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Abstract Reduced-order modeling (ROM) is a novel

approach in all realms of computational science including

reservoir simulation. Among various ROM methods, tra-

jectory piecewise linearization (TPWL) is evolving for

reservoir engineering applications. Previous investigations

reflect promising future for incorporating TPWL into the

next generations of enhanced reservoir simulators. In this

work, we employ this method to examine the claimed

efficiency, robustness and accuracy of it as a surrogate

simulator. The self-construction of the used simulator gives

us the opportunity to explore this method and to examine

previous assertions on the subject. The efficiency of TPWL

is primarily due to direct calculation of new saturation and

pressure states using a linearized expansion around previ-

ously simulated states instead of traditionally solving the

flow equations. For further efficiency and reduction of the

required memory, TPWL method needs to accompany a

space reducing scheme, through which the captured

dynamic of the reservoir is projected into a lower-order

space. The projection matrix is conventionally constructed

through proper orthogonal decomposition (POD) of con-

verged time stepping solutions known as ‘snapshots’ which

are obtained during a serious of preprocessing runs called

‘training’ runs. In this work, we apply TPWL method to a

hypothetical three-dimensional heterogeneous reservoir

consisting of a compressible rock type. We assume an

inverted five-spot production–injection pattern and present

the results for a two-phase (oil–water) reservoir model

under water flooding scenario, in which the injection well

is controlled by injection rate. Achieved results demon-

strate that use of TPWL leads to significantly faster

simulation compared to high fidelity model. We achieved

speedup of a factor of 120 while preserving accuracy and

reliability of the results. This study suggests that TPWL

methodology will be particularly attractive when many

solutions of similar simulation models with different well

settings are required for history matching or optimization

problems. Future research should focus to assess the

applicability of TPWL to conditions with strongly com-

pressible flow or capillary pressure effects.

Keywords Trajectory piecewise linearization � TPWL �
Proper orthogonal decomposition � POD � Surrogate

simulator � Model order reduction � Reduced-order model �
Two-phase flow

Introduction

Development of reduced order models which accurately

and efficiently represent the original model is a very crucial

part of reservoir management. Optimization, history

matching and optimal design of the reservoir require to run

the forward model for many times. Though, parallel com-

puting has proved to be effective, it still cannot provide

adequate efficiency for reservoir management studies

which deal with incorporating the real time data into the

reservoir model.

Literature prospers from many cases on the application

of proper orthogonal decomposition (POD) scheme to the

various science disciplines (Antoulas and Sorensen 2005).

For subsurface flow, however, its application is relevantly

new (Markovinovic and Jansen 2006; Vermeulen et al.

2005; Van Doren et al. 2006) and culminates in studies

done by Cardoso et al. (2009) and Cardoso and Durlofsky

(2009, 2010).
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POD method, also known as principal component ana-

lysis (PCA), is designed to capture the most dominant

features of a dynamical system and to identify its coherent

structure (Astrid and Papaioannou 2011). POD is a very

popular method for reducing nonlinear large-scale systems.

This method is designed to project the system to a subspace

spanned by a small number of vectors known as ’basis

functions’. The projection subspace should be small and

reflect the most dominant and relevant features of the high

fidelity system. The ’basis’ functions should be able to

represent the most probable realizations of the input. To

attain this objective, the target boundary conditions (input

well pressures and rates) should be in the domain of the

training boundary conditions which should also be ’exited’

to comprise a variety of input scenarios. We note that He

et al. (2011) have recently been successful to address some

schemes to mitigate the severity of these limitations,

though we did not implemented them here.

Trajectory piecewise linearization (TPWL) was intro-

duced by Rewienski and White (2003) who applied it for a

nonlinear transmission line circuit model. In the reservoir

engineering context, Cardoso et al. (2009) and Cardoso and

Durlofsky (2010) pioneered publishing the development of

TPWL formulation for two-phase reservoir flow and later

He et al. (2011) addressed some of its foibles and enhanced

the basic TPWL method to meet a wider range of conditions.

TPWL provides a means to calculate the new simulation

results by directly using previously saved results, which are

projected to a lower space. In this method, first some high

fidelity simulations known as ’training runs’ are performed,

from which the time stepping converged states (solution of

saturation and pressure known as ’snapshots’) and Jacobian

matrices are saved. Then, POD method is applied to the

saved states to construct a matrix called ’basis’ matrix.

Using this matrix, the saved results are projected to a lower

space; therefore, the reduced states and reduced Jacobians

are formed. For subsequent simulations, a linear expansion

around previously saved states is carried out and new states

are directly calculated using those states.

This paper proceeds as follows. We first concisely

introduce the flow equation and POD procedure, and then

we shortly describe linearization of the flow equations and

concisely review incorporation of the POD method into

TPWL. We refer to cited publications for more detailed

description. Finally, we represent our case study and

attained solutions.

Problem formulation

The governing equations for oil–water flow and TPWL

procedure are formulated in detail in Cardoso et al. (2009).

For completeness and because of some differences in our

formulation and implementation to that of Cardoso et al.

(2009), Cardoso and Durlofsky (2010) and He et al. (2011),

we have included required formulas here too.

Flow equations

By combining mass conservation and Darcy’s law, the

equation of two-phase (oil and water) flow in porous media

is expressed as Eq. (1), in which subscript j is used to

designate the phase (j = o for oil and w for water):

r:½kikðrpj � qjgrDÞ� ¼ o

ot

/Sj

Bj

� �
þ qw

j ð1Þ

In the Eq. (1), k is the absolute permeability tensor,

kj = krj/lj is the phase mobility, with krj the relative per-

meability to phase j and lj is the phase viscosity, g is

gravitational acceleration, pj is phase pressure, qj is the

phase density, D is depth, t is time, Sj is saturation and qj
w is

the source/sink term. Equation (1) is coupled by the satu-

ration constraint (So ? Sw) = 1 and by specifying a cap-

illary pressure relationship pc (Sw) = po ? pw.

The fully implicit formulation of flow equations in the

three-dimensional space can be summarized as Eq. (2).

gðxnþ1; unþ1Þ ¼ Fðxnþ1Þ þ Aðxnþ1; xnÞ þ Qðxnþ1; unþ1Þ;
ð2Þ

where g is the residual vector, x represents the state of the

system (pressure and saturation), u represents the system

controls (bottom hole pressure and injection rates) and F;A

and Q; respectively stand for convection flow, accumula-

tion rate and injection/production rates.

POD procedure

For developing a POD matrix and to project the model into

low-dimensional space using this matrix, the high fidelity

model should be run at least once (training run), during

which snapshots of the converged time stepping answers

(pressure and saturation) of all the grid blocks will be

saved. We represent the number of snapshots as S, the

collection of pressure snapshots as Xp and the collection of

saturation snapshots as Xs: It is also conventional to sub-

tract the time-averaged value of snapshots from the data,

although we did not implement this subtraction (Astrid and

Papaioannou 2011).

Xp ¼ ½x1
p; x2

p; ; xS
p�Nc�S ð3Þ

Xs ¼ ½x1
s ; x2

s ; ; xS
s �Nc�S ð4Þ

The columns of the above equations are in the form of

xs
i , where i indicates the time step. The POD method is then
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applied to each of these matrices to construct a basis for

projection. POD basis is a solution to an optimization

problem subject to orthonormality constraints of the basis

vectors. It minimizes the reconstruction of state vectors in a

least squares sense with the minimum required basis

vectors for constructing the reduced subspace. It is proved

that this is equivalent to solving the eigenvalue problem

(5), where C is the covariance matrix of the snapshot which

is calculated using Eq. (5). Equation (5) can be solved

using a singular value decomposition (SVD) scheme which

is the main part of POD methodology.

C ¼ XT X ð5Þ
CW ¼ kW; ð6Þ

where W stands for the eigenvectors and k for eigenvalues

of the covariance matrix. However, we never build a

covariance matrix, and for calculating the eigenvectors and

eigenvalues of C; a Singular Value Decomposition of the

snapshots is performed because the eigenvalues of XðriÞ
are related to the eigenvectors of the covariance matrix

through ri ¼ k1=2
i : The magnitude of every eigenvalue

associated with each eigenvector determines its corre-

sponding impact on construction of the basis of the lower

space. This magnitude is sometimes referred to as the

’energy’ of the eigenvector. Hence by eliminating the

eigenvectors that have less impact on the lower space

construction (their eigenvalues are low) and by projecting

the model into the lower space using the remained eigen-

vectors, we are reducing the energy of the system. Then,

the remaining energy of the system can be calculated using

El =
P

i=1
l ki/Et where ki shows the energy of its corre-

sponding eigenvectors and Et =
P

i=1
S ki is the total energy

of the system that corresponds to l largest eigenvalues.

After reducing the energy of the system, the columns of

attained matrix Ul are called basis functions which are used

to project the variables into the lower space, using Eq. (7).

x � Ulz: ð7Þ

Note that this process is done separately for saturation

and pressure states since they are physically independent

variables. The reduced state z can now be used for reducing

the number of variables in the flow equation, so that we

have only l = lp ? ls variables instead of 2Nc.

TPWL procedure

The principal concept in TPWL procedure is to use a

Taylor expansion around previously saved states during

preprocessing runs (or so-called training runs) and to find a

linear model which best represents the original model.

Hence it would be possible to directly (without iteration)

find the solution of the nonlinear Eq. (2) using the linear

model for any given controlling parameter quite different

from that of training runs. The expansion of the Eq. (1)

around the saved states ðxiþ1; xiÞ and controlling parame-

ters ui gives Eq. (8).

gnþ1 ¼ giþ1 þ ogiþ1

oxiþ1
ðxnþ1 � xiþ1Þ þ ogiþ1

oxi
ðxn � xiÞ

þ ogiþ1

ouiþ1
ðunþ1 � uiþ1Þ ð8Þ

In Eq. (8), xnþ1 stands for the state that is supposed to be

found for the controlling parameter unþ1 and xiþ1; uiþ1;

respectively, showing the nearest saved state and

controlling parameter to xnþ1; unþ1 during the training

runs. xn is the current state and the nearest state to it is

designated by xi: Also in this equation gnþ1 and giþ1 are,

respectively, abbreviated forms for gðxnþ1; xn; unþ1Þ and

gðxiþ1; xi; uiþ1Þ: After expanding all terms of Eq. (1)

around the saved points and substituting them into Eq. (8),

the final equation of linearization in the high dimension

becomes as Eq. (9):

Jiþ1ðxnþ1 � xiþ1Þ ¼ �½Fiþ1 þ Aiþ1 þ oAiþ1

oxi
ðxn � xiÞ

þ Qðxiþ1; unþ1Þ� ð9Þ

in which the Jacobian matrix and other abbreviations are

defined by:

Jiþ1 ¼ oFiþ1

oxiþ1
þ oAiþ1

oxiþ1
þ oQiþ1

oxiþ1
ð10Þ

Aiþ1 ¼ Aðxiþ1; xiÞ;Fiþ1 ¼ Fðxiþ1Þ;Qiþ1 ¼ Qðxiþ1; uiþ1Þ:
ð11Þ

This is still suboptimal, because for saving the Jacobian

and other expansion matrices, a large amount of memory is

required. Hence, in practice, for having a much higher

speed and reducing the required memory, TPWL is always

coupled with a space reducing scheme. Here, we use POD

to attain this objective. By incorporating Eq. (7) into

Eq. (9), and multiplying both sides into UT ; we can

approximate x by projecting it into the lower space and

reduce the model equations from 2Nc to l.

UT Jiþ1Uðznþ1 � ziþ1Þ ¼ �UT ½Fiþ1 þ Aiþ1 þ oAiþ1

oxi

Uðzn � ziÞ þ Qðxiþ1;unþ1Þ�
ð12Þ

In Eq. (12), znþ1 is the state that we seek to find, zn is its

previous state that we have found using TPWL and, xiþ1

and xi are, respectively, the nearest states to xnþ1 and xn:

After finding the states in the lower space, Eq. (7) can again

be used to project the solution back into the original
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high dimensional space. This concludes our description of

TPWL and POD. We note that our implementation here

differs from that of previous investigators Cardoso et al.

(2009), Cardoso and Durlofsky (2009a, 2010) and He et al.

(2011) in using Eq. (12) for calculating the next state in

TPWL procedure. This implementation was easier and

more straightforward for our solver. Also, we have set the

controlling parameter of the injection well on the rate of

injection instead of pressure as this is the case in real

problems.

Application: three-dimensional water flooding scenario

A hypothetical reservoir consisting of a compressible rock

type and operating through inverse five-spot pattern is

considered. The assumed model is three-dimensional and

consists of 147 grid blocks with Nx = 7, Ny = 7 and

Nz = 3, where Nx, Ny and Nz represent the number of grid

blocks in each spatial direction. Figure 1 shows the posi-

tion of the injection and production wells. The model

consists of four production wells on the edges of the res-

ervoir (designated as well 1–4) and one injection well at the

center (designated as well 5). The wells are perforated only

in the first layer and considered to be Peaceman vertical

type with the radius of 0.1 ft (0.03048 m). Permeability

field is taken to be isotropic and heterogeneous and

vary between 1 � 5mdð9:869 � 10�16 � 4:934 � 10�15m2Þ
(Fig. 2). The permeability in each layer is separate from

other layers and we use a Sequential Gaussian Simulation

methodology for generating them. The initial oil and water

saturations are considered 0.8 and 0.2, respectively, and the

residual oil saturation (Sor) and residual water saturation

(Swr) are 0.2. The oil and water densities are qo = 45 lb/ft3

(721 kg/m3) and qw = 60 lb/ft3 (961 kg/m3). Capillary

forces are disregarded and the relative permeabilities for

the oil and water phases are determined using Corey

equations:

kroðSwÞ ¼ k0
ro

1 � Sw � Sor

1 � Swr � Sor

� �a

ð13Þ

krwðSwÞ ¼ k0
rw

Sw � Swr

1 � Swr � Sor

� �a

ð14Þ

in which k0
ro and k0

rw are the endpoint relative permeabilities.

Here, we set k0
ro ¼ k0

rw ¼ 1 and a = b = 2. In addition,

the rock compressibility is assumed to be 10�5Psi�1

ð1:45 � 10�9Pa�1Þ:

Training run

For establishing the training runs, we constructed a simple

fully implicit reservoir simulator for representing the high

fidelity model. In the next step, we validated our 3D two-

phase simulator with two commercial reservoir simulators

(CMG IMEX and ECLIPSE 100).

For the case of our study, the high fidelity model is run

only once for both determining the reduced-order subspace

and saving the required data for the linearized model. The

snapshots were collected by simulating the reservoir while

dynamically exiting it by frequently changing the well

controllers. Our controlling parameters are set to bottom

hole pressure (BHP) for production wells and water

injection rate for injection well. The controlling parameters

are set in a quite random way. These parameters are

generated and updated every 100 days using a random

function in MATLAB. For cases that target controllers are
Fig. 1 Hypothetical reservoir and its wells
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Fig. 2 Gaussian permeability field
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constructed by linearly disturbing the training controllers,

TPWL method leads to very identical results to high

fidelity simulation. However, unlike previous investigators,

we have implemented random methods here instead of

heuristically making the input of training and target runs.

Hence quite different and independent controllers for the

training and targeting runs are used. The bottom hole

pressure of the production wells is changed in the domain

3,000–4,500 psi (20.684–31.026 MPa) and the injection

rate of the water is altered in the domain 400–500 bbl/day

(63.59–79.49 m3/day). Note that the simulator is coupled

with a random generator function and hence completely

different scenarios happen for the training and target runs.

We used our personal computer for running the model and

we simulated the performance of the reservoir up to 1,000

days, with the time step of 1 day.

Figures 3 and 4 show the training run schedules used for

calculating basis functions. This elaborate schedule may

seem an extreme assumption to happen in practice, but our

reasons for making this scenario are twofold. Firstly, it

tests the performance of TPWL methodology in case of

multiple transients and secondly changing production and

injection controllers plays an important role in determining

viable production scenarios which typically arise in

flooding optimization problems. The reduced energy from

the system is 10-12 % of the total energy of the system.

This is a heuristic measure and currently there is no

established predictive method to guarantee measuring

how much the corresponding reduced-order model would

deviate from high fidelity model, beforehand. In Figs. 5

and 6, the circles highlight the selected eigenvectors. As

the figures show, even this very little reduction in the

energy of the system results in the elimination of a large

number of eigenvalues in the SVD scheme. Larger eigen-

values are associated with eigenvectors that have a greater

impact in capturing the dynamic of the reservoir. The

eigenvectors corresponding to these remained eigenvalues

are used for calculating basis functions by which the model

is projected into the lower space. The number of required

basis functions depends on the complexity of the reservoir

and its controllers. The degree of nonlinearity of the model,

which may originate from relative permeability correla-

tions or compressibility of the reservoir fluid, has a great

impact on the complexity of the model. When the reservoir

fluids have small or no compressibility (which is the case in

water flooding scenarios), the number of the selected

eigenvalues is small. This directly depends on how much

the pressure and saturation equations can be decoupled.

For this example, the number of selected eigenvalues for

saturation and pressure is 51 and 31 out of 147, respectively;

therefore, the model unknowns are reduced from 294 to 81.

For more complicated reservoirs, two or more training runs

may be employed but in our studies, the choice of one

training run was resulting in reasonable accuracy and effi-

ciency, so we used only one training run here.

Figures 7 and 8 depict the production and injection

schedules for the target run. Similar to training run,

the controllers are changed quite randomly and every 100
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Fig. 3 Injection well’s rate

schedule for training run
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days; therefore, we expect different scenarios for training

and target schedules.

Figures 9, 10, 11 and 12 illustrate the robustness and

accuracy of TPWL and POD methods in simulating the

production rates for target schedule. Oil and water pro-

duction rates of TPWL and high fidelity method show close

agreements. We note that we can observe discrepancies

around breakthrough time in each well. This discrepancy

sometimes makes the reduced order model to blow up. We

have found that the accuracy of Jacobian matrix and other

linear model parameters around breakthrough time has a

great impact on mitigating this problem. We believe time
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step cutting, which is a feature of commercial reservoir

simulators when the residuals are oscillating, would be

effective in overcoming this problem. In our developed

simulator, this feature was not available and we had to

employ small time steps for obtaining accurate Jacobians

and other linear model parameters around breakthrough

time. The reason of this discrepancy is not completely clear

to us. We attributed this to changes in production wells

equations, which take place at breakthrough time. This

encourages for more accurate estimation of Jacobian

matrixes around breakthrough time. We also observed that

using TPWL before breakthrough time or using it after
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breakthrough time results in completely identical results to

that of high fidelity model, therefore, a more realistic and

challenging scenario was presented here and solved.

Figure 13 shows bottom hole pressure for the injection

well. The result of high fidelity and TPWL methods is

comparable, though local significant errors can, again, be

clearly observed. These errors in water injection BHP

take place at around production wells breakthrough

times.

Eprdm ¼ 1

nt
~Qm

o;hf

Xnt

i¼1

j Q
m;i
o;hf � Q

m;i
o;tpwl j ð15Þ
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Ep ¼ 1

nw

Xnw

m¼1

Em
prd ð16Þ

The accuracy of TPWL can be evaluated visually by

comparing the production rate or injection pressure figures.

Also, we can compute the average production error using

formula 15 and 16 (Cardoso et al. 2009).

In Eq. (15), i stands for time step, m stands for the

number of production well, o represents the producing

oil phase and subscripts hf and tpwl show the results for
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high fidelity and TPWL, respectively. Also ~Q indicates

the average production for each production well in the

high fidelity model. The overall average error of all

wells is then computed by Eq. (16). The same procedure

can be applied for water phase or injection well pressure.

For calculating the error of the injection pressure, the

bottom hole pressure of the injection well should be

substituted instead of production rate in Eq. (15). Table 1

shows calculated error for important parameters using

Eq. (16).

We further note that the high fidelity recovery factor of

the reservoir after 1,000 days of water flooding is 0.4559

and the reduced model recovery factor is 0.4621.

Figure 14 shows the efficiency of TPWL which imple-

ments POD as its space reducing scheme. The required

time for training run includes the time needed for a high

fidelity run and the time required for determining the

reduced space basis functions. From the above figure, it can

be deduced that the time required for computing basis

functions is about 80 s.

The reader may surprise to see a significant high fidelity

simulation time for the small case study presented here; the

reason for this, at least partially, is that our implementation

is not generally efficient compared to commercial simula-

tors which utilize efficient solvers particularly linear

solvers.

Although we have not tested TPWL for realistic reser-

voirs containing numerous grids because of our limitations,

but our tests for various small cases indicate that high

fidelity simulation is largely affected by number of grid

blocks but TPWL representation is less sensitive to the

dimension of the model. This is because the linear model

consists of multiplication and summation of matrices

which takes only a few seconds for calculation (inverse of
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Fig. 13 Water injection BHP

Table 1 Calculated errors for important parameters

Parameter Oil production Water production Injection pressure

Error 0.017181 0.037288 0.0091
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converged Jacobian matrix can be directly saved during

training run).

Conclusion

1. We developed a surrogate simulator with trajectory

piecewise linearization and used it for efficiently

simulating hypothetical oil reservoirs under water

flooding scenarios. In this method, the traditional fully

implicit discretization of flow equations is replaced by

a linear model, which eliminates the demand for using

solvers for subsequent runs.

2. For further efficiency, TPWL has to accompany a

space-reducing scheme, which is used for reducing the

number of model unknowns by projecting it into a

lower space. For achieving this objective, POD was

successfully used in this study.

3. Achieved results from TPWL and high fidelity model

show close agreement and robustness of TPWL model.

4. TPWL method needs to be developed and further

tested for situations under capillary forces, strong

gravity differences between phases or compressible

reservoir fluids which encompass several state vari-

ables because in these cases, the stability of TPWL

deteriorates and requires prescribing enhanced math-

ematical methods.
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