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Abstract
This study aims to determine the crucial variables for predicting agricultural drought in various climates of Iran by employ-
ing feature selection methods. To achieve this, two databases were used, one consisting of ground-based measurements and 
the other containing six reanalysis products for temperature (T), root zone soil moisture (SM), potential evapotranspiration 
(PET), and precipitation (P) variables during the 1987–2019 period. The accuracy of the global database data was assessed 
using statistical criteria in both single- and multi-product approaches for the aforementioned four variables. In addition, five 
different feature selection methods were employed to select the best single condition indices (SCIs) as input for the support 
vector regression (SVR) model. The superior multi-products based on time series (SMT) showed increased accuracy for P, 
T, PET, and SM variables, with an average 47%, 41%, 42%, and 52% reduction in mean absolute error compared to SSP. In 
hyperarid climate regions, PET condition index was found to have high relative importance with 40% and 36% contributions 
to SPEI-3 and SPEI-6, respectively. This suggests that PET plays a key role in agricultural drought in hyperarid regions 
because of very low precipitation. Additionally, the accuracy results of different feature selection methods show that ReliefF 
outperformed other feature selection methods in agricultural drought modeling. The characteristics of agricultural drought 
indicate the occurrence of drought in 2017 and 2018 in various climates in Iran, particularly arid and semi-arid climates, 
with five instances and an average duration of 12 months of drought in humid climates.

Keywords  Agricultural drought · Climates of Iran · Combined condition indices · Feature selection methods · Support 
vector regression

Introduction

Agricultural drought monitoring is a pre-requirement for 
agricultural management and is of great importance for sus-
tainable development, especially in arid regions. Therefore, 
it is crucial to develop an integrated agricultural drought 
index to understand the evolution of agricultural drought 
monitoring, forecasting, risk assessment, and crisis manage-
ment (Feng et al. 2019; Tian et al. 2022). Challenges related 
to monitoring agricultural drought include, but are not lim-
ited to, obtaining the required datasets. Global gridded and 
satellite products with high spatial resolution and temporally 
continuous datasets can be very useful in monitoring any 
type of drought, particularly agricultural drought (Al-Yaari 
et al. 2019).

One of the main challenges in using reanalysis or other 
types of global products for drought analysis is dealing with 
errors in these products compared to ground-based measure-
ments (Ma et al. 2019; Fan et al. 2022). Despite extensive 
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research on error analysis of global products for precipitation 
(Azizi et al. 2020; Saemian et al. 2021; Ghomlaghi et al. 
2022; Fooladi et al. 2023), temperature (Gleixner et al. 2020; 
Rodrigues 2021; Zhang et al. 2021; Xu et al. 2023), evapo-
transpiration (Shirmohammadi-Aliakbarkhani and Saberali 
2020; Elnashar et al. 2021; Ochege et al. 2021; Panahi et al. 
2021; Zhu et al. 2022; Liu et al. 2023; Yao et al. 2023), and 
soil moisture (Li et al. 2020, 2022; Wu et al. 2021; Fan et al. 
2022; Huang et al. 2022; Sion et al. 2022), there are still 
research gaps when it comes to the combination of global 
products (Allies et al. 2022; Min et al. 2022). Many studies 
have evaluated combination models to increase the accu-
racy of multi-product approaches compared to single-prod-
uct approaches (Fooladi et al. 2021, 2023; Jiao et al. 2021; 
Chen et al. 2022). In recent years, multi-product datasets 
have been used for developing integrated drought indices 
(Jiao et al. 2021; Alkaraki and Hazaymeh 2023a).

The past few decades have been accompanied by a trans-
formation in methods for developing drought indices, shift-
ing from single input variables (e.g., standardized precipi-
tation index (SPI) (McKee et al. 1993) and soil moisture 
index (SSI) (Hao and AghaKouchak 2013)) to multi-variate 
indices (e.g., standardized precipitation evapotranspiration 
index (SPEI) (Vicente-Serrano et al. 2010), standardized 
precipitation temperature index (SPTI) (Wable et al. 2019), 
and new multivariate standardized drought index (MSDI) 
(Hao and AghaKouchak 2013)). Additionally, indices based 
on parametric probability distribution functions have been 
replaced by nonparametric frameworks that describe drought 
more effectively (Hao and Aghakouchak 2014; Farahmand 
and AghaKouchak 2015; Alizadeh and Nikoo 2018). Fur-
thermore, the development of combined condition indices 
(CCIs) such as vegetation health index (VHI) (Kogan 1995), 
scaled drought condition index (SDCI) (Rhee et al. 2010b), 
microwave integrated drought index (MIDI) (Zhang and 
Jia 2013), and integrated drought monitoring index (IDMI) 
(Arun Kumar et al. 2021) has been widely advanced using 
single condition indices (SCIs) such as precipitation condi-
tion index (PCI) (Rhee et al. 2010a), temperature condition 
index (TCI) (Kogan 1995), potential evapotranspiration 
condition index (PETCI) (Allen et al. 2007), soil moisture 
condition index (SMCI) (Zhang and Jia 2013), and vegeta-
tion condition index (VCI) (Kogan 1995).

Identifying suitable variables that contribute to the pre-
diction accuracy of drought indices poses significant chal-
lenges in drought management (Ghazipour and Mahjouri 
2022). To develop accurate drought prediction models, 
prior to selection, feature selection (FS) methods have been 
employed to identify the most effective predictors (Feng 
et al. 2019). Although feature selection methods have been 
widely utilized in various disciplines, their application in 
drought research has been limited to a few studies, such as 
variable selection using random forests (VSURF) (Feng et al. 

2019), principal component analysis (PCA) (Arun Kumar 
et al. 2021), and Boruta random forest (Jamei et al. 2023). 
This study attempts to bridge this gap by proposing a com-
prehensive framework for predicting agricultural drought 
using feature selection methods based on different climates. 
Various machine learning methods such as artificial neural 
networks (ANNs) (Deo and Şahin 2015; Feng et al. 2019) 
and support vector regression (SVR) (Azamathulla and 
Ghani 2011; Malik et al. 2021; Ghazipour and Mahjouri 
2022) have been employed thus far.

Based on the comprehensive review of the literature, 
there is a potential to enhance the performance of integrated 
agricultural drought indices. This study makes significant 
contributions to the literature by (1) presenting a compre-
hensive accuracy evaluation by combining six products (i.e., 
CRU TS4.05, TerraClimate, ERA5, MERRA2, GLDAS2.1, 
and GLEAM3.6a) for four key agrometeorological variables 
including mean temperature (T), precipitation (P), root-zone 
soil moisture (SM), and potential evapotranspiration (PET) 
using in situ observations under various climates in Iran; (2) 
determining the significance of key drought variables for 
predicting agricultural drought based on various FS meth-
ods; (3) developing SVR models with the best predictors for 
accurate agricultural drought prediction.

This study developed a machine learning feature selec-
tion-based model for predicting agricultural drought predic-
tion multi-product datasets. The main research aims included 
(i) determining the superior combination of products for 
P, T, PET, and SM variables with the highest accuracy 
using ground-based measurements; (ii) finding appropriate 
drought-affecting variables for predicting drought indices 
between SCIs, and (iii) comparing new integrated agricul-
tural drought indices based on SVR FS-based with CCIs 
(i.e., VHI, SDCI, MIDI, and IDMI) using statistical criteria 
and drought characteristics.

Material and methods

Case study

The study area, Iran, is located between the latitude of 
25°–40° N and longitude 44°–63° E (Fig. 1). As the second 
biggest country in the Middle East, Iran has a population 
of ~ 82 million and covers an area of 1,648,195 km2 (Bazraf-
shan and Cheraghalizadeh 2021; Rezaei 2021). The lowest 
and the highest points in Iran are 29 m below sea level and 
5597 m above mean sea level located on the southern coast 
of the Caspian Sea and Mount Damavand, respectively (Baz-
rafshan and Cheraghalizadeh 2021).

The mean annual P in the 1987–2019 period was 
357 mm, and the difference between the lowest (52 mm 
y−1) and highest (1692 mm y−1) P was 1642 mm (Madani 
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2014; Moshir Panahi et al. 2020). PET for the study site 
was computed based on the FAO 56 Penman–Monteith 
(PMF56) method (Allen et al. 1998). The mean differ-
ence of PET in Iran is approximately 2868 mm y−1 due to 
climate diversity from the Caspian Sea’s southern coast to 
the southeastern regions in Iran (Sharafi and Mohammadi 
Ghaleni 2021).

The aridity index (AI) value for the study site was 
calculated based on the ratio of mean annual P to the 
mean annual PET (AI = P/PET). This index was used 
to categorize the aridity of the basins, including hyper-
arid (AI ≤ 0.03), Arid (0.03 < AI ≤ 0.2), semiarid 
(0.2 < AI ≤ 0.75), and humid (AI > 0.75) regions (UNE-
SCO 1979; Tsiros et al. 2020). In this study, AI was used 
to classify the hydrological sub-basin climates of the case 
study (Fig. 1).

Iran has 30 main hydrological sub-basins, 9 of which 
(37%) were classified as hyperarid (HA), 11 (42%) as arid 
(AR), 7 (18%) as semiarid (SA), and 3 (2%) as humid (HU) 
climates (Fig. 1). The specifications of these basins are pre-
sented in Table 1.

The workflow of the research is summarized in six steps 
(Fig. 2).

Sources of datasets

The research datasets were obtained from three sources 
including ground-based measurements, reanalysis prod-
ucts, and remote sensing datasets. These data sources are 
described in the following subsections.

Ground‑based measurements

Two types of ground-based datasets, including synoptic and 
agrometeorological station measurements, were sourced 
from Iran's Meteorological Organization (i.e., IRIMO 
https://​data.​irimo.​ir/​login/​login.​aspx). The daily meteoro-
logical variables including P, minimum and maximum air 
temperature (Tmin and Tmax), sunshine duration (Sd), rela-
tive humidity (RH), and wind speed (U2) for the period 
1987–2019 were obtained from IRIMO for 100 synoptic 
stations (Fig. 1). Daily PET was obtained using the FAO 56 
Penman–Monteith (PMF56) method (Allen et al. 2006) and 
measured meteorological variables for 100 synoptic stations 
(Table 2).

Addtionally, SM data in seven depths (including, 5, 10, 
20, 30, 50, 70, and 100 cm below the soil surface) with a 
temporal resolution of 3-h from 43 agrometeorological sta-
tions during 2014–2021 were used (Table 2). Among the 
43 stations, 20 stations were selected after preprocessing, 
based on having the least missing data for all depths within 
the 2014–2019 period. To determine the average root zone 
soil moisture (0–100 cm), the soil moisture measurements 
for each station from various depths are weighted after cal-
culating the monthly soil moisture at all depths (Zhang et al. 
2020; Xu et al. 2021; Ji et al. 2022). Weights were assigned 
to measurement depths based on the ratio of the distance 
between adjacent depths and the total root-zone depth. The 
assigned weights were 0.05, 0.05, 0.10, 0.10, 0.20, 0.20, and 
0.30 for depth intervals of 0–5, 5–10, 10–20, 20–30, 30–50, 
50–70, and 70–100 cm, respectively. In this analysis, various 
clusters or climates were analyzed (Table 1). The variation 

Fig. 1   Climate classification of 
stations and basins based on the 
aridity index across the study 
area

https://data.irimo.ir/login/login.aspx
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and anomalies of P, T, PET, and SM in four climates (i.e., 
HA, AR, SA, and HU) are presented in Fig. 3.

The yearly changes in variables (solid black line), trend 
of variation (dashed cyan line), and long-term anoma-
lies (red and green bar charts) are presented in Fig. 3. 
A declining trend for P was detected across all climates 
(Fig. 3a1–a4), which influenced the overall precipitation 
trend in Iran. The negative precipitation anomalies during 
2016–2018 were noticeable in hyper-arid (Fig. 3a1) and 
arid climates (Fig. 3a2). In recent years (2014–2019), the 
wettest year was 2019, with positive anomalies of 21, 67, 
89, and 164 mm in HA, AR, SA, and HU climates, respec-
tively. Meanwhile, 2017 was the driest year with anomalies 
of -35, -27, -150, and -328 mm from the long-term mean 
in HA, AR, SA, and HU climates, respectively. A clear 
upward trend in temperature was evident across all studied 

climates (Fig. 3b1–b4) with positive temperature anoma-
lies starting from 1998. The average annual temperature 
increased by 1.24, 0.57, 0.88, and 1.40 °C from 1987 to 
2019 in HA, AR, SA, and HU climates, respectively.

As observed, the increasing trend of PET (Fig. 3c1–c4) 
corresponds to an increasing trend of temperature in all 
climates. The PET exhibited a significant rising trend, with 
an approximately 13, 7, 5, and 3 mm per year increase 
from 1987 to 2019, in HA, AR, SA, and HU climates, 
respectively. Positive anomalies of PET were seen in 2000 
in different climates. The variation in soil moisture showed 
a downtrend in all climates except for the humid climate 
(Fig. 3d4), which had an increasing trend. The greatest 
decrease in SM is associated with the highest increase in 

Table 1   Specifications of basins in the present study

Cluster Climate AI value Basin code Basin name Area (103 km2) P (mm year−1) T (OC) PET 
(mm 
year−1)

Cluster 1 Hyper-arid (HA) 0.03 46 Lut Desert 206 117 22.2 3819
0.03 52 Hamun Hirmand 34 98 18.0 3130
0.03 49 Daranjir Desert 51 108 23.4 3455
0.03 48 Siahkuh Desert 49 123 26.1 3837

Cluster 2 Arid (AR) 0.04 53 Hamun Meshkil 37 117 24.5 3299
0.04 29 Baluchestan 49 118 20.7 3177
0.04 45 Hamun Jazmurian 69 123 20.1 3042
0.06 28 Bandarabbas 45 156 19.0 2733
0.06 27 Kal Mehran 63 166 21.5 2882
0.06 44 Abarghu 57 149 19.9 2337
0.08 51 Khaf 33 188 15.5 2472
0.08 47 Central Desert 227 221 20.7 2855
0.09 26 Mand Karian 48 245 22.9 2861
0.11 43 Tashk Bakhtegan 31 243 15.5 2160
0.12 60 Ghareghum 44 270 17.5 2182
0.13 25 Heleh 21 308 16.6 2393
0.18 41 Salt Lake 93 324 14.9 1791
0.19 17 Atrak 26 327 15.0 1735
0.19 42 Gavkhuni 42 271 12.6 1209

Cluster 3 Semiarid (SA) 0.20 11 Aras 40 331 23.2 1669
0.20 30 Urmia 52 359 18.2 1808
0.20 24 Jarrahi Zohreh 41 330 15.3 1850
0.21 23 Karoon 67 451 24.9 2182
0.27 22 Karkheh 52 418 17.1 1570
0.31 21 West Border 39 488 16.4 1570
0.31 16 Gharesu Gorgan 13 361 12.1 1156
0.38 13 Sefidrood 59 434 12.3 1146

Cluster 4 Humid (HU) 0.82 14 Sefidrood Haraz 11 938 16.4 1150
0.92 15 Haraz Gharesu 19 588 16.3 1301
1.02 12 Talesh 7 986 13.9 969
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NOAA STAR (VCI)

Step 1. Sources of data

1.2. Reanalysis products1.1. Ground-based measurements

ERA5 (P, T,
PET, SM)

CRUTS 4.05
(P, T)

GLDAS2.1
(P, T, SM)

GLEAM3.6
(PET, SM)

MERRA-2
(P, T, SM)

TERRA(P,T,
PET, SM)

Synoptic stations 
(P,T, PET)

Agrometeorological 
stations (SM)

1.3. Remote sensing data

Step 2. Accuracy evaluation of reanalysis datasets

2.1. Superior Single Products 
(SSP)

2.2. Superior Multiple product 
based on 12 Months (SMM)

2.3. Superior Multiple products 
based on Time series (SMT)

3.1. Standardized indices
(SPI, SPEI, SSI)

3.2. Single condition indices
(PCI, TCI, PETCI, SMCI, VCI)

3.3. Combined condition indices
(VHI, SDCI, MIDI, IDMI)

Step 4. Feature selection strategy

4.1. Filter
(PCA, ReliefF, MRMR)

4.2. Embedded
(NCA)

4.3. Wrapper
(OOA)

Step 5. Support vector regression for agricultural drought prediction 

5.1. SVR_All F. 5.4. SVR_MRMR 5.6. SVR_OOA

Step 6. Models Evaluation

6.1. Statistical criteria
(R, R2, MAE, MBE, RMSE, NRMSE)

6.2. Drought characteristics 
(Run Theory)

5.2. SVR_PCA 5.3. SVR_ReliefF 5.5. SVR_NCA

Fig. 2   Multistep workflow for agricultural drought prediction based on ensemble models with various feature selection methods

Table 2   Ground-based 
measurement datasets used in 
the present study

Station Duration Temporal Spatial Variables Sources

Synoptic 1987–2019 daily 100 st P, Tmin, Tmax, 
U2, RH, Sd, 
PETPMF56

IRIMO

Agrometeorological 2014–2021 3-h 43 st SM (5, 10, 20, 
30, 50, 70 and 
100 cm)
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T and PET, occurring in the hyperarid climate (Fig. 3d1). 
The negative anomaly of SM can be observed in 2017, 
indicating an agricultural drought.

Reanalysis products

In this study, six global gridded products including CRU 
TS4.05, ERA5, TerraClimate, MERRA-2, GLDAS2.1, and 
GLEAM 3.6a were used for two aims: (i) to evaluate the 
variable accuracy of these products compared to ground 
measurements and (ii) determine a superior combination of 
these products for calculating the drought condition indices. 

A summary of this study’s product characteristics is dem-
onstrated in Table 3.

In this study, a range of 0–100 cm was defined for the 
root-zone depth, and different datasets with varying soil 
layer depths were used. To obtain the averaged soil mois-
ture in this range, the datasets were weighted based on their 
corresponding depths. For example, soil moisture measure-
ments from GLDAS at depths of 0–10 cm, 10–40 cm, and 
40–100 cm were weighted with values of 0.1, 0.3, and 0.6, 
respectively, to calculate the root zone soil moisture (Xu 
et al. 2021; Ji et al. 2022). Here, the TerraClimate data-
set represents soil moisture as a root zone depth due to the 
absence of 100 cm depth segmentation in its variables. As 
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Fig. 3   Variation and anomaly of a P, b T, c PET, and d SM in four climates

Table 3   Global gridded products reanalysis-based specifications

Group Data source Product's name Temporal Spatial Resolution Variable References

Interpolated Gauge-based CRU TS4.05 1901–2021 Global 0.5° P, T, PET Harris et al. (2020)
Modeled Reanalysis ERA5 1979–presents Global  ~ 0.28° P, T, PET, SM (0–7, 

7–28, 28–100 cm)
Hersbach et al. (2020)

Ensemble, reanalysis, 
gauge

TerraClimate 1958–present Global  ~ 0.04° P, T, PET, SM Abatzoglou et al. (2018)

Multisource Reanalysis, gauge, 
satellite

MERRA2 1958–present Global 0.5° × 0.625° P, T, PET, SM (10-
100 cm)

Gelaro et al. (2017)

GLDASv.2.1 1980–present Global 0.25° P, T, PET, SM (0–10, 
10–40, 40–100 cm)

Rodell et al. (2004)

GLEAM3.6a 1980–2021 Global 0.25° PET, SM Martens et al. (2017)
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for the GLEAM products, the downloaded variable for root-
zone soil moisture was used.

Remote sensing data

The VCI datasets used here are based on data from vegeta-
tion health products developed by the National Oceanic and 
Atmospheric Administration and processed by the Center 
for Satellite Applications and Research (i.e., NOAA STAR) 
(https://​www.​star.​nesdis.​noaa.​gov/​smcd/​emb/​vci/​VH/​vh_​
ftp.​php).

The vegetation health products include the VCI obtained 
from the radiance data captured by the advanced very high-
resolution radiometer (AVHRR). The vegetation health 
products derived from AVHRR utilize the NOAA global 
area coverage dataset, spanning from 1981 to the present. 
The data and images in the vegetation health products (4-km 
spatial resolution) are composited weekly. The VCI time 
series from 1981 to 2021 was downloaded in the NETCDF 
format (https://​www.​star.​nesdis.​noaa.​gov/​pub/​corp/​scsb/​
wguo/​data/​Blend​ed_​VH_​4km/​VH/) with a weekly temporal 
resolution (Fernández-Tizón et al. 2020).

Accuracy evaluation of single‑ and multi‑products

The accuracy of different products varies with climate, ele-
vation, and location (Fallah et al. 2020; Fooladi et al. 2023). 
To address this gap, it is recommended to create a combined 
dataset by integrating multiple products. This approach aims 
to enhance the accuracy of the resulting dataset. However, 
before combining products, it is necessary to evaluate sin-
gle products against in situ observations to select the best 
options.

For a more accurate combination of products, obser-
vations of soil moisture as a key variable in agricultural 
drought prediction were classified in different climates based 
on AI. The accuracy of P, T, PET, and SM variables was 
assessed separately in each climate.

Then, the accuracy ratio of the six products (i.e., CRU, 
ERA, TerraClimate, MERRA, GLDAS, and GLEAM) for 
the four variables was assessed using three different meth-
ods, namely (i) superior single product (SSP), (ii) superior 
multiple products in each month from January to December 
(SMM), and (iii) superior multiple products in each month 
from first to end of time series (SMT).

In the SSP method, the product with the highest accu-
racy was selected for each of the four variables. In SMM, 
first, the time series of the variables was broken into 12 
(months). Then, the product with the highest accuracy in 
each month was selected. In SMT, for each month from the 
start to the end of the time series, the products with the near-
est value to the observations were selected. Figure 4 shows 
the violin plots of variables related to six products and three 

combination-based approaches (i.e., SSP, SMM, and SMT) 
versus in situ observations for each variable (P, T, PET, and 
SM) in different climates.

Figure 4 indicates the violin plots of T, P, PET, and SM in 
four climates including HA, AR, SA, and HU related to six 
products and three combined-based approaches compared 
to observations.

The mean and median values (represented by the red and 
green lines) indicate that the ranges of variable data across 
all climates close estimations to the observations. This dem-
onstrates the accuracy of the combined products in capturing 
the variability in the variable datasets. In contrast, the results 
of single products for each variable deviate from observa-
tions in all climates. The combined approach, which involves 
integrating multiple reanalysis products, demonstrates a 
higher level of accuracy and lower uncertainty when com-
pared to observations. As shown in Fig. 4 a-g, the supe-
rior single product for P and T variables was ERA5 in HA, 
AR, and HU climates, and CRU in the SA climate. SSP for 
PET (Fig. 4i–l) was CRU in the HA, AR, and SA climates 
and GLEAM in the HU climate. SSP for SM (Fig. 4p) was 
GLEAM in HA, AR, and SA (Fig. 4m–o) and ERA5 in HU. 
According to the violin plot in Fig. 4, the soil moisture data 
series in the reanalysis product exhibited a higher number of 
anomalies compared to other variables. This finding high-
lights the complexity of modeling soil moisture, particularly 
in the root zone depth, which is a crucial variable for predict-
ing agricultural drought.

Drought indices

The drought indices used in this research were divided into 
three categories including standardized indices (SIs), SCIs, 
as well as CCIs. SIs include SPEI, SPI, and SSI, which 
were calculated using ground-based data, as target indices 
for agricultural drought prediction. SCIs were assumed as 
features (inputs or predictors), which are calculated based 
on the most accurate combined products (SMT procedure) 
to model agricultural drought. These included the PCI, TCI, 
PETCI, SMCI, and VCI. To assess the accuracy of predict-
ing agricultural indices, several widely used combination 
indices such as VHI, SDCI, IDMI, and MIDI were taken 
into account. These three types of indices are explained in 
the following sections.

Single condition indices (SCIs)

Many studies have used single products to calculate SCIs, 
such as calculating PCI using global precipitation clima-
tology center (GPCC) (Zhang et al. 2017), climate haz-
ards group infrared precipitation with stations (CHIRPS) 
(Kumar et al. 2021), global precipitation measurement 
(GPM) (Alkaraki and Hazaymeh 2023b), and tropical 

https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php
https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php
https://www.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/VH/
https://www.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/VH/
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Fig. 4   Probability distribution function of single and combined products compared to observed variables as violin plots in climates
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rainfall measuring mission (TRMM) (Cai et  al. 2023; 
Zhang et al. 2022a, b), TCI using MODIS (Arun Kumar 
et al. 2021; Zhang et al. 2022b; Alkaraki and Hazaymeh 
2023b; Cai et al. 2023), PETCI using MODIS (Alkaraki 
and Hazaymeh 2023b), SMCI using GLDAS (Zhang 
et  al. 2017), ESA-CCI (Arun Kumar et  al. 2021), and 
SMAP(Alkaraki and Hazaymeh 2023b), and VCI using 
AVHRR (Zhang et al. 2017) and MODIS (Arun Kumar 
et al. 2021; Cai et al. 2023; Zhang et al. 2022a, b). In this 
study, the selected five SCIs including PCI, TCI, PETCI, 
SMCI, and VCI were calculated using the SMT datasets. 
The formulas for obtaining SCIs are listed in Table 4.

All these SCIs range from zero to one, with smaller 
value indicating a more severe drought (Zhang et  al. 
2022a). For all five SCIs, multiple timescales including 
1, 3, 6, 9, and 12 months, were calculated in all climates. 
In this way, by calculating five SCIs in five-time scales, 
a matrix with 25 columns (features) by 72 rows (monthly 

datasets from Jun-14 to Dec-19 based on SM ground-based 
data) was prepared as an input matrix for the prediction 
model in each climate.

Standardized indices (SIs)

So far, several studies have used standardized indices at mul-
tiple timescales, especially SPI (Zhang et al. 2017; Alkaraki 
and Hazaymeh 2023b; Yin and Zhang 2023) and SPEI (Tian 
et al. 2020; Ali et al. 2022; Yang et al. 2023), to evaluate the 
newly developed indices. To avoid probability distribution 
function fitting, which may not always be the best selection 
of a distribution function, a nonparametric approach was 
proposed for deriving SIs (Farahmand and AghaKouchak 
2015; Fooladi et al. 2021). The SIs including SPI, SPEI, and 
SSI were assumed for target selection. To achieve this aim, 
first, SPIn, SPEIn, and SSIn were calculated at multiple time-
scales (i.e., n = 1, 3, 6, 9, and 12 months) based on ground 

Fig. 4   (continued)
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measurements. Then, the correlation between SCIs and SIs 
was examined at various timescales to determine which SI 
timescale is more correlated with SCIs and select optimal 
SIs as agricultural target indices.

Between SPI, PSEI, and SSI at multiple timescales, 
SPEI-3 and SPEI-6 were selected as target indices for agri-
cultural drought prediction. Some studies have selected 
SPEI-3 (Guo et al. 2019) or SPEI-6 (Tian et al. 2020) as 
agricultural target indices. The SPI index does not account 
for the influence of global warming and climate change 
(Kazemzadeh et al. 2022). SPEI is considered more useful 
for assessing drought events as it takes into account both pre-
cipitation and evapotranspiration, providing a comprehen-
sive perspective on drought conditions. This study employed 
SPEI-3 with a seasonal accumulation period and SPI-6 with 
a semi-yearly accumulation period to characterize seasonal 
drought and semi-annual agricultural drought events.

Combined condition indices (CCIs)

Table 5 presents four CCIs derived from weighted linear 
combinations of SCIs. The CCIs include the MIDI, SDCI, 
VHI, and IDMI. The formulas for calculating these CCIs, 
along with their respective references, are provided in 
Table 5.

The linear combination method, similar to the SCIs illus-
trated in Table 5, is the simplest method for generating new 
multivariate drought indices (Guo et al. 2019). However, 
calculating the weights of different variables due to various 
accumulation periods can be challenging (Hao and Singh 
2015). This study's aims were accomplished by considering 
the research background on linear weighted CCIs by (a) add-
ing PETCI as one of the most important variables for devel-
oping an integrated agricultural condition drought index to 
IDMI, (b) considering accumulation period of SCIs for accu-
rate agricultural drought prediction using multi-timescale 
SCIs as predictors, and (c) clustering the datasets based on 
different climates to consider the effects of climates on the 
relations between key variables.

Feature selection strategy

The FS strategy plays a crucial role in drought prediction 
by identifying the most relevant and informative features or 
variables that contribute to accurate prediction of drought 
events (Feng et al. 2019; Rostami et al. 2021). Feature selec-
tion methods have several advantages such as reducing vari-
ance, increasing the model’s accuracy, and shortening train-
ing time (Lap et al. 2023). The feature selection methods 
in this research were applied for two reasons; (i) selecting 

Table 4   Descriptions of single 
condition indices used in the 
study

The i, j, and k in the above formulas represent the i-th pixel, the j-th month, and the k-th year, respectively. 
PSMTi,j,min, LSTSMTi,j,min, PETSMTi,j,min, SMSMTi,j,min, and PSMTi,j,max, LSTSMTi,j,max, PETSMTi,j,max, 
SMSMTi,j,max denote the multi-year minimum and maximum of pixel i in month j of the most accurate 
precipitation, LST, PET, and soil moisture from global gridded products. In addition, NDVIi,j,min and 
NDVIi,j,max represent the multi-year minimum and maximum of the pixel i in month j of NDVI

Index Formula References Equa-
tion 
number

PCI PCIi,j,k =
PSMTi,j,k−PSMTi,j,min

PSMTi,j,max−PSMTi,j,min

Rhee et al. (2010b) (1)

TCI TCIi,j,k =
LSTSMTi,j,k−LSTSMTi,j,min

LSTSMTi,j,max−LSTSMTi,j,min

Kogan (1995) (2)

PETCI PETCIi,j,k =
PETSMTi,j,k−PETSMTi,j,min

PETSMTi,j,max−PETSMTi,j,min

Allen et al. (2007) (3)

SMCI SMCIi,j,k =
SMSMTi,j,k−SMSMTi,j,min

SMSMTi,j,max−SMSMTi,j,min

Zhang and Jia (2013) (4)

VCI VCIi,j,k =
NDVIi,j,k−NDVIi,j,min

NDVIi,j,max−NDVIi,j,min

Kogan (1995) (5)

Table 5   Characteristics of 
combined condition indices 
used in the study

Index Equation References Eq. number

VHI VHI = 0.5 × VCI + 0.5 × TCI Kogan (1995) (6)
SDCI SDCI = 0.25 × VCI + 0.25 × TCI + 0.5 × PCI Rhee et al. (2010a) (7)
MIDI MIDI = 0.2 × TCI + 0.3 × SMCI + 0.5 × PCI Zhang and Jia (2013) (8)
IDMI IDMI = PCA(PCI, TCI, SMCI, VCI) Arun Kumar et al. (2021) (9)
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the more efficient and relevant SCIs (i.e., PCI, TCI, PETCI, 
SMCI, VCI) or predictors for agricultural drought prediction 
in various climates and (ii) increasing the accuracy of the 
machine learning prediction model by eliminating redundant 
features.

Feature selection methods can be classified into three pri-
mary categories based on the level of supervision available: 
unsupervised, semi-supervised, and supervised. Addition-
ally, these methods are categorized into five groups based on 
the selection strategy employed: Filter, Embedded, Wrapper, 
Hybrid, and Ensemble (Alhenawi et al. 2022). In this study, 
five feature selection methods including PCA, ReliefF, min-
imal redundancy maximal relevance (MRMR), neighbor-
hood components analysis (NCA), and Osprey algorithm 
optimization (OOA) were used as appropriate predictors in 
agricultural drought prediction. Among the five selected FS 
methods, PCA, ReleifF, and MRMR belong to the Filter 
group, NCA to the Embedded group, and OOA to the Wrap-
per group. These FS methods are explained briefly in the 
following sections.

Filter methods

Within filter methods, features are chosen based on the 
statistical characteristics of the data, without employing 
any learning models. In this particular model, features are 
assessed and prioritized using information-theoretic meas-
ures, and subsequently, the features with the highest ranks 
are chosen (Labani et al. 2018). In this study, three methods 
including PCA, ReliefF, and MRMR from filter approaches 
were used for selecting the best inputs in agricultural 
drought modeling.

PCA is a mathematical method utilized to decrease the 
dimensionality of a dataset (Jackson 1983). Due to its sim-
plicity and nonparametric nature, PCA has been extensively 
employed in various types of analyses as a means of extract-
ing pertinent information from intricate datasets (Wold et al. 
1987; Arun Kumar et al. 2021). In PCA, as a feature selec-
tion method, large absolute factor loadings indicate that the 
corresponding variables have a greater impact on the factor 
compared to other variables (Guo et al. 2002).

The ReliefF algorithm (Kira and Rendell 1992), initially 
developed for binary classification problems, has been 
improved to address multiclass problems through the ReliefF 
algorithm (Kononenko 1994). The ReliefF algorithm was 
developed by adapting ReliefF to address continuous class or 
regression problems (Robnik-Šikonja and Kononenko 1997). 
In this research, the SVR model was constructed using the 
first k-PC factors, and for each factor, the top five SCIs with 
the highest loadings were chosen as inputs for the PCA.

This study employed ReliefF and MRMR, widely recog-
nized univariate filters (Alhenawi et al. 2022). The ReliefF 
method chooses random instances and looks for a specified 

number of nearest neighbors with the same class, as well as 
K-nearest neighbors with different classes. After that, the 
process is repeated for each feature by computing the aver-
age of all classes over a specific number of iterations (Zhang 
et al. 2003; Alhenawi et al. 2022). The MRMR method 
chooses features that exhibit higher relevance (demonstrat-
ing a strong correlation with the target class) and lower 
redundancy (displaying a weak correlation with other fea-
tures) (Mandal and Mukhopadhyay 2013).

Embedded strategy

In the embedded model, a learning algorithm is employed 
to explore and find the optimal set of features (Zhang et al. 
2015). As an embedded strategy, the NCA algorithm (Gold-
berger et al. 2005) was incorporated in this study as one of 
the learning methods. NCA does not rely on any parametric 
assumptions regarding the data distribution and can naturally 
handle multiclass problems (Yang et al. 2012). Here, NCA 
was used for selecting SCIs with more relevance to agricul-
tural drought index targets (i.e., SPEI-3 and SPEI-6).

Wrapper strategy

In the wrapper approach, a search method is employed to 
discover the best feature subset. At each step of the search 
strategy, a subset of features is generated and evaluated using 
a classifier or another learning model. Ultimately, the opti-
mal generated feature subset is chosen as the final feature 
set (Chandrashekar and Sahin 2014; Rostami et al. 2021). 
The OOA, developed by Dehghani and Trojovský (2023), is 
inspired by the hunting behavior of Osprey. The algorithm 
mimics the hunting strategies of ospreys, showcasing an 
exceptional ability to optimize and swiftly converge. Draw-
ing upon the inborn capability of ospreys, the algorithm 
presented in this study demonstrates a remarkable ability 
to efficiently identify optimal solutions (Hu et al. 2023). In 
this study, OOA was applied as a search strategy for select-
ing more relevant SCIs in each climate or clustering region 
(Fig. 1).

Developed indices

SVR, functioning as a supervised learning mechanism, 
employs the concept of structural risk minimization to 
improve the handling of multi-dimensional problems. The 
SVR approach utilizes linear equations within the simulation 
algorithm, resulting in improved performance by effectively 
employing a kernel function. In the SVR method, a non-
linear mapping of ϕ is computed in the trait space, where 
Xt represents the input data in Rm and Y(Xt) represents the 
output data in R (Drucker et al. 1996; Vapnik 1999):
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Here, the weights (w) and biases (b) represent the values 
of the regression function, which are determined by mini-
mizing the following function.

In Eq. (11), e represents the errors, while gamma (γ) cor-
responds to the regularization parameters utilized in the 
model to regulate the smoothness of the approximation func-
tion. The optimal figures for these parameters are defined by 
the users. A review of the literature shows that SVR is com-
monly used for agricultural drought prediction (Tian et al. 
2018; Prodhan et al. 2022).

Here, SVR was performed with six input datasets includ-
ing all 25 features, i.e., five SCIs (PCI, TCI, PETCI, SMCI, 
and VCI), by five multi-timescales (1, 3, 6, 9, and 12 months) 
as five SCIs selected using PCA, RReliefF, MRMR, NCA, 
and OOA FS methods. The predicted agricultural drought 
indices with each input dataset were compared with SPEI-3 
and SPEI-6 as target agricultural indices in different climates 
using statistical criteria.

To prioritize the selection of pertinent inputs in the study, 
the cross-correlation coefficient approach is employed to 
assess the time delay between SPEI3 and SPEI6, and each 
input variable. The analysis reveals that the lag times for 
each index (PCI, TCI, PETCI, SMCI, and VCI) in relation 
to SPEI3 and SPEI6 mostly fall within the same month (zero 
lag time) across the majority of the four climates. Further-
more, the correlation coefficient between the chosen input 
indices for the preceding 0–12 months and the current SPEI3 
and SPEI6 generally diminishes as the lag time increases, 
particularly beyond 3 months, in most regions examined. 
Consequently, the input indices are considered to be contem-
poraneous with SPEI3 and SPEI6 in the modeling process, 
without any lag time.

Drought characteristics

The run theory (Herbst et al. 1966) is commonly used for 
drought event identification. Typically, a threshold of -1 is 

(10)Y(Xt) = wT × �(Xt) + b

(11)
min
w.b.ei

j(w.e) =
1

2
wTw +

�

2

∑n

t=1
e2
t

S.T ∶ wT × �(Xt) + b t = 1, 2, ..., n

employed to identify drought events. Droughts generally 
occur when there is a persistence of below-average precipi-
tation for a duration exceeding three consecutive months 
(Liu et al. 2016; Haile et al. 2020). A drought event was 
defined here as a period lasting for at least three consecutive 
months, during which the drought index values remained 
below − 1. Three classes of drought including moderate, 
severe, and extreme are distinguished for different indices 
based on Table 6.

Drought characteristics such as the number of events (N), 
duration (D), frequency (F), and intensity (I) were calcu-
lated for each drought event using the categories outlined 
in Table 6. The drought duration of a drought is computed 
using Eq. (12) (Xu et al. 2019):

The D is determined by summing the durations of indi-
vidual drought events (di) for each station, where n repre-
sents the total drought events. The drought frequency is cal-
culated through Eq. (13) (Spinoni et al. 2014; Wang et al. 
2018):

F is calculated using drought months (nm) divided by total 
months (Nm). The drought intensity (I) is defined by Eq. (14) 
(Wang et al. 2018; Haile et al. 2020).

I is determined by summing the accumulated drought 
index values below the threshold (− 1) for each drought 
event (i), where n represents the total number of drought 
events. In this study, drought characteristics including N, 
D, F, and I were calculated for target indices (i.e., SPEI-3 
and SPEI-6), CCIs (i.e., VHI, SDCI, MIDI, and IDMI) and 
six modeled indices using SVR (i.e., all features as well as 
PCA, ReliefF, MRMR, NCA, and OOA methods) in various 
climates from Jan-14 to Dec-19.

(12)D =

∑n

i=1
di

n

(13)F =
nm

Nm

× 100%

(14)I =
||||
1

n

∑n

i=1
DIi

||||

Table 6   Drought classification based on SIs and CCIs used in this study

Indices (references) Category Threshold Indices (references) Category Threshold

SPI, SPEI, SSI, IDMI (McKee et al. 
1993; Vicente-Serrano et al. 2010; 
Arun Kumar et al. 2021; Salimi et al. 
2021)

No drought (ND)  > − 1 VHI, SDCI, MIDI (Kogan 1995; Rhee 
et al. 2010a; Zhang and Jia 2013)

No drought (ND)  > 0.4
Moderate (MD) (− 1.5, − 1] Moderate (MD) (0.3, 0.4]
Severe (SD) (− 2, − 1.5] Severen (SD) (0.2, 0.3]
Extreme (ED)  ≤ − 2 Extreme (ED)  ≤ 0.2
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Evaluation criteria

Various performance criteria have been employed thus far to 
assess the quality of reanalysis datasets and evaluate the accu-
racy of prediction results. In this study, the accuracy of the 
reanalysis data and each model's predictions was evaluated 
using six statistical measures: the Pearson correlation coef-
ficient (R), coefficient of determination (R2), mean bias error 
(MBE), root mean square error (RMSE), mean absolute error 
(MAE), and normalized root mean square error (NRMSE). 
The explanations for each of the statistical measures are pro-
vided in the following section.
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Table 7   Accuracy of single 
and combined time series using 
reanalysis products

Climate Hyperarid Arid Semiarid Humid

Variable Product MAE R2 MAE R2 MAE R2 MAE R2

P CRU​ 5.93 0.64 8.62 0.64 15.24 0.63 83.54 0.13
GLDAS 23.03 0.14 18.52 0.23 24.47 0.36 81.24 0.02
MERRA​ 32.76 0.05 17.40 0.16 26.01 0.27 85.51 0.03
TERRA​ 45.21 0.08 17.72 0.24 25.40 0.35 84.30 0.01
SSP(ERA5) 4.81 0.66 8.03 0.72 17.68 0.65 43.20 0.59
SMM 4.59 0.64 7.11 0.73 11.86 0.66 41.74 0.59
SMT 2.48 0.84 3.90 0.88 6.74 0.82 32.15 0.73

T CRU​ 2.07 0.99 1.30 0.98 1.56 0.88 2.85 0.97
GLDAS 4.73 0.90 7.12 0.93 5.20 0.92 5.12 0.90
MERRA​ 5.47 0.93 7.68 0.94 5.66 0.92 5.56 0.91
TERRA​ 4.76 0.93 7.20 0.94 5.12 0.94 4.51 0.91
SSP(ERA5) 1.15 0.99 1.22 0.98 1.51 0.88 1.23 0.99
SMM 1.17 0.99 1.12 0.97 1.27 0.87 1.07 0.98
SMT 0.70 0.99 0.69 0.98 0.75 0.98 0.84 0.99

PET ERA5 29.94 0.94 48.69 0.78 28.05 0.85 43.72 0.66
GLDAS 69.22 0.92 39.42 0.83 52.20 0.89 26.99 0.95
MERRA​ 50.78 0.90 39.52 0.91 31.27 0.88 52.42 0.92
SSP(CRU) 25.86 0.95 29.86 0.94 17.91 0.86 16.99 0.98
SMM 30.69 0.80 28.01 0.84 21.36 0.79 18.83 0.95
SMT 16.04 0.95 15.19 0.94 9.98 0.89 10.60 0.98

SM ERA 0.05 0.00 0.06 0.34 0.09 0.56 0.12 0.59
GLDAS 0.10 0.16 0.07 0.33 0.08 0.55 0.14 0.58
MERRA​ 0.22 0.13 0.09 0.21 0.12 0.33 0.20 0.29
TERRA​ 0.33 0.03 0.10 0.16 0.19 0.30 0.32 0.13
SSP(GLEAM) 0.07 0.21 0.05 0.38 0.06 0.48 0.10 0.48
SMM 0.06 0.20 0.05 0.35 0.06 0.48 0.11 0.37
SMT 0.02 0.94 0.02 0.62 0.04 0.71 0.07 0.63
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In Eqs. (15) to (20), Mt and Et are the variables based on 
measured and modeled data, M and E are the mean values 
of measured and modeled variables, respectively, and N rep-
resents the number of datasets.

Results and discussions

Accuracy evaluation of products

A single reanalysis product has uncertainties in temporal 
and spatial spaces, which can be reduced by combining 
multiple products. The results in Table 7 indicated that 
SMT can significantly improve the accuracy of variables 
in all climates.

The accuracy of SMT based on MAE for the P vari-
able showed an increase of 49%, 51%, 62%, and 26% in 
comparison with superior single products (SSP_ERA5) in 
HA, AR, SA, and HU climates, respectively. Overall, the 
accuracy ranking with regard to MAE and R2 of the five P 
and T products was SMT > SMM > SSP(ERA5) > CRU > 
GLDAS > TERRA > MERRA.

The CRU product was selected as the SSP for PET in 
all climates. The mean absolute error was reduced by 10%, 
15%, 18%, and 6%, regarding SMT in comparison with 
SSP for PET in HA, AR, SA, and HU climates, respec-
tively. The single products, even for SSP, showed a low 
correlation with ground-based soil moisture measure-
ments, especially in the HA climate. In contrast, SMT 
indicated high accuracy with a maximum MAE of 7% for 
soil moisture volume in HA climates.

Taylor diagrams, originally introduced by Taylor (2001), 
were utilized here to provide a succinct summary and over-
view of the performance of the reanalysis products. The 
Taylor diagram (Fig. 5) presents three statistical indices, 
namely root mean square deviation (RMSD), standard devia-
tion (SD), and R. Figure 5 illustrates the Taylor diagram 
for each individual and combined dataset, categorized by 
different climates in Iran.

As shown in Fig. 5a1–a4, the Taylor diagrams provide a 
visual representation of the accuracy of precipitation data 
for each individual reanalysis product dataset as well as two 
combined datasets (SMM and SMT) compared to ground-
based measurements across all climates. In this regard, it can 
be observed that both combined datasets (SMM and SMT) 

Fig. 5   Taylor diagram of single and combined reanalysis products for each climate
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exhibit higher accuracy compared to single precipitation 
products. Furthermore, the SMT procedure demonstrated 
superior performance compared to SMM in terms of pre-
cipitation data across all climates.

As observed from the Taylor diagrams, ERA5 and CRU 
products exhibited better agreement with ground-based 
measurements of P, T, and PET. This is evident from their 
higher R and lower RMSD when compared to the ground-
based data series. The SD and RMSD are crucial indicators 
for evaluating dataset accuracy. In this context, both com-
bined datasets exhibit reduced RMSD, while maintaining a 
similar SD for all variables. This highlights the effectiveness 
of the combined datasets in improving the accuracy of the 
data. In general, Fig. 5 demonstrates that the SMT generated 
using single reanalysis products achieves a notable enhance-
ment in the accuracy of variable time series when compared 
to ground-based measurements.

Feature selection results

Figure 6a, b demonstrates the average percentage of SCIs 
in each FS method, in which a specific feature is selected 
for SPEI-3 and SPI-6, respectively. The results for SPEI-3 
(Fig. 6a) and SPEI-6 (Fig. 6b) show similarity in the average 
percentage of selection by SCIs in each FS method. As can 
be seen among all SCIs, PCI, PETCI, and SMCI were the 
most important and selected 40, 18, and 17 percent of the 
features through the five feature selection methods. PCI has 
been reported by other researchers as the most important 
index in agricultural drought prediction (Arun Kumar et al. 
2021; Zhang et al. 2022b; Cai et al. 2023). Out of the five 
SCIs, TCI and VCI were selected less than other SCIs for 
agricultural drought prediction in SPEI-3 and SPEI-6.

In Table 8, the average percentage of relative importance 
for SCIs is provided separately for each climate. These 
results show that PCI, in all climates except HA, has the 
highest relative importance among SCIs, which is marked 
with a double underline.
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Fig. 6   Average percentage of selection of SCIs in each FS method for SPEI-3 and SPI-6

Table 8   Average percentage of 
the relative importance of SCIs 
for each target and climate

The highest relative importance is indicated by text that is both bold and double underlined for both the 
SPEI-3 and SPEI-6 indices. Additionally, the bold and underlined number signifies the highest relative 
importance in either the SPEI-3 or SPEI-6 index

Climate SCIs Hyperarid Arid Semiarid Humid

SPEI-3 SPEI-6 SPEI-3 SPEI-6 SPEI-3 SPEI-6 SPEI-3 SPEI-6

PCI 16.0 20.0 40.5 42.0 47.2 40.8 37.3 41.3
TCI 21.0 16.0 15.5 8.0 9.6 19.2 10.7 18.7
PETCI 40.0 36.0 20.5 16.5 14.4 14.4 17.3 14.7
SMCI 4.0 12.0 15.5 21.5 16.0 9.6 28.0 20.0
VCI 19.0 16.0 8.0 12.0 12.8 16 6.7 5.3
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Fig. 7   Scatter plots of modeled 
and target indices SPEI-3 (a1–
d1) and SPEI-6 (a2–d2) for all 
CCIs in different climates
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The highest relative importance of SCIs in the HA climate 
belongs to PETCI with 40 and 36 percent for SPEI-3 and 
SPEI-6, respectively. This shows that PET plays a crucial 
role in agricultural drought prediction in hyperarid regions 
because of very low precipitation. The relative importance 
of SMCI increases from HA to HU climate, which shows the 
greater effect of soil moisture in humid regions on agricul-
tural drought. The correlation coefficients as scatter plots of 
modeled and target indices SPEI-3 and SPEI-6 for all CCIs 
are illustrated in Fig. 7a1–d1 and a2–d2.

The highest and lowest R in Fig. 7 belongs to SVR with 
all features as inputs (SVR-all f.). Furthermore, three CCIs 
(i.e., SDCI, MIDI, and IDMI) showed a similar range of R 
with an average correlation coefficient of 0.44. Besides, R 
had higher values in the SA climate (see Fig. 7c1 and c2), 
indicating the higher accuracy of agricultural drought indi-
ces in semiarid regions compared to other climates.

Drought characteristics

The intensity for three drought classes, including extreme 
drought (dark red color), severe drought (red color), and 
moderate color (orange color), is analyzed based on the 
drought classes of Table 6. These drought events were 
shown for all combined condition indices (SVR models and 
CCIs) compared to SPEI-3 and SPEI-6 in all agrometeoro-
logical stations from Jan. 14 to Dec. 19. The most severe 

agricultural droughts occurred during Jun. 17 and May 18 
(for SPEI-3) and Sept. 17 and May 18 (for SPEI-6).

The highest similarity between SPEI-3 and SPEI-6 as tar-
get agricultural drought indices and other indices belonged 
to SVR-all f. Moreover, SVR with inputs from the ReliefF 
method demonstrated the same drought events as target 
indices. Among all indices, VHI, IDMI, and PCA showed 
more disagreement with SPEI-3&6 in determining drought 
classes, especially in the period 2017–2018. The variations 
in the drought frequency based on studied indices are illus-
trated in Fig. 8 separately for each climate.

The multiplication signs (×) in box plots of Figure 8 
show the average drought frequency in all studied drought 
indices including targets (i.e., SPEI-3&6), CCIs (i.e., 
VHI, SDCI, MIDI, and IDMI), and SVR results with dif-
ferent inputs (i.e., all features, PCA, ReliefF, MRMR, 
NCA, OOA). The average frequency of these agricultural 
drought indices for HA, AR, SA, and HU climates was 
47, 50, 59, and 42 and 35, 33, 54, and 39 percent in 3- 
and 6-month timescales (Fig. 8a-b). The mean duration 
of drought events based on SVR and CCIs indices versus 
targets is shown in Table 9 for each climate.

By increasing the time scales of SPEI from 3 to 
6 months, drought duration has increased significantly, 
especially in humid climates from 12.0 to 21.0 months. So 
far, many studies (Mesbahzadeh 2020; Kazemzadeh et al. 
2022; Naderi and Moghaddasi 2022; Sharafi and Ghaleni 

Fig. 8   Box plots of drought 
frequency for studied indices in 
different climates

Table 9   Duration of agricultural drought (month) based on CCIs and SVR indices in different climates

Bold numbers indicate the nearest value of drought duration among various indices to target values

Target index Clim type Target CCIs SVR- based FS

VHI SDCI MIDI IDMI PCA ReliefF MRMR NCA OOA All f

SPEI-3 HA 4.5 6.0 5.0 5.2 3.5 4.7 4.6 5.0 5.6 6.4 4.2
AR 6.0 3.0 4.3 4.3 4.4 6.6 4.9 5.0 5.3 6.0 5.4
SA 8.2 4.3 4.3 6.3 6.3 10.7 9.2 9.8 8.0 9.6 10.8
HU 12.0 4.0 5.3 4.4 3.5 7.3 21.0 10.0 7.7 9.0 13.0

SPEI-6 HA 4.7 6.0 5.0 5.2 3.5 4.4 7.0 5.3 10.0 10.0 4.7
AR 6.5 3.0 4.3 4.3 4.4 10.0 7.5 7.6 10.0 8.0 8.0
SA 11.7 4.3 4.3 6.3 6.3 12.7 12.3 12.3 13.3 10.8 11.7
HU 21.0 4.0 5.3 4.4 3.5 5.0 19.0 11.7 9.0 12.5 21.0
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2022) indicate a decrease in the number of events and 
drought frequency and an increase in severity and drought 
duration by increasing the timescale of drought indices.

Results of Table 9 indicated that SVR with all features 
as input had the nearest duration compared to the target 
indices. Meanwhile, SVR had the nearest duration to tar-
get indices in SPEI-3 for HA, AR, and SA climates and in 
SPEI-6 for AR climate with input features from ReliefF, 
OOA, NCA, and ReliefF.

Disscusion

In our study, we evaluated various feature selection tech-
niques to determine their effectiveness in accurately mon-
itoring drought across different climate regions in Iran. 
The results of our analysis indicate that ReliefF surpassed 

other methods in agricultural drought modeling due to its 
capacity to handle multiclass issues and its robustness in 
managing incomplete and noisy data (Bolón-Canedo et al. 
2013). The best SVR results using ReliefF methods beside 
target indices are presented in Fig. 9.

As shown in Fig. 9a1, a2, an increasing trend of drought 
intensity is observed in the hyperarid climate, especially 
for SPEI-6 (Fig. 9a2). The temporal drought intensity in 
semiarid and humid climates was severely low in compari-
son with other climates, especially in 2019.

Also, the findings underscore the significant role of 
potential evapotranspiration (PET) as a key predictor for 
agricultural drought modeling compared to other climatic 
variables especially in hyper-arid climates. PET is impacted 
by atmospheric water content, meaning that in cases of ade-
quate water supply, potential evapotranspiration primarily 
mirrors atmospheric conditions (Abrar Faiz et al. 2022), a 
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Fig. 9   Drought intensity in SVR ReliefF-based versus SPEI-3 and SPEI-6 indices in different climates
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scenario commonly observed in humid climates. One rea-
son for the heightened importance of PET in hyper-arid cli-
mates is the limited water supply in these regions and the 
crucial role of PET in the water balance within hyper-arid 
environments.

Before PET, P is considered the most critical feature 
for agricultural drought modeling across various climates. 
This is because precipitation is a primary determinant 
of water availability for agricultural activities and plant 
growth. In most climates, the amount, frequency, and dis-
tribution of precipitation play a crucial role in assessing 
drought conditions and their impact on agricultural pro-
ductivity (Guo et al. 2019).

Conclusion

Considering to spatial and temporal uncertainties of global 
gridded datasets based on single products, the combined 
datasets from six popular products significantly improved 
the accuracy of datasets compared to situ measurements. 
Moreover, the accuracy evaluation demonstrated the vary-
ing performance of single products under different tempo-
ral (month) and spatial (climate) conditions.

Drought prediction and monitoring plans often rely 
on information obtained based on different key variables 
used in drought indices. In the present study, agricultural 
drought indices were developed through SVR with differ-
ent feature selection methods to determine the most rel-
evant SCIs in different climates. The relative importance 
of variables based on reanalysis datasets for five single 
condition indices (i.e., PCI, TCI, PETCI, SMCI, and VCI) 
was analyzed and compared with ground-based measure-
ments of SIs. The performance of the SVR feature-based 
methods was assessed by comparing their results with 
four combined condition indices, specifically SPEI-3 and 
SPEI-6. The findings revealed that SVR-ReliefF results are 
consistent with SPEI and the model outperforms other fea-
ture selection (FS) methods. The results showed the higher 
relative importance of PETCI in hyperarid climates com-
pared to other SCIs. These results highlight the key role 
of the PET variable as a suitable predictor of agricultural 
drought in regions with very low precipitation. However, 
in AR, SA, and HU climates P was the most important 
variable in agricultural drought prediction.

Future works are recommended to evaluate two-stage 
feature selection methods based on spatial and temporal 
variations for selecting more relevant variables in agricul-
tural drought prediction. Moreover, it is recommended to 
consider the lag time in different variables for assessing 
drought propagation from meteorological to agricultural.
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