy pseudo-component (C7?). An EOS is used to gen-

erate the two-phase region (if it exists) for the resulting

ternary composition. The critical point and limiting tie line

of the mixture are estimated by extrapolating the near-

critical data or estimating directly using an EOS (Ahmed

1997). The MMP is generally estimated using this critical

region and the solvent/oil compositional data. The EOS

technique is plagued by the inaccuracy of gas and liquid

data near the plait-point region. These gas and liquid

equilibrium data are often experimental and are time con-

suming to determine.

Experimental techniques for measuring MMP

Experimental determination of the MMP can be performed

using the following typical methods.

• Slim-tube test (Yellig and Metcalfe 1980)

• Micro slim-tube test (Kechut et al. 1999)

• Rising bubble apparatus (Christiansen and Haines

1987)

• Single bubble injection technique (Srivastava and

Huang 1998)

• Vanishing interfacial tension methods (Rao 1997)

• Vapor liquid equilibrium-interfacial tension test

(Kechut et al. 1999)

• Vapor density of injected gas versus pressure (Harmon

and Grigg 1986)

• High-pressure visual sapphire cell (Hagen and Kossak

1986)

• ‘‘PVT multi-contact experiments (Thomas et al. 1994)’’

The slim-tube method is potentially the primary tech-

nique used to determine MMP under reservoir conditions.

Slim-tube experiments involve the displacement of live oil

from the slim tube by injecting gas at a constant temper-

ature (Thomas et al. 1994). A hybrid slim-tube experi-

mental approach was developed to determine the MMP

using a displacement test and the analysis time of the

hybrid slim tube was one-tenth shorter than the conven-

tional slim-tube (Kechut et al. 1999). The rising bubble

apparatus (RBA) involves injecting a small bubble of gas at

the base of a live oil column (Srivastava and Huang 1998).

The RBA for MMP was further extended to single bubble

injection techniques that estimate MMP by averaging the

pressures of bubble disappearance at the bottom and top of

the rising bubble column (Srivastava and Huang 1998). To

overcome most of the disadvantages in conventional

approaches (slim-tube and RBA), a relatively new method,

with an elaborative experimental set up but simple tech-

nique, was developed by Rao in 1997, called the vanishing

interfacial technique (VIT). A prototype of vapor–liquid

equilibrium-interfacial tension (VLE-IT) apparatus, pro-

posed by Kechut et al. (1999), is used to measure the

interfacial tension (IFT) between the injected gas and oil at

a definite temperature, and desired pressures. The plot of

IFT values versus pressure is extrapolated to zero IFT. The

miscibility of the injected gas and oil is evaluated

according to the vanishing IFT between the two phases.

The vapor density method is a dynamic test that directly

measures the ability of the injected gas to extract inter-

mediate components from the crude oil. The measurements
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are conducted in a constant-volume visual PVT cell. In

addition to measuring the upper-phase density, the volume

of the liquid (lower phase) is monitored to help determine

the MMP (Harmon and Grigg 1986). A high-pressure

visual cell composed of sapphire was developed to deter-

mine the minimum dynamic miscibility pressures (MDMP)

by visual observations of gas droplets that pass through the

reservoir fluid (Hagen and Kossak 1986). In the Multi-

Contact experimental method (Thomas et al. 1994), dis-

crete mixtures of displaced and displacing fluids are com-

bined to determine the MMP.

Correlations used for estimating MMP

Many correlations that relate the MMP to the physical

properties of the oil and the displacing gas have been

proposed to facilitate screening procedures and to under-

stand the miscible displacement process. The pure CO2

miscibility pressure was correlated with the temperature,

C5? molecular weight, volatile oil fraction, and interme-

diate oil fraction (Alston et al. 1985). These correlations

were also used for impure CO2 gas streams by including an

injection gas critical property function.

The original correlation of Alston et al. (1985) is given by

MMP ¼ 6:056� 10�6 � ð1:8TR þ 32Þ1:06 � ðMwC5þÞ
1:78

� ðXvol=XintÞ0:136 ð1Þ

In the above equation, MMP is in KPa and TR is in �C. To
complete all calculations and analyses in field units, Eq. (1)

has been re-arranged and is provided in the ‘‘Appendix’’.

A correlation (Cronquist 1978) was developed by

regression fitting 58 data points. The tested oil gravity

varied from 23.7� to 44� API. The reservoir temperature

varied from 71 to 248 �F, and the experimental MMP

varied from 1073 to 5000 psi. The original correlation

(Cronquist 1978) is provided below.

MMP ¼ 0:11027� 1:8 TR þ 32ð ÞY ð2Þ

In the above notation, MMP is in KPa and TR is in �C. In
Eq. (2), the exponent Y is given by

Y ¼ 0:744206 þ 0:0011038 � MwC5þ þ 0:0015279

� vol ð3Þ

To complete all calculations and analyses in field units,

Eq. (2) has been re-arranged and is provided in the

‘‘Appendix’’.

A correlation that used temperature as the independent

variable and included a bubble point pressure correction

was developed and presented in graphical form by Yellig

and Metcalfe (1980). If the oil bubble point pressure

exceeded the estimated MMP, the miscibility pressure was

set to the bubble point pressure of the oil. Later on, Yellig

and Metcalfe (1980) work was given in an equation form

by Tarek Ahmed (1997) and is given as follows:

MMP ¼ 12:6472 þ 0:015531 � 1:8 TR þ 32ð Þ
þ 1:24192 � 10�4

� 1:8 TR þ 32ð Þ2�716:9427= 1:8 TR þ 32ð Þ ð4Þ

In the above equation, MMP is in KPa and TR is in �C. To
complete all calculations and analyses in field units, Eq. (4)

has been re-arranged and is provided in the ‘‘Appendix’’.

Originally, Eq. (5) was used by Newitt et al. (1956) to

estimate CO2 vapor pressure. Later on, in 1984 it was

claimed that effects of oil composition on MMP are small

at low temperatures (Orr and Jensen 1984). Thus, the vapor

pressure at low temperatures may be a good estimate of

MMP. It was suggested that the vapor pressure curve of

CO2 can be extrapolated and compared with the minimum

miscibility pressure to estimate the MMP for low temper-

ature reservoirs (T\ 120 �F). This correlation, referred to

as Orr and Jensen (1984) correlation, is given as follows:

MMP¼0:10386

�exp 10:91� 2015

255:372þ0:5556� 1:8TRþ32ð Þ

� �
;

ð5Þ

where MMP is in KPa and TR is in �C. To complete all

calculations and analyses in field units, Eq. (5) has been re-

arranged and is provided in the ‘‘Appendix’’.

A generalized correlation (Glaso 1985) was presented

for predicting the MMP required for the multi-contact

miscible displacement of reservoir fluids by hydrocarbons,

CO2, or N2 gas. The original correlation (Glaso 1985) is

provided below.

When C2-6[ 18 – mole %

MMP ¼ 5:58657� 0:02347739�MwC7þ þ ð1:1725
� 10�11Mw3:73

C7þ
� e

786:8�Mw�1:058
C7þ Þ � ð1:8TR þ 32Þ

ð6Þ

where MMP is in KPa and TR is in �C.When

C2-6\ 18 – mole %

MMP ¼ 20:33� 0:02347739�MwC7þ

þ 1:1725� 10�11 �Mw3:73
C7þ � e786:8�MW�1:058

C7þ

� �

� 1:8 TR þ 32ð Þ � 0:836� C2�6 ð7Þ

where MMP is in KPa and TR is in �C. To complete all

calculations and analyses in field units, Eqs. (6) and (7)

have been re-arranged and are provided in the ‘‘Appendix’’.
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The above correlations are easy to implement and can be

accommodated by simple hand calculations. However,

none of these correlations is credible enough to use for the

final project design. For screening purposes, these corre-

lations provide a fair guess depending on the data used

(Yurkiw and Flock 1994). The success of these correlations

is usually limited by the composition and temperature

ranges for which they were developed. The objective of

this study is to develop a reliable empirical model for

predicting the CO2–oil minimum miscibility pressure using

GRNN.

Discussion

Data acquisition

Six fluid samples were collected from various reservoirs in

the Middle East. Prior to conducting miscibility studies to

determine the MMP of these six fluid samples, detailed and

extensive fluid characterization was performed at the

General Facility Laboratory in the College of Engineering

and Petroleum at Kuwait University. A mercury-free PVT

cell was used to determine the thermo-physical properties

of the reservoir fluids. Detailed fluid analysis, including the

measurement of critical properties, density, viscosity, and

molecular weight, was accomplished in our laboratory

utilizing a Crude Oil Analyzer that was equipped with a

liquid chromatograph for C36? measurements and a gas

chromatograph for C12? measurements.

To determine the MMP data, six multiple contact

experiments were performed at various reservoir tempera-

ture and pressure conditions. Pure CO2 was used as the

injecting gas. A series of single cell, multiple-contact

experiments were conducted. Here, a reservoir fluid sample

was loaded into a pressure–volume–temperature (PVT)

cell. Next, a sample of pure CO2 was introduced before

allowing the cell to equilibrate at the desired pressure. At

this stage, the phase volumes were measured and the

equilibrium gas phase was collected in a gas pycnometer

before analyzing with a gas chromatograph. Meanwhile, a

small liquid sample at equilibrium was collected in a liquid

pycnometer and was analyzed using the Liquid Chro-

matograph. This procedure was repeated again with a new

dose of CO2.

Typically, approximately seven stages or contacts were

performed during each experiment. At a certain point, it is

observed that both equilibrated phase (liquid and gas)

densities converged to the same values, which corre-

sponded to the K values as they approached unity. This

result implies that both phases become indistinguishable

and the boundary between them cannot be ascertained. At

this point, the pressure of the system is recorded and is

considered as the MMP.

In addition to the six MMP values measured in our

laboratory, MMP data for 107 case studies that were

measured using the slim tube, RBA and multi-contact

techniques were collected from the published literature

(Holm and Josendal 1974; Yellig and Metcalfe 1980;

Alston et al. 1985; Glaso 1985; Sebastian et al. 1985; Holm

1987; Zuo et al. 1993; Ahmed 1997; Alomair et al. 2012).

The entire data set consisted of 113 samples is given in

Table 1. The MMP values were tabulated from these data

as a function of crude oil composition, temperature,

molecular weights of Mw5? and Mw7?, and concentrations

of CO2, H2S, and N2.

Data description

This research was based on 113 crude samples for which

the MMP values were measured as a function of compo-

sition (C1, C2, C3, C4, C5, C6, C7?), molecular weight

(Mw5?, Mw7?), temperature, and concentrations of CO2,

H2S, and N2. Sample histograms for some of these

parameters are shown in Figs. 1, 2, 3, 4, 5, 6. Both MMP

and temperature appear to have bimodal distributions

(Figs. 1, 2). The molar composition data for C1, C2, C3, C4,

C5, C6, and C7? exhibited nearly normal distributions. An

example histogram for C4 is shown in Fig. 3. In addition,

the molecular weights for the C5? and C7? pseudo-com-

ponents appear to be nearly normally distributed (Figs. 4,

5). Generally, the molar concentrations of CO2, H2S, and

N2 were positively skewed. An example histogram for CO2

is shown in Fig. 6. As shown in Table 2, the data set tab-

ulated in Table 1 features few statistical variations in

magnitude between the variables. For example, the mea-

sured MMP values and the H2S concentrations vary by

three orders of magnitude. Consequently, all variables were

standardized to vary within the same order of magnitude

(from -1 to ?1). The dependent and independent variables

were transformed into standardized values using the fol-

lowing equation:

Z ¼ �1þ 2
Z � L

H � L

� �
ð8Þ

where Z is the standardized variable value, Z is the variable

value, L is the lowest value of a particular variable, and

H is the highest value of a particular variable

The standardized molar compositions of C1, C2, C3, C4,

C5, C6, and C7?, the molar concentrations of CO2, H2S, and

N2, the molecular weights (Mw5?, Mw7?), and the tem-

perature were used as input vectors in the GRNN model.

The standardized MMP values correspond with the values

of the GRNN model output as described below.
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Table 1 Data set used for GRNN model development

Reservoir oil composition Experimental

H2S CO2 N2 C1 C2 C3 C4 C5 C6 C7? Mw5? Mw7? TR (�F) MMP (psi)

1 0.001 0.180 0.050 39.58 2.37 1.30 1.30 1.20 1.20 52.80 218 224 170 3015

2 0.001 0.200 0.280 29.45 10.44 12.10 6.70 4.40 3.50 33.00 168 190 130 1723

3 0.001 0.245 0.338 4.07 3.11 4.90 5.70 5.50 5.50 70.70 208 228 160 2100

4 1.370 0.820 0.570 35.13 10.15 7.00 4.30 4.00 3.70 33.10 181 205 188 2147

5 0.001 0.550 0.540 15.94 7.48 5.80 3.20 1.20 6.00 59.40 223 240 106 1215

6 0.001 0.280 0.390 6.29 4.86 4.70 5.90 5.20 3.90 68.50 193 209 160 2300

7 0.001 0.001 0.100 24.15 11.46 8.62 3.77 3.05 3.81 45.04 202 221 104 1799

8 0.001 0.020 0.001 17.04 6.90 6.01 4.31 0.97 5.21 59.54 221 235 109 1300

9 5.730 0.910 1.120 33.34 9.85 6.66 5.20 3.45 3.42 30.32 171 192 245 3400

10 0.001 0.001 0.001 17.07 6.41 7.82 6.72 2.69 5.19 54.10 204 222 109 1500

11 0.001 0.320 0.830 28.65 11.29 12.39 7.82 4.49 4.06 30.15 171 197 130 1600

12 0.001 0.320 0.830 28.65 11.29 12.39 7.82 4.49 4.06 30.15 171 197 130 1800

13 0.001 0.600 3.340 74.16 7.90 4.15 2.15 1.19 0.81 5.70 132 151 155 2234

14 0.001 0.560 3.550 45.34 5.48 3.70 2.35 1.60 0.87 36.12 243 255 140 1978

15 0.001 1.000 0.400 45.40 4.20 0.89 1.08 0.94 1.01 45.08 243 250 196 2768

16 0.001 3.270 0.580 53.89 8.57 6.05 3.49 2.05 1.45 20.66 186 204 221 3629

17 0.001 2.490 0.120 76.43 7.46 3.12 1.80 1.09 0.79 6.70 153 174 265 3286

18 0.001 6.660 0.010 32.98 23.16 8.39 4.23 3.10 1.88 19.59 188 216 180 3190

19 0.001 6.660 0.010 32.98 23.16 8.39 4.23 3.10 1.88 19.59 188 216 240 3705

20 0.001 1.410 0.390 6.35 7.43 7.13 4.62 4.24 2.67 65.76 262 281 240 3675

21 0.300 0.580 0.960 4.49 2.99 4.75 2.73 3.46 14.50 65.24 205 239 138 1697

22 0.120 0.740 2.070 7.49 4.22 7.85 6.55 4.59 10.59 55.78 202 235 145 2060

23 0.160 0.320 0.820 18.59 8.97 8.20 7.13 5.65 7.47 42.69 202 240 153 2393

24 0.001 0.650 0.310 39.14 8.66 6.86 5.10 3.95 4.20 32.02 213 247 182 2842

25 0.001 0.530 1.600 13.22 6.77 6.98 3.91 2.15 5.44 59.40 220 238 89 1499

26 4.500 0.710 0.290 18.29 9.11 5.19 2.78 1.01 7.21 50.93 218 240 92 1512

27 17.560 0.550 0.540 10.78 5.45 7.67 4.56 2.39 3.20 47.35 222 239 88 1493

28 0.001 0.430 1.240 12.98 6.11 9.56 4.19 3.67 4.55 57.27 223 243 93 1509

29 0.001 0.510 0.770 14.73 6.23 7.82 4.49 2.91 1.89 60.77 223 234 77 1378

30 0.001 0.430 0.780 11.98 5.64 9.83 10.10 2.10 3.45 55.69 226 241 92 1515

31 0.230 0.160 0.820 14.22 5.23 8.21 4.39 4.32 4.50 57.90 234 257 77 1398

32 0.050 0.010 14.710 10.11 3.98 5.92 4.10 2.90 3.83 54.38 222 240 71 1198

33 0.001 0.550 0.340 17.11 19.76 7.54 3.76 0.96 6.50 43.48 230 255 91 1567

34 0.001 0.610 0.220 16.01 8.37 5.01 3.12 0.93 7.10 58.70 245 267 88 1642

35 0.010 0.090 0.400 21.00 12.30 4.71 2.90 0.91 4.30 53.40 200 211 96 1547

36 0.001 1.230 0.170 19.34 4.33 6.74 3.11 2.01 4.33 58.74 225 240 80 1420

37 0.001 3.780 0.030 17.13 8.23 3.67 2.81 0.45 7.45 56.45 220 239 112 1855

38 0.070 3.110 0.120 16.01 9.43 4.12 2.81 3.61 2.10 58.62 190 201 99 1399

39 0.090 1.340 0.050 17.39 8.11 4.32 3.10 0.41 7.31 57.88 196 211 83 1195

40 0.001 0.110 10.500 16.24 4.87 3.24 3.13 2.13 7.47 52.41 162 176 116 1598

41 1.040 12.300 2.300 13.89 6.55 4.69 5.69 3.45 8.11 41.98 187 216 103 1411

42 0.001 4.400 0.010 7.90 11.20 6.17 11.23 0.72 15.60 42.77 231 286 99 1649

43 0.090 3.120 2.770 7.55 5.13 3.98 2.76 5.45 6.19 62.96 197 219 176 2300

44 0.001 1.150 1.990 8.10 6.23 4.99 4.34 5.10 7.24 60.86 208 234 167 2298

45 12.300 4.500 0.980 16.44 7.55 3.91 1.70 3.45 2.11 47.06 156 165 169 2160

46 0.001 0.110 4.560 6.00 7.33 4.75 4.79 5.77 7.10 59.59 155 171 178 2205

47 3.310 2.700 4.200 6.98 7.81 4.14 4.10 4.39 8.10 54.27 203 231 183 2491
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Table 1 continued

Reservoir oil composition Experimental

H2S CO2 N2 C1 C2 C3 C4 C5 C6 C7? Mw5? Mw7? TR (�F) MMP (psi)

48 0.001 1.210 3.280 6.24 6.16 5.39 3.99 7.18 4.91 61.80 186 207 178 2256

49 0.001 0.910 3.610 12.03 9.92 7.23 4.50 5.81 4.77 51.22 168 186 175 2218

50 5.400 1.100 0.120 29.70 13.23 2.10 1.40 0.76 1.90 44.29 255 265 188 2855

51 0.001 24.000 5.460 4.68 3.78 6.13 7.10 8.22 1.90 38.73 218 256 201 3024

52 5.900 1.070 4.230 4.70 3.78 7.11 8.32 6.82 3.21 54.86 190 211 166 2099

53 0.001 2.360 2.780 8.89 7.07 5.11 4.99 5.78 6.10 56.92 193 217 169 2200

54 0.001 2.910 2.760 12.80 7.12 4.89 4.61 5.20 7.71 52.00 197 226 194 2500

55 0.010 0.070 0.320 16.77 4.40 6.56 6.12 8.13 3.14 54.48 190 213 157 1998

56 1.000 0.190 4.110 5.88 3.39 7.19 6.92 8.17 4.23 58.92 175 196 171 2100

57 9.100 6.670 3.450 2.56 4.11 5.67 6.22 7.10 3.20 51.92 186 208 178 2311

58 0.001 1.520 16.440 5.29 0.01 7.10 6.22 4.51 5.21 53.70 188 208 169 2099

59 0.001 3.310 0.610 11.07 3.23 3.94 0.28 4.11 7.30 66.15 209 231 200 2731

60 0.001 0.670 3.780 5.95 4.46 5.30 5.90 2.13 4.66 67.15 209 222 90 1215

61 0.001 0.910 12.670 5.90 3.71 15.50 6.99 2.18 4.11 48.03 189 203 93 1215

62 12.780 10.020 4.230 4.70 1.77 4.67 8.32 1.51 4.67 47.33 196 211 100 1297

63 0.010 0.070 0.320 9.23 8.12 4.29 4.89 3.67 3.89 65.51 223 240 81 1167

64 1.000 0.190 4.110 5.88 3.39 7.19 6.92 6.90 3.30 61.12 220 244 107 1470

65 0.001 1.190 3.780 6.04 4.46 5.30 5.90 1.16 5.45 66.79 207 219 178 2366

66 0.001 0.245 0.338 4.07 3.11 4.90 5.70 0.93 7.10 73.61 186 197 192 2401

67 0.001 6.000 0.920 31.00 8.68 7.30 4.90 2.01 4.33 34.86 188 207 97 1217

68 2.900 2.780 0.690 29.00 8.15 5.00 3.80 3.61 2.10 41.97 254 278 198 3196

69 1.370 0.820 0.570 25.13 10.15 7.00 4.30 2.90 3.70 44.06 183 199 165 2103

70 0.010 2.390 0.150 23.45 5.37 5.40 3.90 0.41 7.31 51.62 224 245 182 2534

71 0.010 0.550 0.540 15.94 7.48 5.80 3.20 1.16 6.00 59.35 196 209 81 1101

72 2.800 3.170 0.470 29.00 8.75 4.90 3.00 0.25 6.54 41.12 182 198 112 1477

73 0.010 0.310 0.310 16.23 5.95 3.50 7.90 2.13 7.47 56.20 212 234 172 2409

74 1.050 2.780 3.670 22.81 3.93 18.40 3.60 3.45 8.11 32.20 170 201 203 2527

75 0.010 7.230 0.250 32.87 9.38 9.00 5.10 0.72 15.60 19.85 184 265 90 1395

76 0.010 1.860 0.390 34.80 10.39 9.20 5.90 2.69 5.19 54.10 204 222 109 1500

77 0.001 0.060 0.001 0.37 0.37 0.86 2.20 3.42 5.46 87.26 260 278 250 3144

78 0.001 0.480 0.110 16.30 4.03 2.97 3.65 3.73 3.32 65.41 213 227 94 1450

79 0.001 0.840 0.340 49.23 6.32 4.46 7.33 21.47 2.06 31.45 163 230 147 2012

80 0.001 0.001 0.001 52.00 3.81 2.37 7.33 21.47 2.06 36.84 150 199 189 2656

81 0.001 2.440 0.080 82.10 5.78 2.87 1.79 1.12 0.72 4.28 120 138 162 2318

82 0.001 0.270 0.250 25.48 6.96 6.22 4.90 4.33 3.89 55.05 258 285 169 2900

83 0.001 0.001 0.540 0.30 33.66 8.14 4.11 5.08 4.41 37.91 224 260 195 2750

84 2.370 5.780 0.120 27.25 9.51 8.14 5.05 3.85 3.23 34.70 210 237 187 3315

85 0.001 1.460 0.510 17.10 8.01 3.97 2.90 0.93 7.20 57.93 221 240 88 1517

86 0.001 1.970 2.310 14.89 7.31 9.43 4.21 6.90 3.30 49.68 212 240 100 1599

87 0.001 1.310 0.490 21.76 9.13 5.01 1.30 0.25 6.54 54.21 175 186 105 1499

88 0.001 0.910 16.700 5.90 3.71 17.50 6.99 8.16 7.10 32.99 178 224 178 2331

89 0.001 1.010 9.090 4.77 5.61 4.31 6.20 3.10 2.24 63.67 275 291 169 2899

90 5.400 1.100 0.120 29.70 13.23 2.10 1.40 0.59 2.30 44.06 230 240 88 1215

91 0.001 3.100 0.530 27.67 8.16 8.10 5.90 3.60 4.62 42.13 200 223 103 1421

92 0.001 1.190 3.780 6.04 4.46 5.30 5.90 6.20 5.00 62.20 198 220 178 2330

93 0.001 0.690 0.150 45.06 5.37 5.40 3.90 3.00 9.10 27.30 192 241 205 3550

94 0.001 3.200 0.030 27.81 8.21 5.99 4.41 3.60 4.62 42.13 200 223 103 2000
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GRNN model algorithm

The general regression neural network (GRNN) performs

non-linear regressions when the target variables are

continuous. This regression analysis requires that the

functional form that mimics the data behavior be esti-

mated. In a multi-dimensional problem, it is difficult to

choose this function, which is the main shortcoming of

non-linear regression analysis. In contrast, the GRNN

algorithm (Specht 1991) successfully overcomes this

drawback because it does not require an assumed func-

tional form. The GRNN establishes a functional rela-

tionship between the dependent and target variables based

on the probability density function of the training data. X

in our analysis corresponds to the set of input parameters,

described earlier. The random variable Y assumes the

value of MMP. An estimate of the pdf (Dai et al. 2010) is

given by

f ðX; YÞ ¼ 1

2p
pþ1
2ð Þr pþ1ð Þ

� 1
n

Xn
i¼1

exp � D2
i

2r2

� �
� exp � Y � Yið Þ2

2r2

" #
ð9Þ

where,

r is the smoothing factor

n is the number of training vectors

p is the dimension of the vector X

Yi is the output target value for the ith training vector

D2
i is the distance between X and the ith training sample

Xi, and is given by

Table 1 continued

Reservoir oil composition Experimental

H2S CO2 N2 C1 C2 C3 C4 C5 C6 C7? Mw5? Mw7? TR (�F) MMP (psi)

95 0.001 1.410 0.390 6.35 7.43 7.13 4.62 4.24 2.67 65.76 262 281 180 3095

96 0.001 0.230 1.590 4.54 2.07 4.41 3.82 9.49 15.30 58.55 189 235 138 1697

97 0.500 0.060 1.560 27.01 11.40 8.96 6.91 4.70 2.77 36.13 206 232 135 2219

98 12.200 1.210 0.420 17.23 8.01 4.47 2.87 1.13 6.98 45.49 218 242 88 1523

99 1.200 13.310 0.010 10.34 6.79 4.57 2.99 1.16 5.45 54.17 223 240 101 1607

100 0.001 0.010 0.740 13.22 6.21 6.71 4.10 2.90 3.70 62.41 195 207 113 1605

101 0.001 0.550 0.540 15.94 7.48 5.78 3.20 1.16 6.00 59.35 223 240 88 1505

102 0.001 1.190 3.780 6.04 4.46 5.30 5.90 6.20 5.00 62.20 198 220 178 2330

103 1.200 3.400 2.000 8.78 9.34 5.11 5.72 5.92 7.40 51.13 211 245 196 2805

104 0.001 7.190 4.820 5.15 7.19 3.80 4.91 5.45 8.00 53.50 199 229 201 2667

105 0.001 1.890 3.230 7.56 6.19 4.50 5.00 5.80 5.33 60.50 170 187 180 2150

106 0.001 2.130 3.670 5.51 3.91 6.10 7.88 4.90 4.90 61.00 183 200 155 2001

107 0.001 24.000 4.360 3.22 3.78 6.13 7.10 4.23 16.00 31.18 181 244 83 1201

108 0.001 2.360 2.780 8.89 2.90 5.11 4.99 3.78 3.38 65.89 186 198 97 1215

109 1.600 2.910 3.560 4.99 6.18 4.89 4.61 2.01 5.27 64.00 222 238 102 1372

110 0.001 1.890 3.230 7.56 6.19 4.50 5.00 0.96 6.50 64.17 189 201 79 1123

111 0.001 0.370 0.980 41.79 8.87 7.10 5.30 0.45 7.45 27.69 207 242 201 2844

112 0.001 0.670 3.780 5.95 4.46 5.30 5.90 6.04 5.70 62.20 196 218 178 2266

113 22.000 0.245 0.338 4.07 3.11 4.90 5.70 0.91 4.30 54.47 159 166 103 1321

Fig. 1 Frequency histogramof theminimummiscibility pressure (in psi)
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D2
i ¼

Xp
i¼1

Xj � Xij

� 	2 ð10Þ

Using a nonparametric estimator of the joint probability

density function f(x, y), general regressions acquire an

estimate Ŷ for the conditional mean of a target random

variable Y, when given an input vector of a random

variable (X). The class of consistent estimators proposed by

Parzen (1962) was used for this purpose. For sample values

of Xi and Yi, the following function was used to estimate

the mean of the target random variable (Ŷ Xð Þ):

Fig. 5 Frequency histogram for the molecular weights of the C7?

pseudo-component

Fig. 2 Frequency histogram for temperature (�F) Fig. 4 Frequency histogram for the molecular weights of the C5?

pseudo-component

Fig. 3 Frequency histogram for the C4 molar composition
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Y
^
Xð Þ ¼

Pn
i¼1

Yi exp � D2
i

2r2

� �
Pn
i¼1

exp � D2
i

2r2

� � ð11Þ

Equation (11) shows that the general regression is a

weighted average of all observed values of Yi, which are

weighted exponentially according to their Euclidean

distance from X. For very large standard deviations or a

smoothing factor of r, Ŷ Xð Þ converges to the mean of the

observed value of Yi (Specht 1991). In general regression

networks, r is the only important computing parameter that

must be optimized (Huang and Williamson 1994). For very

large values of n, it is necessary to group observations into

a smaller number of clusters to obtain an efficient general

regression. The cluster version of a general regression is

given as follows:

Y
^
Xð Þ ¼

Pm
i¼1

Ai exp � D2
i

2r2

� �
Pm
i¼1

Bi exp � D2
i

2r2

� � ð12Þ

In the above equation, parameters Ai and Bi are given by

Ai kð Þ ¼ Ai k � 1ð Þ þ Yj ð13Þ

and

Bi kð Þ ¼ Bi k � 1ð Þ þ 1 ð14Þ

where

m is the number of clusters

k is the number of observations

Ai and Bi are the sum of the Y values and number of

observations grouped into cluster i.

The Ai and Bi coefficients are determined in one pass

using the observed samples. A commonly adapted clus-

tering technique consists of arbitrarily setting a single

radius, r. When scrolling through the data, the first data

point is taken as the first cluster center. If the successive

data point has a distance of less than r from this cluster

center, the cluster center is updated using Eqs. (13) and

(14). Otherwise, the successive data point becomes an

additional cluster center (Al-Dousari and Garrouch 2013).

The GRNN built based on Eq. (8) through Eq. (12) con-

sists of the following four layers (Fig. 7).

a. An input layer The number of neurons in the input

layer is equal to the number of independent variables.

Values for these neurons are standardized by subtracting

the lowest variable value and dividing by the variable

range, as shown in Eq. (8). The input neurons feed these

standardized values to each of the neurons in the hidden

layer (Fig. 7).

b. A hidden layer This layer associates one neuron for

each row in the training data set matrix. The neuron stores

the values of the independent variables for a particular row

with the corresponding dependent variable values. During

training, the GRNN calculates the Euclidean distances for

each input neuron of the input vector (X). The distances

Fig. 6 Frequency histogram for the molar composition of CO2

Table 2 Statistical summary of the data used to develop the GRNN model

Mw5? Mw7? TR MMP C1 C2 C3 C4 C5 C6 C7? H2S CO2 N2

Mean 201.96 224.67 143.50 2053.35 18.68 7.23 6.12 4.72 3.70 5.18 49.68 1.21 2.20 2.02

Median 199.69 226.00 147.00 2012.00 15.94 6.77 5.40 4.56 3.45 4.66 54.10 0.00 0.91 0.61

Mode 171.20 240.00 178.00 1215.00 4.07 4.46 5.30 5.90 1.16 7.10 62.20 0.00 0.55 0.12

SD 27.38 28.32 47.48 672.98 15.76 4.44 2.82 1.93 3.21 3.03 14.82 3.49 3.79 3.15

Skewness 0.01 -0.19 0.28 0.60 1.74 2.83 1.74 0.40 3.10 1.58 -0.84 3.91 4.00 2.99

Range 154.69 153.03 194.00 2604.00 81.80 33.65 17.54 10.95 21.22 15.28 82.98 22.00 24.00 16.70

Minimum 119.83 137.97 71.00 1101.00 0.30 0.01 0.86 0.28 0.25 0.72 4.28 0.00 0.00 0.00

Maximum 274.52 291.00 265.00 3705.00 82.10 33.66 18.40 11.23 21.47 16.00 87.26 22.00 24.00 16.70
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from each input neuron are fed with a smoothing factor into

a nonlinear exponential activation function, as specified by

equation Eq. (12). The resulting value is passed to the

neurons in the summation layer (Fig. 7).

c. A summation layer Next, neurons of the summation

layer execute the dot product between the weighted A and

B coefficients in Eq. (13) and Eq. (14) and the activation

results from the input neurons. The summation layer con-

sists of two neurons: a denominator summation unit neuron

and a numerator summation unit neuron. The denominator

summation unit neuron sums the weight values that arrive

from each of the hidden neurons. The numerator summa-

tion unit neuron sums the weight values that are multiplied

by the actual dependent value for each hidden neuron

(Huang and Williamson 1994).

d. An output layer This layer divides the values accu-

mulated in the numerator summation neuron unit by the

values accumulated in the denominator summation neuron

unit. The resulting values are presented as the predicted

output value. The weights of the hidden layer neurons

represent cluster centers of a multidimensional space.

A and B coefficients related with these clusters are taken as

the weights that connect the summation layer and the

hidden layer (Huang and Williamson 1994). The smooth-

ing factor is perhaps the most prominent computing

parameter for the GRNN’s paradigm (Huang and Wil-

liamson 1994).

The optimum r for a GRNN built from a training data

set is approximated using an initial guess. Next, the sum

squared error (SSE) is calculated for the training data set.

This process is repeated by varying r by a fixed increment.

After using a series of trials for r, the smoothing factor

associated with the smallest SSE is used to represent the

optimum r for the training data set. The process of opti-

mizing r is a default built-in process in NeuroShell toolbox

which was used in this study (Ward and Sherald 2006; Al-

Dousari and Garrouch 2013).

GRNN model training and validation

An input file, consisting of 113 vectors with 14 attributes,

has been downloaded into NeuroShell database (Ward and

Sherald 2006; Al-Dousari and Garrouch 2013). NeuroShell

randomly splits the data file into a training data set that

consists of 80 % of the data (91 vectors), and a blind test

data set consisting of the remaining 20 % of the data (22

vectors), used for validation purposes.

Figure 8 compares the estimated MMP using the GRNN

model and the MMP values measured experimentally for

the training data set. With an average absolute error of

approximately 0.2 %, the network appears to mimic the

physical relationships between the MMP and the remaining

variables. However, this statement is not confirmed unless

the model performs well for estimating MMP for the blind

test data set. Figure 9 compares the estimated MMP values

that resulted from the GRNN model and were measured

experimentally for the testing data set. The GRNN model

prediction of MMP appears to be very reasonable, yielding

an average absolute error of approximately 3.3 %. The

GRNN model performance was compared with the MMP

Fig. 7 General regression neural network architecture

Fig. 8 Comparing the MMP values using the GRNN to MMP data

values measured experimentally for the training data set

Fig. 9 Comparing the MMP values using the GRNN to MMP data

values measured experimentally for the testing data set
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correlations (Alston et al. 1985; Cronquist 1978; Orr and

Jensen 1984; Glaso 1985). Figures 10, 11, 12, 13, and 14

compare the MMP values predicted by the above models

against the experimentally measured MMP values that

were determined from the training data set. According to

these figures, the predicted MMP values from these cor-

relations are generally unreliable. Table 3 summarizes the

average absolute error for these correlations and the GRNN

model for the training and testing data sets. The GRNN

model prediction is more precise than the other previously

mentioned literature correlation methods. The maximum

average absolute error when using these correlations varies

from approximately 32 to 94 %, which indicates that these

predictions are often unreliable. The maximum absolute

average error when using the GRNN model on the same

data set was approximately 6 %. These results were con-

firmed by the blind test data set (Table 3). The maximum

average absolute error that was obtained using the GRNN

model for the testing data set was approximately 12 %.

The reliabilities of each of the literature correlations that

were discussed earlier were evaluated using the blind

testing and training data sets. The calculation results are

summarized in Table 3 with the minimum error, maximum

error, average absolute error, and standard deviation of the

error for each correlation. Among the literature correlations

that were used, Glaso (1985) correlation yielded the best

Fig. 10 Comparing the MMP values estimated when using the

Alston et al. (1985) model to the MMP data values measured

experimentally for the training data set

Fig. 11 Comparing the MMP values estimated using the Cronquist

(1978) model to the MMP data values measured experimentally for

the training data set

Fig. 12 Comparing the MMP values estimated using the Yellig and

Metcalfe (1980) model to the MMP data values measured experi-

mentally for the training data set

Fig. 13 Comparing the MMP values estimated using the Orr and

Jessen (1984) model to the MMP data values measured experimen-

tally for the training data set

Fig. 14 Comparing the MMP values estimated using the Glaso

(1985) model to the MMP data values measured experimentally for

the training data set
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results (Table 3). Figures 15 and 16 compare the average

absolute errors between the correlation (Glaso 1985) and

the GRNN model predictions for the training and testing

data sets, respectively. From these figures, the GRNN

model outperformed the model (Glaso 1985) by a reason-

able margin. However, the correlation (Glaso 1985) pre-

sented better prediction accuracy than the other

correlations because it accounted for additional effects on

the CO2 MMP that resulted from the presence of inter-

mediate components in the reservoir oil. In contrast, west

Texas oils-based correlations (Yellig and Metcalfe 1980)

that included the temperature effects showed the poor

performance and may be explained by the dependency of

the MMP values on variables that were not included in the

correlation. These variables consist of the molecular weight

of C5?, the oil intermediate fraction, and the paraffinicity.

The poor performance model (Orr and Jensen 1984) was

likely related to the temperature variations of the data,

which vastly exceeded the correlation range of 120 �F. The
model (Alston et al. 1985) provided the least adequate

predictions, potentially because the correlation was not

suitable for flue gas streams that contain N2.

Table 3 Average error between the measured data and the predicted data using the GRNN and other models. Results are compared for the

training and blind test data sets

GRNN Alston Cronqst Yell-Met Orr-Jen Glaso

[ d[ [ d[ d[ [ d[ [ d[ [ d[ [

Training set 0.2 1.0 16.6 17.3 14.4 16.1 15.6 12.2 15.3 10.5 8.1 8.0

Testing set 3.3 3.5 11.5 11.5 9.0 8.4 16.0 12.2 15.4 8.8 7.9 8.5

Max. training 6.2 – 94.2 – 75.3 – 48.2 – 55.0 – 31.9 –

Min. training 0.0 – 0.02 – 0.4 – 0.25 – 0.55 – 0.3 –

Max. testing 12.4 – 43.8 – 38.4 – 37.6 – 36.5 – 32 –

Min. testing 0.3 – 0.4 – 0.2 – 2.0 – 2.2 – 0.39 –

[ average error, d[ standard deviation of the average error

Fig. 15 Comparing the performance of the GRNN model to the Glaso (1985) model for estimating the MMP data using the training data set
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Conclusions

This manuscript introduces a general regression neural

network (GRNN) model for estimating the minimum

miscibility pressure (MMP) required for the multi-contact

miscible displacement of reservoir fluids by CO2 injection.

The model input consists of the reservoir temperature (�F),
molecular weight of pentane plus (Mw5?), molecular

weight of heptane plus (Mw7?), mole percent of methane

in the crude oil sample, molar percentage of the interme-

diates (C2 through C6) in the oil sample, and the molar

percentages of the non-hydrocarbons (CO2, N2 and H2S).

The MMP values that are predicted using the GRNN model

are compared to experimental data from laboratory tests

and MMP data collected from the literature. The GRNN

model was able to generalize the training data set results to

a new data set that was unseen by the network during

training. The GRNN has a parallel structure where the

learning is not iterative (i.e., onefold learning going from

the input slab to the output slab). This structure allows

these networks to learn fast. In addition to fast learning, the

GRNN is efficient for noisy data and performs accurately

with light data sets.

Five correlations for predicting MMP that were proposed

by a number of investigators were used to predict the MMP

for the same data sets that were used by the GRNN model.

The GRNN model significantly outperformed all these

correlations.
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Fig. 16 Comparing the performance of the GRNN model to the Glaso (1985) model for estimating the MMP data using the testing data set
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