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Abstract Loss circulation is a common problem in dril-

ling industry that causes high expenditure on drilling

companies. Nowadays minimizing of loss circulation is a

main goal and preference for drilling engineers. Artificial

intelligence (Al) is a new method of solving engineering

problems that has the ability to consider all effective

parameters simultaneously. Moreover, it has generalization

and the ability to learn directly from field data. In this

paper, two models were designed using Al and data of 38

wells located in Maroun oil field. Both models were

developed by modular neural network, to predict loss cir-

culation in quality and quantity. Then, the particle swarm

optimization algorithm was used to minimize loss circu-

lation. The accuracy of two models in predicting loss cir-

culation quantitatively and qualitatively is 0.94 and

0.98 %, respectively.

Keywords Loss circulation � Modular neural network �
Loss circulation reduction � Particle swarm optimization

algorithm

Introduction

Lost Circulation Problem (LCP), also known as lost

returns, stands for the absence or reduction of drilling

mud pumped through the drillstring while drilling the

wells, which filtrates into the formation instead of flowing

up to the surface. Historic evidence shows that LCP

highly contributes to the total cost of the mud and the

well. Consequences of lost circulation may go from

increasing operation costs to a stuck drill pipe, a blowout,

reservoir damage and even loss of well. Although lost

circulation can be treated by adding plugging and bridg-

ing materials [Lost Circulation Materials (LCMs)], to the

drilling fluid, huge volume of mud may invade the for-

mation before it can be detected on surface, especially in

fractured and unconsolidated formations while drilling

with heavy mud.

The rate of mud loss can vary from steady seepages in

high permeability formations to rapid loss to fractures and

faults. In either case the total mud loss can amount to

several thousand barrels on a single well (Rojas et al.

1998). Dyke et al. (1995); Dupriest (2005) and Majidi et al.

(2008a, b) have discussed that over 90 % of lost returns

have been experienced in fractured formations.

Pilehvari and Nyshadham (2002) have discussed that

circulation losses can be classified into three distinct

groups as seepage loss, when the loss rate is 1–10 bbl/h,

partial loss, when the loss rate is 10–500 bbl/h, and com-

plete loss, when the loss rate is more than 500 bbl/h. On the

other hand, losses can be divided to minor and severe

losses. Minor loss occurs when total loss is between 6 and

470 barrels or it takes less than 48 h to be treated by either

increasing mud viscosity or increasing small amount of

LCMs to the mud. Severe losses are experienced where

losses are[470 barrels or it takes[48 h to control or cease
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the lost circulation by adding some bridging materials to

the circulation system (Moazzeni and Nabaei 2010).

Sanfillippo et al. (1997) developed a model for New-

tonian mud diffusion in a non-deformable fracture of

constant width with impermeable walls and then modified

for estimation of fracture aperture from drilling data. But

as a matter of fact, most common drilling fluids in use are

non-Newtonian fluids and their invasion cannot be

investigated using mentioned model. Later, Lietard et al.

(1999) have proposed the first model for diffusion of

drilling fluid to the single fracture. They have combined

Darcy’s law with Bingham plastic model and derived

invaded zone radius for different effective parameters

versus time. Fracture aperture then could be obtained by

some theoretical curve resulted from interpolation

between real mud loss data and based on best valid fit.

Fracture width is very important for optimizing particle

size distribution of LCM for rapid ceasing lost circulation

(Moazzeni et al. 2009).

Majidi et al. (2008a, b) developed a theoretical model

based on more realistic rheological behavior of drilling

fluids like yield-power-law (YPL) fluids which was pro-

posed by Hemphill et al. (1993). These new models

explained the essential role of drilling fluid rheology

(especially yield stress and shear-thinning effect) on lost

circulation in fractured reservoirs. These models cannot

consider location of wells along the field.

With the growing interest and enthusiasm in the oil

industry toward smart wells, intelligent reservoir charac-

terization, and real-time analysis and interpretation of large

amounts of data for process optimization, the need for

powerful, robust and intelligent tools has significantly

increased. In recent years, hybrid intelligent systems inte-

grating different Artificial Intelligence techniques have

made solid steps toward becoming more accepted in the

mainstream of the oil and gas industry due to their capa-

bilities in handling real-world complexities involving

imprecision, uncertainty, and vagueness (Alvarado et al.

2004; Medsker 1995; Mohaghegh 2005; Nikravesh et al.

2002 and Zhang and Ch 2004).

Several factors like formation pressure (differential

pressure), permeability distribution, stress field around the

borehole, existence of fractures and caves and some

operational parameters such as pump pressure and flow

rate, drilling fluid properties (especially viscosity and solid

content) and some other time dependent parameters affect

severity of lost circulation. This interrelated parameters

cause difficulty in obtaining analytical solution for pre-

diction of lost circulation. Besides, spending more costs for

removing the consequences of lost circulation forces dril-

ling companies to have an idea about the severity and

frequency of mud loss in the drilling area. Since finding

reasonable relationship between these factors is not so

simple, virtual intelligence can be employed for prediction

quality and quantity of loss before drilling.

In this paper, Maroun oilfield in Middle East is selected

because of presence of highly fractured oil bearing zone

which suffered from severe losses especially as oil pro-

duction diminishes its pressure. Offset data of 38 wells are

used for evaluation of lost circulation. Since lost circula-

tion is governed by very complicated and interrelated

parameters, neural network modeling is used for prediction

of amount of mud loss quantitatively. Another network also

is employed to interpret network-based mud loss results

qualitatively. It can classify mud loss results to ‘‘seepage’’,

‘‘partial’’ and ‘‘complete loss’’. Predicted mud loss rate

fairly matches reality.

In this paper, a new method is presented to obviate loss

circulation. This model is developed using modular neural

network and particle swarm optimization algorithm. Using

this model and improving effective parameters, loss cir-

culation is obviated or mitigated.

Maroun oil field

Maroun is a huge oilfield with fully fractured oil bearing

zone located in South West of Iran along with Zagros

mountain chains. It is divided to eight different sectors

according to production capability and presence of pro-

duction units. Main oil bearing horizon is called Asmari

formation which is divided to different sub layers due to

petrophysical property differences.

Modular neural network

The current Multilayer Perceptron (MLP) networks are

mostly slow and suffer from massive computational costs

which usually lead these networks to be trapped in the local

minima and finally preventing prediction of the desired

output accurately.

Most of the evolutionary and artificial intelligence

algorithms, particularly Artificial Neural Networks

(ANNs), are based on biological systems. Therefore, more

study of those concepts can help us to improve the limi-

tation of the current methods. According to recent

researchers on the brain, it is understood that the brain is

composed of three main subsets which introduce the

modularity in the brain (Shepherd 1974). Actually, the

complex tasks in the brain will be decomposed into simpler

ones (Rexrodt 1981). This new finding causes the ANNs to

be more flexible and close to the real applications at hand.

In other words, the modularity is one of the most important

factors in human and animal brains that helps them to

manage the very complex tasks efficiently. For example,
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one can see the brain as a collection of individual functions

and modules which can work with each other effectively

and decompose the complex problems into several simpler

ones (Montcastle 1978; Eccles et al. 1984; Edelman 1987

and Huble 1988). Also, according to several researchers it

is shown that the brain is composed of massively parallel

and modular parts which relatively work independently

(Edelman 1979, 1987; Frackpwiak et al. 1997).

There are some problems in MLP networks which will

be mentioned hereafter. For example, in the most of the

cases the size of network is very large and there is no

efficient learning algorithm and no enough data to find the

best associated weights. However, by dividing the network,

one can define networks which are independent and have a

simpler and smaller size rather than the MLP network.

Since the MLP networks are monolithic, an error and/or

change in these networks can propagate in and affect all

parts. This problem reduces the stability of network and

leads it to be very sensitive to the local variation and error

in network while the network should has this ability that

can reduce the undesirable fluctuation and decrease its

effect.

In most of MLP networks, it is not possible or it is very

cumbersome to implement a priori knowledge about the

problem at hand. Therefore, the experts’ ideas and an

interpretational knowledge cannot be considered in those

networks and make them inappropriate for data integration.

In this section, to overcome the mentioned problem, a

new concept of modularity is presented, but first let us

explain a clear modularity in our visual system. Based on

different researches, it is obvious that our visual system

needs to do a lot of tasks such as motion detection, color,

shape, and intensity evaluation. Also, there is a central

system which receives different results of different men-

tioned parts and combines them resulting in the final

realization.

Let us first present a schematic architecture and con-

nection links in a MNN in Fig. 1. Actually, the modular-

ization ability of ANN can overcome the mentioned

problems. In other words, MNN has the ability to have

different structures in itself and even one can integrate a

priori knowledge within it. Also, since the complex task in

MNN is decomposed into several smaller and simpler ones,

one can expect an overall network with a smaller com-

plexity and CPU demanding. One of the reasons is because

of using a smaller part of data for each module.

According to the above definitions and explanations,

we can define the MNN as a network in which the

massive computational burden is divided into some

modules which each of them has distinct inputs and are

independent to other modules on that network (Happel

and Murre 1994; Azam 2000). Finally, the outputs of

each module will be integrated to make the final output.

Therefore, each part of MNNs does a special computa-

tional task of whole system and is independent of other

modules and the other one cannot influence the work of

rest modules. Also, this network has simpler structures

while compared with MLP and, therefore, can response

to input much faster.

Let us return to Fig. 1 in which a MNN is presented. In

this figure, it is clear that there are a few number of con-

nections and weights; therefore, the network size will be

decreased dramatically. Consequently, the complexity of

network will be decreased and in this case, finding the

global minima in a smaller time would be much easier.

Also, as another result, due to low complexity, we can

use a smaller dataset which is one of the main features of

petroleum datasets (Feldman and Ballard 1982; Jacobs

et al. 1991; Jacobs 1995). We compare modular neural

network with multi-layer perceptron and the results show

that modular neural networks outperform multi-layer per-

ceptron in examined dataset in terms of accuracy and

learning time.

Particle swarm optimization algorithm

Particle swarm optimization is one of the latest evolu-

tionary optimization techniques developed by Eberhart and

Kennedy (1995). PSO concept is based on a metaphor of

social interaction such as bird flocking and fish schooling.

The particles, which are potential solutions in the PSO

algorithm, fly around in the multidimensional search space

and the positions of individual particles are adjusted

according to its previous best position and the neighbor-

hood best or the global best. Since all particles in PSO are

kept as members of the population throughout the course of

the searching process, PSO is the only evolutionary algo-

rithm that does not implement survival of the fittest. As

simple and economical in concept and computational cost,

PSO has been shown to successfully optimize a wide range

of continuous optimization problems (Brandstatter and

Baumgartner 2002; Yoshida et al. 2000).Fig. 1 A schematic view of the MNN architecture
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Methodology

To have a comprehensive model for predicting loss circu-

lation, it is needed to consider effective parameters. In this

modeling, the inputs are geographic coordinates (east and

north), the current depth, depth of formation tip, penetra-

tion rate, formation type, annulus volume, mud pressure,

flow rate of mud pump, mud pump pressure, filter cake

viscosity, solid content, plastic viscosity, yield point, initial

strength, and final strength after 10 min and the output is

loss circulation. Among the 1756 data sets (input and

output) after eliminating illogical data that is indication of

human and device error, the 1,630 data sets of 38 wells

were used in the modeling. After data normalizing, 60 % of

data for training, 20 percent for validation, and the

remaining 20 % were used for network test. To feed for-

mation types and their sub layers into the neural network,

we convert their values from categorical to numerical by

assigning numerical codes to them. The range of used

parameters in modeling is listed in Table 1.

The first model was developed by modular neural net-

work to predict quantitatively loss circulation. Figure 2

shows the type of modular used for both models. The

output of network in this model is the quantity of loss

circulation. The structure of modular neural network for the

first model is shown in Table 2. The results of training and

network test are illustrated in Figs. 3 and 4, respectively.

The precision of the first model can almost be acceptable.

Using this model the amount of loss circulation can be

predicted at any depth with reasonable accuracy.

Provided that the goal merely is the determination of the

type of loss circulation and the precise quantity of loss

circulation is not needed, the second model that is more

accurate than the first model can be used. In this model the

output of neural network is the prediction of loss rate

qualitatively in the following ranges:

The number zero for the loss of \0.07 m3/h (seepage

loss).

The number 0.5 for the range of 0.07–0.7 m3/h (severe

loss).

The number 1 for the loss of more than 0.7 m3/h

(complete loss).

The modular neural network was also used in order to

construct the second model. The characteristic of the

network is shown in Table 3.

The results of training and test of the second model are

illustrated in Figs. 5 and 6, respectively. The learning rule is

the means by which the correction term is specified. Once

the particular rule is selected, the user must still specify how

much correction should be applied to the weights, referred

to as the learning rate. If the learning rate is too small, then

learning takes a long time. On the other hand, if it is set too

high, then the adaptation diverges and the weights are

unusable. Because we need nominal values as output (i.e., 0

and 1), we should discretize the continues values of the

output of the network to discreet values 0 and 1. To do so,

we define a mapping range as Table 4 shows.

Comparison between the MNN and MLP can be

between the required epochs for reaching the network to a

stable variation of mean square error (MSE). In other

words, one can compare the MSE for each epoch in order

to find out the performance of different networks to adjust

their weights. This comparison can be seen in Fig. 7.

According to Figure 7, it is obvious that MNN demand less

time to be convergent. This improvement in aspect of CPU

time is because of using a less weight vector which it reduces

the network’s complexity. Therefore, the applied learning

algorithm in the case of a few weights and consequently the

variables can find the global minima faster. Table 5 shows the

result of comparison of MNN and MPLS in terms of accuracy.Fig. 2 Modular neural network used for modeling

Table 1 The ranges of the parameters used in modeling

Parameter Range

East (1,887,105–1,935,965)

North (1,005,701–1,054,298)

Press depth (m) (752–5,662)

Rate Of penetration (m/hr) (0.088–40.08)

Formation type (code) (5–125)

VANN(m3) (0.0003–77.71)

Formation top (m) (0–4,858)

Pump output (m3/S) (0.005–0.063)

Pump pressure (Pa) (0.689–20.34)

Mud pressure (Pa) (9.76–515)

Mud filtrate viscosity (N�S/m2) (0–0.1)

Ret solid (%) (0–61)

Plastic viscosity (N�S/m2) (0–0.13)

Yield point (N�S/m2) (0–0.105)

Initial gel (Pa) (0–14.36)

10 min gel (Pa) (0–16.758)

Lost (m3/hr) (0–3.98)
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Regarding high volume of data, a concise comparison of

predicted lost circulation in testing stage is depicted in

Figs. 8 and 9 for both networks with real data. According

to figures, there are excellent agreements between the real

and estimated lost circulation for the MNN networks.

Reduction of drilling fluid loss

A part of loss circulation is due to improper selection of

drilling parameters during operation. Under these circum-

stances the effective parameters can be improved to

Fig. 3 Correlation coefficient

of modular neural network of

the first model in the training

stage

Fig. 4 Correlation coefficient

of modular neural network of

the first model in the test stage

Table 3 Modular neural network construction of the second model

Second model Layer Upper

PEs

Upper

Transfer

Lower

PEs

Lower

transfer

Output layer Learning

rule

Step

size

Momentum

PEs Transfer

Qualitatively Hidden layer.1 14 ThanAxon 14 ThanAxon – – Momentum 0.1 0.7

Hidden layer.2 14 ThanAxon 14 ThanAxon – – Momentum 0.01 0.7

Output layer – – – – 1 Linear ThanAxon Momentum 0.01 0.7

Table 2 The modular neural network structure of the first model

First model Layer Upper

PEs

Upper

transfer

Lower

PEs

Lower

transfer

Output layer Learning

rule

Step

size

Momentum

PEs Transfer

Quantitatively Hidden layer.1 10 ThanAxon 10 ThanAxon – – Momentum 0.1 0.7

Hidden layer.2 10 ThanAxon 10 ThanAxon – – Momentum 0.01 0.7

Output layer – – – – 1 Linear ThanAxon Momentum 0.01 0.7
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mitigate loss circulation. Loss circulation arisen from high

permeable formation, drilling mud filtration, fluid invasion

into the matrix, and induced fracture can be alleviated or

precluded by proper selection of drilling parameters. To

improve and select proper drilling parameters, the opti-

mized algorithms can be used.

In optimizing processes the variation in parameters

such as annulus volume, penetration rate, flow rate of

mud pump, mud pump pressure, hydrostatic pressure,

viscosity of mud filtration, solid content, plastic viscos-

ity, yield point, initial gel strength, and final gel strength

after 10 min is allowable, whereas well coordination,

Fig. 5 Correlation coefficient

of modular neural network of

the second model in the training

stage

Fig. 6 Correlation coefficient

of modular neural network of

the second model in the test

stage

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10-2

10-1

Epoch

M
S

E

MNN M1

MLP M1

MNN M2

MLP M2

Fig. 7 Comparison of MNN

and MLP networks in both

accuracy and convergence

speed for two model (the

vertical axis is logarithmic)

Table 4 Mapping range of the second model

Rang 0 0.5 1

Network output \0.3 0.3 \ Output \ 0.73 [0.73
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depth, characteristic of formation, and the depth of for-

mation tip should be constant. To minimize the function

of loss circulation, two optimizing algorithms are

examined. The best results are pertinent to particle

swarm algorithm.

The optimized parameters are shown in Table 6. To

make certain about the obtained results and to investigate

the quantity of loss circulation, the optimized and constant

parameters of each part of well were inputted into the

neural network of the first model and the loss circulation

that is network output was calculated. The result of the test

is shown in Table 7. As can be seen in almost all the cases,

the quantity of loss circulation was reduced to more than

half of its present value. Therefore, loss circulation can

drastically be alleviated by applying the optimized

parameters. Due to limitation, only some of the optimized

results are given in table 6.

Table 8 shows result of comparison of PSO and GA to

optimize lost circulation. As it can be seen PSO have better

performance than GA in terms of optimization values of

lost and execution time.

Conclusions

1. A methodology was proposed for prediction of lost

circulation in any coordinates of field using operational

and geological data.

2. A new method was carried out for loss circulation

using particle swarm algorithm and modular neural

network.
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Table 5 Comparison of the MNN and MPLS in terms of accuracy

Model Network MSE R R2

First model MNN 0.0047 0.944 0.891

MLP 0.016 0.792 0.627

Second model MNN 0.0042 0.982 0.964

MLP 0.037 0.863 0.745
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3. Before utilizing any neural network, data mining and

quality control should be performed on available data.

4. Most common drilling problem is lost circulation

especially in fractured formations.

5. Lost circulation is governed by numerous factors that

make finding analytical solution with acceptable

accuracy very difficult or impossible.

6. Neural network helps to have accurate prediction of

lost circulation in Asmari formation of Maroun oilfield.

7. Utilizing artificial neural network is recommended

while dealing with different interrelated parameters

(like lost circulation).

8. Network results are just for the field under study and

should not be used for another field even nearby ones.
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