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Abstract Lithology is one of the most important data in

evaluating reservoir, and is mainly carried out by cores

recovery in laboratory which is very expensive, and its

interpretation is time consuming. Accurate identification of

lithology is fundamentally crucial to evaluate reservoir

from geophysical log data. Pattern recognition and statis-

tical analysis have been proved to be the most powerful

methods for constructing optimal model in lithology

recognition. To address this issue, a fast and practical

K-means clustering algorithm is proposed in order to better

deal with lithology recognition from geophysical log data.

Based on the traditional K-means clustering algorithm,

Euclidean distance is replaced by Mahalanobis distance;

the initial cluster centers are acquired from the average of

characteristic values but not selected randomly, in addition,

adding weight value in each characteristic value of the

objective function, and thus a lithology recognition model

named modified K-means clustering is established. The

method is applied to identify the Chinese Continental

Scientific Drilling Main Hole (CCSD-MH) metamorphic

rocks. Compared with the traditional K-means clustering,

the accurate rate of the modified K-means clustering in

lithologic identification has improved for the same 45

samples, raised 11.11 %. According to the modified

K-means cluster algorithm, nine kinds of lithology cluster

centers are acquired from 45 samples. The classes of the

samples can be determined by analyzing the hamming

approach degree curves, which is calculated by the unde-

termined samples and 9 cluster centers. The predicted re-

sults and the core recovery are exactly the same by

comparison. The hamming approach degree can identify

the whole well of CCSD-MH lithology effectively and

accurately. This model may be made applications to other

areas.

Keywords Lithology recognition � CCSD-MH � K-means

clustering � Hamming approach degree � Cluster center �
Geophysical log data � Weight value

Introduction

Fuzzy theory was proposed by cybernetic professor L.

A. Zadeh in University of California in 1965 (Gao 2004)

and has been widely used in the natural sciences and social

sciences fields in the following 50 years. Fuzzy clustering

analysis is a branch of fuzzy mathematics, and its range of

applications involves time series prediction (Ryoke et al.

1995), neural networks training (Karayiannies and Mi

1997), nonlinear system identification (Runkler et al.

1996), parameter estimation (Gath and Geva 1989), med-

ical diagnosis (Bezdek and Fordon 1979), weather forecast

(Newton 1992), food classification (Windham 1985), and

water quality analysis (Mukherjee 1995).

The limitations of traditional fuzzy clustering analysis are

several controlling factors, such as the choice of initial cluster

centers, the correlation between samples, the trade-off be-

tween iteration times, and solutions accuracy. To solve these

problems, many researchers had proposed many modified al-

gorithms, such as K-means clustering, C-means clustering,

fuzzy clustering neural network, and fuzzy clustering genetic.

& Heping Pan

panpinge@163.com

Huaijie Yang

yhj870624@126.com

1 Institute of Geophysics and Geomatic, China University of

Geosciences, Wuhan 430074, Hubei Province, China

123

J Petrol Explor Prod Technol (2016) 6:1–11

DOI 10.1007/s13202-015-0171-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-015-0171-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-015-0171-0&amp;domain=pdf


Overview of worldwide, the workers had made many

researches about the lithology identification of CCSD-

MH; however, the database of CCSD-MH core data was

still incomplete and inaccurate. Xu et al. (2006) analyzed

magnetic susceptibility and density of different rocks

from CCSD-MH in the depth Section 0–2000 miles,

identified the lithology with SPSS statistical software.

Jing et al. (2007) summed up 11 kinds of eclogites into 6

kinds based on multivariate statistic methods. Gu et al.

(2009) constructed the lithology recognition model com-

bining the logging response and several well logs of

different rocks with the method of cluster analysis and

stepwise discriminant analysis. Luo and Pan (2010) used

core-log correlation and cross-plotting methods, and the

results allowed the authors to conclude that the lithology

is mainly comprised orthogneiss, paragneiss, eclogite,

amphibolite, and ultramafic rocks. Bosch et al. (2013)

used fuzzy logic for lithology prediction from well log

data of the German Continental Deep Drilling Program

(KTB). Results showed that this fuzzy logic-based method

was suited for rapidly and reasonably suggesting a

lithology column from KTB well log data. The above

authors heavily focused on approaches such as visual

inspection, cross-plotting technology, and discriminate

function analysis, and not formed a method that can

neatly identify the main units and refine the classification

of the CCSD-MH whole well.

Reservoir evaluation needs the data of many kinds of

rocks, which have a much more different porosity and

permeability. The well logs have varieties of responses

based on different kinds of rocks’ characteristic. And the

lithology data is mainly carried out by cores recovery in lab

which is very expensive and its interpretation is time

consuming, so accurate identification of lithology from

geophysical well log data plays a significant role in reser-

voir evaluation.

In this study, a fast and practical K-means clustering

algorithm was proposed in order to better deal with

lithology recognition of CCSD-MH from geophysical log

data. Based on the traditional K-means clustering algo-

rithm, Euclidean distance was replaced by Mahalanobis

distance, and the initial cluster centers were acquired from

the average of characteristic values, in addition, added

weight value in each characteristic value of the objective

function. The model was applied to classify CCSD-MH

metamorphic rocks and get the cluster centers of each

class. The cluster centers, as well as weight values, were

used to calculate the hamming approach degree, which can

neatly identify the main units and refine the classification

of the CCSD-MH whole well.

Modified K-means clustering

Cluster center

Let us choose m objects, and each object has n character-

istic values that may be classified into z classes. According

to the fuzzy theory, the fuzzy matrix involving the above

objects can be constructed as X ¼ ½xij�, (i ¼ 1; 2; . . .; m;

j ¼ 1; 2; . . .; n). The cluster center matrix is defined as

C ¼ ½ckj�, and k (k ¼ 1; 2; . . .; z), j (j ¼ 1; 2; . . .; n). And

m� z. The two matrixes and their compositions are as

follows:

X ¼ fX1;X2; . . .;Xng and Xi ¼ fxi1; xi2; . . .; xing ð1Þ
C ¼ fC1;C2; . . .;Czg and Ck ¼ fck1; ck2; . . .; ckng: ð2Þ

The traditional K-means algorithm will increase iteration

times if initial cluster centers selected inappropriately, and

may easily fall into local optimums. In order to alleviate

this problem, we acquired the initial cluster centers from

the average of characteristics values in matrix X based on

the theory of cluster center (Liao 2013).

Therefore, any elements Ck ¼ fck1; ck2; . . .; ckng of ma-

trix C can be defined as follows:

ck1 ¼
k

z

1

n

Xn

j¼1

xj1 ck2 ¼
k

z

1

n

Xn

j¼1

xj2; . . .; ckn ¼
k

z

1

n

Xn

j¼1

xjn:

ð3Þ

The weight value

Traditional K-clustering takes the same contribution for

cluster results by different characteristic values, which

will be susceptible to noise data resulting in the inaccu-

racy of cluster result. However, the contribution of each

characteristic value to the cluster result is different.

Therefore, a weighted value scheme is proposed to deal

with the relationship between various samples data and

cluster centers in the objective function. The weight value

of each characteristic in fuzzy matrix X can be obtained

as follows:

Firstly, we introduce a standard to evaluate the com-

parison of every two groups of characteristic values:

bij ¼
xij � xmin

xmax � xmin

; ð4Þ

where xmin and xmax refer to the maximum and minimum of

the given each group of characteristic values.

Secondly, the weight wj is defined as information en-

tropy for the jth group characteristic value, which can be

evaluated by (Feng et al. 2010; Zhang et al. 2010)
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Hj ¼ � 1

lnm

Xm

i¼1

fij ln fij

 !
; ð5Þ

where fij is the weight of the jth index for the ith sample in

all samples which can be estimated using normalized

judgment matrix elements bij, giving (Zhang et al. 2010)

fij ¼
1þ bij

Pm

i¼1

ð1þ bijÞ
: ð6Þ

Finally, the weight wj can evaluate the contribution of each

characteristic value to the lithology classification results,

which is given by (Feng et al. 2010; Zhang et al. 2010)

wj ¼
1� Hj

n�
Pn

j¼1

Hj

; and
Xn

j¼1

wj ¼ 1: ð7Þ

Objective function

Based on the traditional K-means clustering algorithm,

Euclidean distance is replaced by Mahalanobis distance, in

addition, added different weight values in each character-

istic value. The weight is given a higher value if the con-

tribution of its corresponding characteristic value has quite

a higher influence to the lithology recognition, while the

redundant characteristic values are given much smaller

values. Therefore, the objective function of modified K-

means cluster algorithm can be defined as

where
P

is the covariance matrix and wj is the weight of

each characteristic value.

If the
P

was a singular matrix,
P

can be written as the

product of three pieces,
P

¼ ATGA. The pseudo-inverse ofP
can be solved through the inverse of G (Wu et al. 2011).

Uniquely to Euclidean distance, Mahalanobis distance

takes the correlation of every two groups of characteristic

values into account and solves the repetitive information

reused that leads to the clustering results inaccuracy. The

weigh value of each characteristic value is taken as the

parameter for reflect the different contributions of every

group of characteristic value to the clustering results, and

thus the calculated clustering center can be much closer to

the actual results.

The modified K-means clustering follows

(1) Given the maximum iteration times T or threshold

value e, and the cluster center number z. The initial

iterative value t ¼ 1.

(2) Calculating the cluster centers and weight values with

Eqs. (3) and (7), respectively, and the covariancematrix.

(3) Calculating the distances between the undetermined

samples and every cluster centers with Eq. (8), and

assigning the sample to the class, whose cluster center

is the nearest to this sample.

(4) Calculating the new cluster centers of every new

class.

(5) According to Eq. (8), calculating the objective func-

tion JðX;CÞ. It will not stop operating until

JðX;CÞðtÞ � JðX;CÞðt�1Þ
���

���� e or T � t. If so, output

the cluster centers of each class; otherwise, make

t ¼ t þ 1, backward to step 3, and go on iterating.

Method application

The drill site of the CCSD is located near Maobei village

(N34�250, E118�400), about 17 km southwest of Donghai in

the southern segment of the Sulu UHP terrane (Wang et al.

2013), as shown in Fig. 1. Major goals of the CCSD, as

outlined by Xu et al. (1998), include (1) to reveal the

crustal structure of convergent plate boundaries, (2) to

provide constraints on crust-mantle interactions and mantle

behavior during deep subduction of continental crust, and

(3) to investigate fluid evolution during UHP metamor-

phism. The CCSD-MH was completed at its final depth of

5158 m in March 2005.

The lithology types have been confirmed by core re-

covery of 112 drill hole samples in laboratory from 220 to

4000 miles, are mainly eclogite, paragneiss, orthogneiss,

amphibolites, serpentinite, and granite (Zhang et al. 2000,

2003; Ya et al. 2000; Liu et al. 2004, 2005).

In this paper, we chose several well logs and core re-

covery materials of CCSD-MH from the depth Sec-

tion 100–2000 miles for method development, which will

identify the lithology of the whole well from the depth

FðX;CÞ ¼ min
Xz

k¼1

Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w1ðxi1 � ck1Þ
X�1

ðxi1 � ck1ÞT þ � � � þ wnðxin � cknÞ
X�1

ðxin � cknÞT
r0

@

1

A; ð8Þ
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100–5118.2 miles. In order to demonstrate the method

capacity in identifying lithology, we selected 9 kinds of

rocks that almost distribute in the whole well based on the

log representations and core recovery materials. There are

seven well logs that are selected by analyzing the corre-

sponding relationship between the logs and lithology; they

are deep induction resistivity (RILD), compensated neutron

(CNL), interval transit time (AC), compensated density

(DEN), natural gamma (GR), uranium (U), and thorium

(TH).

The fuzzy matrix mentioned above contains 45 samples,

9 kinds of lithology, and each lithology has five samples.We

identified the lithologies both using the traditional K-means

cluster and modified K-means algorithms, and output the

cluster centers of each lithology (Table 1 and Table 2).

The parameter setting of traditional K-means cluster

algorithm is as follows: input 45 samples, threshold

e = 0.001, and cluster numbers z = 9. The initial cluster

centers are selected randomly and were the former z sam-

ples. The classification accuracy of 45 samples was

77.78 %. Output the cluster centers of each lithology

(Table 1).

The parameter setting of modified K-means algorithm is

as follows: input 45 samples, threshold e = 0.001, and

cluster numbers z = 9. In order to make a comparison, the

modified K-means cluster algorithm tested the same sam-

ples with the traditional K-means cluster algorithm, and the

classification accuracy was 88.89 %. Compared with the

traditional K-means clustering, the accurate rate of the

modified K-means clustering in lithologic identification has

improved, raised 11.11 %. Output the cluster centers of

each lithology (Table 2).

Results and discussion

Verification of method prediction

According to the modified K-means cluster algorithm,

9 cluster centers were acquired from the 45 samples.

The information entropy used to evaluate the contri-

bution of each well logs on identifying the CCSD-MH

lithology was calculated with Eq. (7). After that, cal-

culating the hamming approach degree between the

undetermined samples and 9 cluster centers, which

is to determine the class of the samples. The compu-

tation of the hamming approach degree is as follows

(Zhang et al. 2010):

H ¼ 1�
Xn

j¼1

wj xj � ck
�� �� k ¼ 1; 2; . . .; z; ð9ÞFig. 1 Simplified geological location of CCSD-MH by a star symbol

(Ni et al. 2013; Zhang et al. 2006)

Table 1 Cluster centers of each lithology using traditional K- means cluster algorithm

No RILD (X m) CNL (%) AC (ls/ft) DEN (g/cm3) GR (API) U (10-6) TH (10-6)

1 1069.26 12.06 46.17 3.10 39.55 0.91 2.22

2 247.94 10.70 51.13 3.03 46.67 0.76 3.30

3 2754.18 1.00 54.79 2.75 150.22 2.94 18.92

4 1531.05 -0.61 52.54 2.59 123.99 0.90 7.92

5 5081.61 -0.61 52.46 2.59 216.95 5.91 27.25

6 360.71 9.74 47.95 2.98 47.70 1.26 3.55

7 765.36 42.62 56.47 2.66 12.35 0.52 1.90

8 3936.09 -0.71 52.91 2.61 215.64 7.68 20.64

9 437.71 11.16 53.00 2.92 50.67 0.73 4.27

1 Rutile eclogite, 2 phengite eclogite, 3 retrograded eclogite, 4 paragneiss, 5 orthogneiss, 6 amphibolites, 7 serpentinite, 8 chlorite amphibolites

and 9 moyite
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where H was the hamming approach degree of the unde-

termined samples and one cluster center. xj represents the

undetermined sample, and ck represents the cluster center

of one class. wj is the weight of jth well log.

Hamming approach degree is defined to the similar

degree between the undetermined samples and standard

samples, and the greater its value indicates that the unde-

termined samples are closer to the standard samples, that is

to say, the undetermined samples and the standard samples

are owned to the same class. In this paper, 27 undetermined

samples are selected in the depth Section 100.0–5118.2

miles (the whole well).

As shown in Fig. 2a, it is the hamming approach degree

curve of 27 undetermined samples and cluster center 4

(Table 2); the hamming approach degrees of number 10,

number 11, and number 12 undetermined samples are the

biggest, 0.984, 0.985, and 0.976, respectively, almost 1.

We can conclude that the three samples belong to the class

4 and are paragneiss. Figure 2b shows the curve of 27

undetermined samples and cluster center 7; and number 19,

number 20, and number 21 undetermined samples’ ham-

ming approach degree are the biggest, 0.981, 0.979 and

0.979, respectively. These three samples belong to the class

7, and are serpentinite.

Through the classification of the former 6 samples, it

can be concluded that number 1, number 2, and number

3 are rutile eclogite; number 4, number 5, and number 6

are phengite; number 7, number 8, and number 9 are

retrograded eclogite; number 13, number 14, and num-

ber 15 are orthogneiss; number 16, number 17, and

number 18 are amphibolites; number 22, number 23, and

number 24 are chlorite amphibolites; and number 25,

number 26, and number 27 are moyite. According to

hamming approach degree curves, we determine the

lithology of 27 samples, as shown in Table 3. The pre-

dicted results and the core recovery are exactly the same

by comparison.

As shown in Fig. 2, the curves of different lithologies

have sudden changes; the reason would be both the theore-

tical model and logging data. In addition, the approach de-

gree of the same lithology also exits slight differences.

However, the model could meet the needs of lithology

identification for the overall prediction results. Therefore,

the cluster centers acquired from the modified K-means

clustering algorithm, as well as the hamming approach de-

gree can identify CCSD-MH lithology effectively and ac-

curately, which could also be made applied to other areas.

Well logging graphic of lithology

The lithology analysis figure resulted from the traditional

K-means clustering and modified K-means clustering for

visual identification of CCSD-MH lithology, as shown in

Figs. 3 and 4. With these two figures, the lithology of

CCSD-MH can be easily distinguished.

As shown in Fig. 3, the section of CCSD-MH was di-

vided into 15 parts from the core recovery, while the sec-

tion could be divided into 11 and 13 parts based on the

traditional and modified K-means clustering, respectively.

According to the core recovery, there are five kinds of

lithology, and two fracture zones. There are also five kinds

of lithology, and no fracture zone displayed based on the

identification methods of the traditional K-means cluster

and modified K-means cluster. The great error section is

from 1600.0 to 1616.7 miles which corresponds to chlorite

amphibolites, and there is no fracture zone from the two

fuzzy clusters. According to the traditional K-means clus-

ter, there are no chlorite amphibolites between the depth of

1601.52 and 1614.40 miles, and all is phengite eclogite,

while the modified K-means cluster has good correspon-

dence with the core recovery and presents the same

lithology at the same depth position. At the end depth of

the phengite eclogite from the core recovery, there is a

short section of orthogneiss, while the corresponding

Table 2 Cluster centers of each lithology using modified K-means cluster algorithm

No RILD (X m) CNL (%) AC (ls/ft) DEN (g/cm3) GR (API) U (10-6) TH (10-6)

1 1022.12 7.95 42.87 3.29 20.45 0.93 1.11

2 233.31 11.00 51.68 3.05 44.57 0.55 3.06

3 2754.18 1.00 54.79 2.75 150.22 2.94 18.92

4 1520.33 -0.53 52.42 2.59 130.95 0.96 7.90

5 5081.61 -0.61 52.46 2.59 216.95 5.91 27.25

6 341.23 9.38 46.87 2.98 47.85 1.62 3.16

7 791.64 43.07 56.54 2.66 13.04 0.53 1.95

8 3936.09 -0.71 52.91 2.61 215.64 7.68 20.64

9 418.46 10.84 52.15 2.94 51.22 0.69 4.56

1 Rutile eclogite, 2 phengite eclogite, 3 retrograded eclogite, 4 paragneiss, 5 orthogneiss, 6 amphibolites, 7 serpentinite, 8 chlorite amphibolites

and 9 moyite
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position of the traditional K-means cluster and modified

K-means cluster is amphibolites. Several small errors exist

between the depth 1615.4 and 1640.7 miles at the transition

of two layers from the traditional K-means cluster and the

core recovery, while the modified K-means cluster has a

good correspondence with the core recovery, except that a

fracture zone presents from the core recovery.

Three kinds of lithology and five fracture zones are

shown in Fig.4 from the depth 1700.0 to 1750.0 miles

based on the core recovery. According to the modified

K-means clustering, the section could be divided into nine

parts, and this section was divided into eight parts based on

the traditional K-means clustering, one phengite eclogite

layer is neglected.

The great error section is from 1705.2 to 1716.5 miles,

there are two thin phengite eclogite layers and one fracture

zone, while there is no phengite eclogite presented with the

two methods in the corresponding depth. Because of the

thin layer, the well logging response of phengite eclogite

was affected by the surrounding rocks and did not present

the characteristic of phengite eclogite layers, so they were

not properly identified. In general, the lithology of fracture

zones is the same with the surrounding rocks. The density

of fracture zone is about 1.55–1.67 g/cm3 which is so low

that the entropy information is small; thus its contribution

to the lithology recognition is low. The phengite eclogite

layer was not identified with the method of traditional

K-means clustering in the depth Section 1728.3–1730.7

miles, and there were several slight depth errors in the rock

transition section. Therefore, the modified K-means cluster

has better correspondence with the core recovery than the

traditional K-means cluster.

Clustering analysis

In order to verify the striking effect that modified K-means

cluster algorithm has brought about, the same 45 samples

were used by the traditional K- means cluster algorithm to
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Fig. 2 Hamming approach degree curve of 27 samples and cluster center 4 and cluster 7
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identify the lithology of CCSD-MH. The iteration times,

the threshold value, and the cluster numbers were given as

T ¼ 1250, e ¼ 0:001, and z ¼ 9, respectively. The results

are shown in Table 4.

As shown in Table 4, the accuracy of modified K-means

cluster algorithm is higher than traditional K-means cluster

algorithm. This is mainly because of the cluster centers that

the modified K-means cluster algorithm calculated used

Eq. (3), which reduces the iteration times and avoids fall-

ing into local optimums. Moreover, the algorithm takes the

weight values into account, which distinguishes the con-

tributions of different well logs to lithology identification.

For the same accuracy, the modified K-means cluster

algorithm would take less iteration times and time than the

traditional K-means cluster algorithm. Therefore, the

identification result showed that the modified K-means

cluster algorithm has high identification accuracy and im-

prove practicability.

Conclusions

Reservoir lithology is one of the most important data to

evaluate rock formation; it mainly carried out by core re-

covery in laboratory which is very expensive, and its in-

terpretation is time consuming. Accurate identification of

Fig. 3 Well logging graphic of CCSD-MH lithology analysis in the depth Section 1600.0–1640.7 m. 1 Rutile eclogite, 2 phengite eclogite, 3

retrograded eclogite, 4 paragneiss, 5-orthogneiss, 6 amphibolites, 7 serpentinite, 8 chlorite amphibolites, 9 moyite and 10 fracture zone

8 J Petrol Explor Prod Technol (2016) 6:1–11
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lithology from geophysical log data plays a significant role

in reservoir evaluation.

In this study, a fast and practical K-means clustering

algorithm was proposed based on the shortcoming of the

traditional K-means clustering algorithm. Euclidean dis-

tance was replaced by Mahalanobis distance, and the initial

cluster centers are acquired from the average of charac-

teristic values in matrix but not selected randomly, in

Fig. 4 Well logging graphic of CCSD-MH lithology analysis in the depth Sect. 1700.0 * 1750.0 m. 1 Rutile eclogite, 2 phengite eclogite, 3

retrograded eclogite, 4 paragneiss, 5 orthogneiss, 6 amphibolites, 7 serpentinite, 8 chlorite amphibolites, 9 moyite and 10 fracture zone

Table 4 Performance comparison of clustering analysis

Algorithm name Iteration

times

Accuracy rate

(%)

Time

(ms)

Traditional K-means

cluster

1250 77.78 553

Modified K- means

cluster

1250 88.89 428

J Petrol Explor Prod Technol (2016) 6:1–11 9
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addition, adding weight value in each characteristic value

of the objective function. For the same 45 rock samples of

CCSD-MH, the accuracy rate of traditional K-means

clustering algorithm is 77.78 %, while modified K-means

clustering algorithm is 88.89 %, which shows that our

modified algorithm is applicable.

According to the modified K-means cluster algorithm,

45 samples can be classified into 9 classes and get 9 cluster

centers. The classes of 27 undetermined samples were

identified by analyzing the hamming approach degree

curves. The predicted results and core recovery are exactly

the same by comparison.

In conclusion, the modified K-means clustering algo-

rithm gives better accuracy of CCSD-MH lithology clas-

sification than traditional K-means clustering. The

hamming approach degree, as well as the cluster centers

identified the whole well of CCSD-MH lithology effec-

tively and accurately. Since its flexibility and capability in

identifying the lithology, the model can be served as an

effective approach in evaluating rock reservoirs when it

lacks of core recovery materials. Further, the model may be

useful in other fields.
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