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Abstract One of the most important phenomena in petro-

leum industry is the precipitation of heavy organic materials

such as asphaltene in oil reservoirs, which can cause diffu-

sivity reduction and wettability alteration in reservoir rock

and finally affect oil production and economical efficiency.

In this work, the model based on a feed-forward artificial

neural network (ANN) optimized by imperialist competitive

algorithm (ICA) to predict of asphaltene precipitation is

proposed. ICA is used to decide the initial weights of the

neural network. The ICA–ANN model is applied to the

experimental data reported in the literature. The performance

of the ICA–ANN model is compared with Scaling model and

conventional ANN model. The results demonstrate the

effectiveness of the ICA–ANN model.

Keywords Asphaltene � Precipitation � Artificial neural

network � Imperialist competitive algorithm � Prediction

List of symbols

R Solvent to oil ratio (g/mol)

M Molecular weight (g/mol)

W Amount of precipitated asphaltene (weight percent)

Y Function defined by Eq. 1

X Function defined by Eq. 2

x Function defined by Eq. 4

y Function defined by Eq. 5

ANN Artificial neural network

PSO Particle swarm optimization

ICA Imperialist competitive algorithm

Introduction

The precipitation and deposition of crude oil polar fractions

such as asphaltenes in petroleum reservoirs reduce consid-

erably the rock permeability and the oil recovery. So, many

researchers studied this important subject. They introduced

experimental procedures or even analytical models, but a

fully satisfactory interpretation is still lacking. The avail-

able models for description of asphaltene precipitation are

divided into two general groups. The first group consists of

thermodynamic models, which need asphaltene properties

such as density, molecular weight and solubility parameter

for prediction of asphaltene phase behavior. All those

models consider asphaltene as a pure pseudo-component,

but this assumption causes much deviation in the prediction

of asphaltene phase behavior (Pedersen et al. 1989); the

second group of models is based on the scaling approach

which explained separately. In this paper, the ability of the

artificial intelligence in establishing and predicting amount

of asphaltene precipitation is to be investigated. Artificial

intelligence have been widely used and are gaining atten-

tion in petroleum engineering because of their ability to

solve problems that previously were difficult or even

impossible to solve. One example of ability neural network

in well-log analysis. This technique has been increasingly

applied to predict reservoir properties using well-log data

(Doveton and Prensky 1992; Balan et al. 1995).

A soft sensor is a conceptual device whose output or

inferred variable can be modeled in terms of other

parameters that are relevant to the same process (Rallo

et al. 2002). According to Rallo et al. (2002), artificial
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neural network (ANN) could be used as soft sensor

building approach.

The determination of network structure and parameters

is very important; some evolutionary algorithms such as

genetic algorithm (GA) (Qu1 et al. 2008), back propagation

(BP) (Tang and Xi 2008), pruning algorithm (Reed 1993),

simulated annealing (de Souto et al. 2002) can be used for

this determination. Recently, a new evolutionary algorithm

has been proposed by Atashpaz-Gargari and Lucas (2007)

which has inspired from a socio-political evolution, called

imperialist competitive algorithm (ICA).

In the present work, we propose ICA for optimizing the

weights of feed-forward neural network. Then simulation

results demonstrate the effectiveness and potential of the

new proposed network for asphaltene precipitation pre-

diction compared with scaling model (Hu and Guo 2001)

using the same data.

Scaling model

The three variables involved in the scaling equation are the

weight percent of precipitated Asphaltenes, W (based on the

weight of feed oil), the dilution ratio, R (defined as the ratio

of injected solvent volume to weight of crude oil), and the

molecular weight of solvent, M. Rassamdana et al. (1996)

combined the three variables into two (X, Y) as follows:

X ¼ R

MZ
ð1Þ

Y ¼ W

RZ
0 ð2Þ

Z and Z0 are two adjustable parameters and must be

carefully tuned to obtain the best scaling fit of the

experimental data. They suggested Z0 is a universal constant

of -2 and Z = 0.25 regardless of oil and precipitant used. The

proposed scaling equation is expressed in terms of X and Y

through a third-order polynomial function

Y ¼ A1 þ A2X þ A3X2 þ A4X3 X [ Xcð Þ ð3Þ

where Xc is the value of X at the onset of asphaltene

precipitation.

Hu et al. (2000) performed a detailed study on the

application of scaling equation proposed by Rassamdana

et al. (1996) for asphaltene precipitation. They examined

the universality of exponents Z and Z0 and found that Z0 is a

universal constant (Z0 = -2) while exponent Z depends on

the oil composition and independent of specific precipitant

(n-alkane) used. For the experimental data used, they found

also that the optimum value of Z is generally within the

range of 0.1 \ Z \ 0.5.

Despite the simplicity and accuracy of the scaling equa-

tion mentioned above, it is restricted to use at a constant

temperature and since temperature is not involved in the

scaling equation as a variable, it is not adequate for corre-

lating and predicting the asphaltene precipitation data

measured at different temperatures. Due to this issue, Ras-

samdana et al. modified their scaling equation by implanting

temperature parameter in the scaling equation. Based on the

previous equation, they defined two new variables x and y:

x ¼ X=TC1 ð4Þ

y ¼ Y=XC2 ð5Þ

in which X and Y are variables defined as in Eqs. (1) and (2)

and constant C1 and C2 are adjustable parameters. They

reported that the good fit of their experimental data can be

achieved by setting C1 = 0.25 and C2 = 1.6.

Again the new scaling equation is a third-order poly-

nomial in general form of:

y ¼ b1 þ b2x þ b3x2 þ b4x3 x [ xcð Þ ð6Þ

Hu et al. (2001) studied the effects of temperature,

molecular weight of n-alkane precipitants and dilution ratio

on asphaltene precipitation in a Chinese crude oil

experimentally. The amounts of asphaltene precipitation at

four temperatures in the range of 293–338 K were measured

using seven n-alkanes as precipitants. They found that their

experimental data could not be well correlated by setting

C1 = 0.25 and C2 = 1.6 as recommended by Rassamdana

et al. (1996). They reported that their experimental data

could be correlated successfully by choosing C1 = 0.5 and

C2 = 1.6. Regression plot of predicted asphaltene

precipitation using scaling model (Hu and Guo 2001)

against experimental data is shown in Fig. 1.

Artificial neural networks

Artificial neural networks are parallel information pro-

cessing methods which can express complex and nonlinear

relationship use number of input–output training patterns

from the experimental data. ANNs provides a non-linear

mapping between inputs and outputs by its intrinsic ability

(Hornik et al. 1990).

Fig. 1 Movement of colonies toward their relevant imperialist
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The most common neural network architecture is the

feed-forward neural network. Feed-forward network is the

network structure in which the information or signals will

propagate only in one direction, from input to output. A

three layered feed-forward neural network with back

propagation algorithm can approximate any nonlinear

continuous function to an arbitrary accuracy (Brown and

Harris 1994; Hornick et al. 1989).

The network is trained by performing optimization of

weights for each node interconnection and bias terms until

the output values at the output layer neurons are as close as

possible to the actual outputs. The mean squared error of

the network (MSE) is defined as:

MSE ¼ 1

2

XG

k¼1

Xm

j¼1

YjðkÞ � TjðkÞ
� �2 ð7Þ

where m is the number of output nodes, G is the number of

training samples, YjðkÞ is the expected output, and TjðkÞ is

the actual output. The data are split into two sets: a training

data set and a validating data set. The model is produced

using only the training data. The validating data are used to

estimate the accuracy of the model performance.

Imperialist competitive algorithm

The ICA is a new evolutionary algorithm in the evolu-

tionary computation field based on the human’s socio-

political evolution (Atashpaz-Gargari and Lucas 2007).

Like other evolutionary algorithms, the ICA starts with

initial populations called countries. There are two types of

countries: colony and imperialist (in optimization termi-

nology, countries with the least cost) which together form

empires. In the imperialistic competition process, imperi-

alists try to attempt to achieve more colonies. So during the

competition, the powerful imperialists will be increased in

the power and the weak ones will be decreased in the

power. When an empire loses all of its colonies, it is

assumed to be collapsed. At the end, the most powerful

imperialist will remain in the world and all the countries

are colonies of this unique of this empire. In this stage,

imperialist and colonies have the same position and power.

The implementation procedures of our proposed

matching strategy based on ICA are described as follows.

Generating initial empire

A country formed as an array of variable values to be

optimized. In a Nvar dimensional optimization problem, this

array defined by:

Country ¼ P1;P2;P3; . . .;PNvar
½ � ð8Þ

The cost of a country is found by evaluating the cost

function f :

Cost ¼ f countryð Þ ¼ f ð½P1;P2;P3; . . .;PNvar
�Þ ð9Þ

The algorithm starts with the number of initial countries

(Ncountry), number of imperialist (Nimp) and number of the

remaining country are colonies that each belongs to an

empire (Ncol) the initial number of colonies of an empire in

convenience with their powers. To divide the colonies

among imperialists proportionally, the normalized cost of

an imperialist is defined by:

Cn ¼ cn � maxifcig ð10Þ

where cn is the cost of nth imperialist and Cn is its

normalized cost. Having the normalized cost of all

imperialist, the power of each imperialist is calculated by:

Pn ¼ CnPNimp

i¼1 Ci

�����

����� ð11Þ

In the other hand, the normalized power of an

imperialist is determined by its colonies. Then, the initial

number of an imperialist will be:

NCn ¼ roundfPn � Ncolg ð12Þ

where NCn is the initial number of colonies of nth empire

and Ncol is the number of all colonies. To divide the col-

onies among imperialists, NCn of the colonies is selected

randomly and assigned them to each imperialist. The col-

onies together with the imperialist form the nth empire.

Moving colonies of an empire toward the imperialist

The imperialist countries try to improve their colonies and

make them a part of themselves. This fact is modeled by

moving all colonies toward their relevant imperialist. Fig-

ure 1 (Atashpaz-Gargari and Lucas 2007) shows this move-

ment. In this figure, the colony moves toward the imperialist

by x (is a random variable with uniform distribution) units.

x�Uð0; b � dÞ ð13Þ

where b is a number greater than 1 and d is the distance

between a colony and an imperialist. In the moving pro-

cess, a colony may reach a position with lower cost than

that of its imperialist. In this case, the imperialist and the

colony change their positions. Then, the algorithm will

continue by the imperialist in the new position and then

colonies start moving toward this position.

The total power of an empire

The total power of an empire depends on both the power of

the imperialist country and the power of its colonies. This

fact is modelled by defining the total cost by:
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TCn ¼ Cost imperialistnð Þ
þ nmeanfcostðcolonies of impirenÞg ð14Þ

where TCn is the total cost of then th empire, and n is a

positive number which is considered to be less than 1. A

small value for n implies that the total power of an empire

to be determined by just the imperialist and increasing it

will increase the role of the colonies in determining the

total power of an empire. The value of 0.1 for n is a proper

value in most of the implementations.

Imperialistic competition

All empires try to take the possession of colonies of other

empires and control them. The imperialistic competition

gradually brings about a decrease in the power of weaker

empires and an increase in the power of more powerful

ones. This competition is modelled by just picking some

Table 1 Compositions (mol%) and properties of the degassed Cao-

qiao crude oil and separator gas

Component Degassed oil Separator gas

CO2 0.0 2.96

N2 0.0 1.18

C1 0.0 89.37

C2 0.0 3.34

C3 0.0 2.10

i-C4 0.0 0.32

n-C4 0.0 0.26

i-C5 0.16 0.22

n-C5 0.58 0.15

n-C6 1.2 0.12

C7
? 98.06

C11
? 87.16

C7
? molecular weight (g/mol) 503.6

C7
? density (at 293 K) 0.9526

Reservoir temperature 343

Bubble point pressure at 343 K (MPa) 9.8

Gas oil ratio (GOR, m3/m3) 30.2

Saturates (wt%) 38.0

Aromatics (wt%) 47.6

n-C5 asphaltenes (wt%) 7.26

Resins (wt%) 18.6

Table 2 Comparison between the performances of ICA–ANN and

scaling model

ICA–ANN ANN Scaling

MSE 0.0032749 0.83759 0.69396

R2 0.99367 0.95586 0.96413

Fig. 2 Regression plot of prediction by scaling equation (Hu and

Guo 2001)
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precipitation (ICA-ANN): a training, b test
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(usually one) of the weakest colonies of the weakest

empires and making a competition among all empires to

possess this colonies.

To start the competition, first, the possession probability

of each empire is found based on its total power. The

normalized total cost is obtained by:

NTCn ¼ TCn � maxifTCig ð15Þ

where, TCn and NTCn are the total cost and the normalized

total cost of nth empire, respectively. Having the

normalized total cost, the possession probability of each

empire is given by:
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PPn
¼ NTCnPNimp

i¼1 NTCi

�����

����� ð16Þ

To divide the mentioned colonies among empires,

vector P is formed as

P ¼ PP1
;PP2

;PP3
; . . .;PPNimp

h i
ð17Þ

Then the vector R with the same size as P whose

elements are uniformly distributed random numbers is

created,

R ¼ r1; r2; r3; . . .rNimp

� �
ð18Þ

Then vector D is formed by subtracting R from P

D ¼ P � R ¼ D1;D2;D3; . . .;DNimp

� �
ð19Þ

Referring to vector D, the mentioned colony (colonies)

is handed to an empire whose relevant index in D is

maximized.

Powerless empire will collapse in the imperialistic

competition and their colonies will be divided among other

empires. At the end, all the empires except the most

powerful one will collapse and all the colonies will be

under the control of this unique empire. In this stage,

imperialist and colonies have the same position and power.

Results and discussion

In this study, an ANN was used to build a model to predict

asphaltene precipitation using the data reported in literature

Fig. 6 Regression plot of ICA-

ANN
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(Hu and Guo 2001). The best ANN architecture was: 3-4-

10-1 (3 input units, 4 hidden neurons in first layer, 10

hidden neurons in second layer, 1 output neuron). ANN

model trained with back propagation network was trained

by Levenberg–Marquardt using three parameters: (1)

molecular weight, (2) dilution ratio, and (3) temperature as

inputs. The transfer functions in hidden and output layer

are sigmoid and linear, respectively. Physical and ther-

modynamic properties of oil used for generating experi-

mental data by Hu and Guo (2001) are shown in Table 1.

ICA is used as neural network optimization algorithm

and the MSE used as a cost function in this algorithm. The

goal in proposed algorithm is minimizing this cost func-

tion. Every weight in the network is initially set in the

range of [-1, 1]. In these simulations, the number of

imperialists and the colonies is considered 4 and 40,

respectively; parameter b is set to 2. The number of

training and testing data is 130 and 60, respectively.
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The simulation performance of the ICA–ANN model

and ANN model were evaluated on the basis of MSE and

efficiency coefficient R2. Table 2 gives the MSE and R2

values for the three different models of the validation

phases. Prediction of asphaltene precipitation by scaling

model is shown in Fig. 2 and prediction of asphaltene

precipitation in the training and test phase is shown in

Fig. 3. The simulation performance of the ICA–ANN

model and ANN model were evaluated on the basis of

MSE and efficiency coefficient R2. Table 2 gives the MSE

and R2 values for three different models of the validation

phases. Training state and regression plot and performance

of ICA–ANN and ANN models are shown in Figs. 4, 5, 6,

7, 8 and 9, respectively. It can be observed that the per-

formance of ICA–ANN model is better than scaling model

and ANN model.

Conclusions

The idea of ICA algorithm is that each initial point of the

neural network is selected by ICA and the fitness of the

ICA is determined by a neural network. The experiment

with experimental data reported in literature (Hu and Guo

2001) has showed that the ICA–ANN model is successfully

demonstrated on prediction of asphaltene precipitation also

predictive performance of the proposed model is better

than that of scaling model (Hu and Guo 2001) and con-

ventional ANN model. One problem when considering the

combination of neural network and ICA for prediction of

asphaltene precipitation is the determination of the optimal

neural network structure. Proposed neural network struc-

ture described in this work is determined manually.

A substitute method is to apply the ICA or another evo-

lutionary algorithm for neural network structure optimiza-

tion, which will be a part of our future work. The proposed

asphaltene precipitation prediction model may be com-

bined with existing asphaltene precipitation modeling

softwares to speed up their performance, reduce the

uncertainty and increase their prediction and modeling

capabilities.
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