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Abstract
Scour depth downstream of weirs is considered one of the most important hydraulic problems, which greatly influences the 
stability of weirs. Recently, artificial intelligence (AI) methods have become increasingly popular in modeling hydraulic vari-
ables, especially scour depth, because they can capture nonlinear relationships between input variables and their associated 
objectives. Despite their importance, these models have problems with hyperparameter tuning in scour depth modeling due 
to their structures, so algorithms must be used to tune the hyperparameters. Moreover, these algorithms are usually tuned 
by using the trial-and-error method to select the hyperparameters such as the number of hidden nodes, transfer function, 
and learning rate, and in this case, the main problem is overfitting during the training phase. To solve these problems, the 
high-order response surface method (HORSM), an improved version of the response surface method (RSM), is used as an 
alternative approach for the first time in this study to predict the scour depth. The HORSM model is based on high-order 
polynomial functions (from two to six) compared with the artificial neural network model (ANN). The findings indicate 
that the fifth order of the HORSM polynomial function yields the most precise predictions, with a higher coefficient of 
determination (R2) of 0.912 and Willmott Index (WI) of 0.972 compared to the values obtained using ANN (R2 = 0.886 and 
WI = 0.927). Moreover, the accuracy of the predictions is represented by a reduction of the mean square error by up to 44.17 
and 29.01% compared to the classical RSM and ANN, respectively. The suggested model established an excellent correlation 
and accuracy with experimental values.
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List of symbols
R2  Coefficient of determination.
MAE  Mean absolute error
RMSE  Root mean square error
NSE  Nash–Sutcliffe efficiency
WI  Willmott index
R  Correlation coefficient
VAF  Variant analysis frequency
SI  Scatter index
MSE  Mean squared error
AIC  Akaike’s information criterion
RE  Relative error
PE  Percentage error
MPE  Mean percentage error
MAPE  Mean absolute percentage error
E
sn

  Coefficient of efficiency
RAE  Relative absolute error
D  Index of agreement
SVR  Support vector regression
Tbpso  Binary particle swarm optimization
LR  Linear regression
DT  Decision tree
DNN  Multi-output descriptive neural network
ANFIS  Adaptive neuro-fuzzy inference systems
BBO  Biogeography-based optimization
IWO  Invasive weed optimization
TLBO  Teaching–learning-based optimization
GA  Genetic algorithm optimizer
XGBoost  Extreme gradient boosting
ANN  Artificial neural network
GEP  Gene expression program
MLR  Multiple linear regression
NF-GMDH  Neuro-fuzzy based-group method of data 

handling
PSO  Particle swarm optimization
EPR  Evolutionary polynomial regression
ENNF  Explicit neural networks formulation
GP  Genetic programming
SVMs  Support vector machines
RBF  Radial basis kernel
FNN  Feedforward neural networks
v  Kinematic viscosity
�  Water density
g  Acceleration
ho  Average approximation of the flow depth
ht  Depth of embodied tailwater
∪o  Average approach of the flow velocity
�s  Particle density at the bed
d
50

  Mean value of the particle size
�g  Standard deviation of the particle size
∪c  Average approximation of the critical flow 

velocity

z  Weir height
b  Weir depth

Introduction

Weir is one of the oldest structures of low-water hydraulics. 
It was built in watercourses for numerous reasons, such as 
to measure water flow, lift water upstream, and control flow 
velocity (Razmi et al. 2022). In the case of weirs, local scour 
downstream is an important topic for researchers and has 
been the subject of numerous studies in recent decades (Bor-
mann and Julien 1991; Gaudio et al. 2000; Lenzi et al. 2002; 
D’Agostino and Ferro 2004; Lu et al. 2013; Pagliara and 
Kurdistani 2013). Scouring is the process by which turbulent 
water flow removes sediment around the structure (Habib 
et al. 2021), exposing the structure to corrosion and possible 
failure. Scouring begins upstream of the downstream edge 
when the water stream creates a shear stress greater than the 
critical shear stress of the sediment downstream of the weir. 
In addition, the hole dimensions of the vertical scour change 
much faster than those of the horizontal (Salih et al. 2020). 
Moreover, sediment suspension is the only way to transport 
sediment in the initial stage. Moreover, sediment transport 
becomes part of the combination of bottom and suspended 
load as the diameters of the vertical scour holes change. 
Asymptotically, the criterion of equilibrium is reached when 
the scour rate increases to zero. This process is influenced 
by the flow properties of the water and the physical proper-
ties of the soil.

Construction of adequate protection measures is only pos-
sible if the location and depth of scour downstream are accu-
rately estimated and understood (Guven and Gunal 2008a; 
Deng and Cai 2010; Carvalho et al. 2019). However, the 
correct estimation of scour depth, Ds , is a difficult process 
due to the complexity of water flow patterns around hydrau-
lic structures. Therefore, in recent decades, scour processes 
have been modeled using deterministic models of varying 
complexity and precision (Sharafati et al. 2020c). Consid-
ering the different flow, time, and material properties in 
field and laboratory tests, several empirical equations have 
been developed to predict Ds (Bormann and Julien 1991), 
(D’Agostino and Ferro 2004), (Chee and Padiyar 1969; 
Mossa 1998; Olsen and Kjellesvig 1998; Marion et  al. 
2004). However, these studies mostly rely on traditional 
scouring based on physical models, which in turn limits the 
understanding of the overall scouring process. In addition, 
the use of empirical equations leads to under- or overestima-
tion of scour depth (Goel and Pal 2009; Tafarojnoruz 2012; 
Sharafati et al. 2021).

Another way to predict scour depth is to use a numerical 
model. Different types of numerical techniques have been 
used to evaluate the scour process by solving the formula 
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for sediment transport and the equations of Navier–Stokes 
(Sharafati et al. 2020b). The advancement of numerical 
models (Mohd Yusof et al. 2023) (e.g., Flow3D, ANSYS-
FLUENT, and OpenFoam) has made them an effective 
option for modeling scour depth (Sharafati et al. 2020b). 
However, due to the high-computational cost for compli-
cated problems, the use of numerical models is limited 
(Tafarojnoruz 2012). On the other hand, soft computing 
approaches (SC) provide appealing features for simulat-
ing complicated relationships between input and output 
variables. Based on observational data, the approaches of 
SC mimic the desired trends, unlike empirical calcula-
tions that may not reflect the complexity of the scouring 
process (Sharafati et al. 2021) (Najafzadeh et al. 2017; 
Sharafati et al. 2020b). In the approach of SC, the pre-
dictive modeling is automatically generated and does not 
rely on the user's knowledge. In addition, the models in 
the approach of SC can recognize implicit relationships 
between features (Bagheri et al. 2024), while empirical 
equations rely on explicit data before building models to 
explore the relationships between different parameters. 
Moreover, the models of SC provide less expensive and 
more flexible methods for studying complicated issues 
(Gholami et al. 2016). The ability of the models of SC, to 
simulate Ds problems, has been effectively implemented 
in many studies in the last decades (Sharafati et al. 2021), 
(Azamathulla et al. 2008a, b; Guven and Gunal 2008a; 
Altan and Hacıoğlu 2020). Table 1 provides some exam-
ples of the application of various SC models to predict D

s
.

Accurately predicting scour depth is crucial for the lon-
gevity of water infrastructures. Yet, the task is difficult (Abu-
dallah Habib et al. 2021) due to factors like complex shapes, 
water behavior, and sediment motion (Tao et al. 2021). The 
limitations of existing models and traditional equations, 
which result in inaccuracies (Fuladipanah et al. 2023; Le 
and Thu Hien 2024), emphasize the necessity for the devel-
opment of better approaches to guide sustainable and safe 
hydraulic design. Therefore, researchers developed in previ-
ous works several statistical and AI-based models to predict 
the scour depth (Marulasiddappa et al. 2024). As shown in 
Table 1, several bio-inspired algorithms have been used to 
hybridize AI models to capture the nonlinear relationship 
between the input variables and the associated targets by 
adjusting the parameters that have a large impact on model 
accuracy in the most efficient way (Moayedi et al. 2019; Xu 
et al. 2020; Zhou et al. 2020). Although predictive models 
have made significant progress, their structure is becom-
ing more complicated due to the incorporation of AI tech-
niques with complicated algorithms, which makes it more 
difficult to understand their results and behavior. In addi-
tion to the complexity of the applied models, some machine 
learning-based models have several shortcomings, such as 
generalization problems and difficulties in understanding 

and explaining the decisions. Moreover, machine learning 
models usually require multiple techniques to determine and 
select their hyperparameters (Mohammadi 2023), such as 
the type of transfer function, the number of hidden neurons, 
the learning rate, and kernel function, so these parameters 
were usually determined by trial and error (Wang et al. 2018; 
Liu et al. 2020; Panda and Panda 2020). These problems can 
be solved by the novel and alternative model of high-order 
response surface method (HORSM) for predicting the scour 
depth. It is important to note that HORSM is an improved 
version of the classic response surface methodology model. 
Numerous researchers have used the traditional response 
surface methodology (RSA) to efficiently develop predic-
tive models to solve many problems in various fields such 
as construction and materials (Hameed et al. 2021a), water 
resources (Keshtegar et al. 2018), and hydrology (Keshtegar 
and Kisi 2017). In addition, an improved version of RSA 
called HORMS has been introduced in recent years to solve 
challenging environmental and water resources problems 
(Keshtegar and Kisi 2017), (Keshtegar et al. 2019). Despite 
the successes achieved with HORMS, its applications in 
solving civil engineering problems in hydraulic and hydrol-
ogy are still limited to the best of the author's knowledge. 
Therefore, in this study, HORSM models based on different 
polynomial functions are used to predict scour depth down-
stream of weirs. Moreover, the reported results are validated 
and compared with the models from ANN to investigate the 
performance of the applied methodology in solving a sig-
nificant hydraulic problem.

The rest structure of the paper is organized as follows. In 
Sect. “Methodology,” there is a detailed description of the 
experimental data, applied models (HORSM and ANN), and 
statistical measures. Evaluating and analyzing the obtained 
results from HORSM model and other comparable mod-
els are further discussed in Sect. “Results and discussion.” 
Finally, the conclusion and research recommendations are 
provided in Sect. “Conclusion.”

Methodology

Data collection

Several factors influence scour development downstream of 
weirs, e.g., flow conditions, bed material, tailwater depth, 
and weir geometry (Goel and Pal 2009), (Najafzadeh 2015). 
Therefore, it is possible to estimate scour depth using the 
following relationship:

where v is the kinematic viscosity of the fluid, � is the water 
density, g is the acceleration, ho is the average approximation 

(1)Ds = f
(
v, �, g, ho, ht,∪o, �s, d50, �g,∪c, z, b

)
,
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of the flow depth, ht is the depth of embodied tailwater, ∪o 
is the average approach of the flow velocity, �s is the particle 
density at the bed, d

50
 is the mean value of the particle size 

at the bed, �g is the standard deviation of the particle size at 
the bed, ∪c is the average approximation of the critical flow 
velocity, z is the weir height, and b is the weir depth. The 
influence of non-dimensional parameters such as ∪o

∪c

, d50
ht

, z
ht

 

has been investigated in many studies. These studies found 
that the non-dimensional parameters performed better than 
the dimensional parameters in estimating the scour depth 
(Karbasi and Azamathulla 2017), (Najafzadeh 2015). Other 
studies show that variations in approach flow and tailwater 
have a significant effect on scour depth (Guven 2011), 
(Najafzadeh 2015), (Onen 2014). Gunan et al. (Guan et al. 
2016) find that decreasing tailwater depth ( z

ht
 ) and increasing 

Table 2  Statistical description 
of the used variable

* Standard deviation
** Interquartile range

Data Variable Maximum Minimum Mean � ∗ Skewness IQR**

Training d50/ht 0.362 0.006 0.054 0.063 2.175 0.059
z/ht 20.28 0.161 3.295 3.247 2.277 2.586
Uo/Uc 0.922 0.007 0.134 0.145 3.004 0.129
ds/ht 2.222 0.136 0.605 0.312 2.123 0.28

Testing d50/ht 0.226 0.006 0.05 0.052 1.39 0.071
z/ht 10.967 0.561 2.867 2.544 1.767 2.014
Uo/Uc 0.483 0.012 0.119 0.097 1.866 0.1
ds/ht 2.444 0.239 0.637 0.364 2.758 0.258

Overall d50/ht 0.362 0.006 0.052 0.06 2.036 0.064
z/ht 20.28 0.161 3.15 3.027 2.243 2.467
Uo/Uc 0.922 0.007 0.129 0.131 3.011 0.129
ds/ht 2.444 0.136 0.616 0.33 2.438 0.264

Fig. 1  The correlation matrix of 
the used variables

Correlation Matrix
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flow intensity ( ∪o

∪c

 ) increases scour depth. In addition, other 
studies have shown that the width of the weir ( b

ht
) has a large 

effect on scour depth (Najafzadeh 2015), (Roushangar et al. 
2016). Therefore, based on the dimensional analysis, the 
following equation is used (Guan et al. 2016).

where d50
ht

 represents the effect of particle size in the bed, z
ht

 
represents tailwater depth, and z

ht
 represents f low 

conditions.
Data from four published studies (D’Agostino and Ferro 

2004), (D’agostino 1994), (Veronese 1937), (Falciai and 
Giacomin 1978) with different acquisition conditions were 
combined into a dataset of 186 experimental data to evaluate 
the capabilities of the high-order response surface in pre-
dicting scour depth. The statistical description of the data 
used can be found in Table 2 and Fig. 1. Furthermore, the 
data utilized in this research have been gathered and can 
be located in supplementary file accompanying this study 
(Appendix 1).

High‑order response surface method (HORSM)

In general, response surface approach (RSA) is an empiri-
cal, mathematical, and statistical modeling approach used 
to study multiple regressions (MR) by using quantitative 
data from specific observations to simultaneously solve 
multivariate equations. RSA quantifies the relationships 
between one or more measured variables and three input 
variables that primarily influence the response. Moreover, 
RSA uses a simple and explicit function to approximate 
an originally complicated and implicit limit state function. 
However, the correctness of the results strongly depends 
on how the properties of the original boundary condition 
are correctly represented by the approximation function. 
The adequacy of the generated RSA depends mainly on the 
appropriate positioning of the so-called sample points that 
approximate the response function using a typical regres-
sion approach. In general, the RSA uses a second-order 
polynomial form with cross terms. By including cross 
terms in the RSA second-order polynomial, a reasonable 
prediction for the time series can be achieved. Since the 
prediction of the scour downstream ( Ds ) is a complex and 
highly nonlinear process, and using a second-order RSA 
polynomial may not provide reliable prediction (Kes-
htegar et al. 2016), a new version of RSA is proposed 
based on a high-order polynomial function mixed with 
the extremely nonlinear cross term to form the method 
high-order response surface (HORSM). The HORSM can 

(2)
Ds

ht
= f

(
d
50

ht
,
z

ht
,
∪o

∪c

)

be represented in Eq. (3), considering several independent 
variables R

{
r
1
, r

2
, r

3
,…

}

Š(v) represent high-order calculated RSA for ….., n is 
the input predictor number, �

0
 , �i , �ij , �ij , bij , dij , and gij rep-

resent the unknown coefficients which can be determined 
using Eq. (4) as follows (Keshtegar et al. 2016):

Here, � is the order of RSA, ranging from 2 to 6 in this 
study. Calibration of multiple experimental designs is con-
sidered in the calculation of coefficients. In general, the 
unknown RSM coefficients in Eq. (1) are calculated using 
the least-squares error approach by minimizing the error 
between the actual S(r) and the calculated Š(r)=P(r)Ta) for 
Ds values. Equation (5) represents the error as follows:

where S(r) = [S1, S2, S3,… , S
NI
] is the actual value and 

P(r)
T
=
[
P
(
S1

)
,P

(
S2

)
,P

(
S3

)
,… ,P

(
S
NI

)]
 is the predicted 

value based on a high-order polynomial for NI number of 
observed data. Equation (6) shows the predicted scour depth 

(3)

Š(r) = 𝛾0 +

n∑

i=1

𝛾iri +

n∑

i=1

n∑

j=i

𝛾ijrirj +

n∑

i=1

n∑

j=1

𝛼ijrir
2

j

+

n∑

i=1

n∑

j=1

bijrir
3

j
+

n∑

i=1

n∑

j=1

dijrir
4

j
+

n∑

i=1

n∑

j=1

gijrir
5

j
,

(4)
(n + 1)(n + 2)

2
+ (� − 2)n2

(5)E(r) = [S(r) − P(r)Ta]T [S(r) − P(r)Ta]

Fig. 2  The structure of HORSM
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downstream in weirs using 6th order RSA considering sev-
eral variables (assume 3 variables).

A system in linear form can be obtained by minimizing 
the error function in Eq. (6) for the unknown coefficients 
a , also the value of Ds can be predicted using Eq. (7) as 
follows:

As mentioned earlier, using high-order polynomial RSA 
can produce a more accurate prediction of Ds than the 
use of second-order polynomials in a strongly nonlinear 
process. The prediction of Ds using HORSM can be sum-
marized as follows:

• Set the input data for Ds with the predictors r
1
, r

2
, r

3
,….

• Set the order of RSA and use Eqs. (2) and (4) to estimate 
the predicted value for training the model P(S) from the 
data.

• Fix the predicted vector for all samples ( P
(
rall

)
 ) for both 

training and test data.
• Use Eq. (8) to obtain the predicted Ds

(
Š(r)

)

In this study, the HORSM software code was built 
using the MATLAB language based on four prior phases. 

(6)

P(S) =
[
1, S1, S2, S3, S

2

1
, S1S2, S1S3, S

2

2
,… ,

S
3

1
, S1S

2

2
, S1S

2

3
,… , S4

1
, S1S

3

2
, S1S

3

3
,… ,

S
5

1
, S1S

4

2
, S1S

4

3
,…

]

(7)Š(r) = P(r)T
[
P(r)TP(r)

]−1[
P(r)TP(r)

]

(8)Š(r) = P
(
rall

)T[
P(r)TP(r)

]−1[
P(r)TP(r)

]

Figure  2 illustrates the framework of the proposed 
HORSM model.

Feedforward neural network

Feedforward neural network (FFNN) is an algorithm that has 
layers comparable to the processing unit for human neurons. 
Each unit (node) in the FFNN layer is connected to all other 
units in the layers (Hameed et al. 2021b). These connec-
tions with the layers are not all identical, as the weight and 
strength of each connection can change (see Fig. 3). Pro-
cessing of information in a neural network (NN) involves 
input of data by the input units and movement from one 
layer to the next through the network until it reaches the 
output units (Hagan and Menhaj 1994; Üstün et al. 2020). 
In FFNN, the data are transmitted only in one direction from 
the input nodes, if any, to the hidden nodes and then to the 
output nodes (Hertz 2018). The output values are computed 
by the neural network based on the input values, while the 
intermediate results of the computations are associated with 
the hidden layer nodes.

Each j-node receives input from each i-node in the pre-
vious layer and each input signal ( Xi ) is associated with 
a weight ( Rij ). The incoming signal ( Ej) is the sum of all 
incoming signals plus the neuron's threshold ( tj).

To generate the node's outgoing signal ( yi) , the incoming 
signal ( Ej) is passed through a nonlinear activation function. The 
logistic sigmoid function is the most commonly used of this type 

(9)Ej =

n∑

i=1

XiRij + tj

Fig. 3  The structure of FFNN
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of networks. The function of this transmission is continuously 
differentiated, monotonic, symmetric and bounded from 0 to 
1 (Hecht-Nielsen 1990). The function can be mathematically 
expressed by the following equation (see Eq. 10) (Lipu et al. 
2021). However, in this study, we use a linear transfer function 
for the output layer. It is important to mention that the ANN has 
been trained using the Marquardt algorithm, which allows for 
effective optimization and learning.

Model development

In this study, classical RSM models and four models based 
on HORSM supported by polynomial functions ranging 
from 3 to 6 orders, as well as ANN models, have been 
constructed to predict the depth of scour downstream of 
weirs. For constructing the models, 186 experimental sam-
ples were used. Out of these samples, 66% (123 samples) 
were randomly selected for training the models, and the 
remaining 63 samples were used for testing the models. It 
is worth noting that the MATLAB programming language 
was used to develop all the prediction models. During this 
work, the training samples were used to adjust the models' 
parameters. For ANN models, the Levenberg–MarquardIn 
hydraulic engineering, it is importantt algorithm was chosen 
to train the models, and hidden nodes within the range of 2 
to 15 were used. The testing data were used to evaluate the 
efficiency of predicting based on several statistical metrics 
and graphical figures. Finally, sensitivity analysis is also 
executed to select the most effective predictors that have a 
large impact on depth of scour.

Performance evaluation

Several statistical parameters, such as the coefficient of 
determination ( R2 ), root mean square error (RMSE), mean 
absolute error (MAE), correlation coefficient (R), root mean 
square relative error (RMSRE), Willmott index (WI), mean 
absolute percentage error (MAPE), and relative root mean 
square error (RRMSE), are used to investigate the accuracy 

(10)f
(
Ej

)
=

1

1 + e−Ej

of the proposed models. The following mathematical formu-
las describe each parameter (Hameed et al. 2022).

where Dr,m
s

 and Ds

r,m
 are the actual value and the mean of 

the actual value of the scour depth ( Ds) at the rth sample. 
Dr,c

s
 and Ds

r,c
 are the predicted and the mean of the pre-

dicted value of Ds at the rth sample, respectively. The men-
tioned metrics are commonly employed for model valida-
tion (Mamata et al. 2023). Some of these metrics, such as 

(11)R2
= 1 −

∑n

r=1

�
Dr,m

s
− Dr,c

s

�2

∑n

r=1

�
D

r,m
s − Ds

r,m
�2

(12)RMSE =

√√√
√1

n

n∑

r=1

(
D

r,m
s − D

r,c
s

)2

(13)MAE =
1

n

n∑

r=1

|
|D

r,m
s

− Dr,c
s
|
|

(14)R =

∑n

r=1

�
Dr,m

s
− Ds

r,m,
��

Dr,c
s

− Ds

r,c
�

�
∑n

r=1

�
D

r,m
s − Ds

r,m
�2 ∑n

r=1

�
D

r,c
s − Ds

r,c
�2

(15)RMSRE =

√√√
√1

n

n∑

r=1

(
D

r,m
s − D

r,c
s

D
r,m
s

)2

(16)WI = 1 −

∑n

r=1
(Dr,m

s
− Dr,c

s
)
2

∑n

r=1
(
��
�
D

r,c
s − Ds

r,m��
�
+
��
�
D

r,m
s − Ds

r,m��
�
)2

(17)MAPE =
1

n

∑n

r=1
��D

r,m
s

− Dr,c
s
��

∑n

r=1
D

r,c
s

(18)RRMSE =

�
1

n

∑n

r=1

�
D

r,m
s − D

r,c
s

�2

∑n

r=1
D

r,m
s

× 100

Table 3  The performance 
metrics used to assess the 
models’ efficiency through the 
training phase

Model MAE RMSE MAPE RRMSE R WI

Classical RMS 0.141 0.194 0.269 32.077 0.781 0.867
HORSM

3
0.104 0.147 0.216 24.357 0.881 0.934

HORSM
4

0.097 0.138 0.202 22.752 0.897 0.943
HORSM

5
0.090 0.133 0.188 22.018 0.904 0.948

HORSM
6

0.087 0.131 0.184 21.709 0.906 0.949
ANN 0.121 0.176 0.237 29.163 0.825 0.902
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RMSE, RMSRE, MAPE, RRMSE, and MAE, are utilized 
to account for prediction errors. When the model produces a 
minimum value close to zero, it serves as a positive indicator 
that the model has a precise prediction. On the other hand, 
metrics such as R, R2, and WI are used to assess how well 
the predicted values align with the observed values during 
validation. The ideal value for these metrics is one (Hameed 
et al. 2024), indicating a perfect match between the model's 
predictions and the observed values. Therefore, a higher 
value close to one for these metrics signifies a good model.

Results and discussion

Two models were created to predict the maximum scour 
depth ds

ht
 downstream of the weirs, namely the high-order 

response surface method model (HORSM) and the ANN 
model. As for the structure of HORSM models, different 
high-order polynomial functions (second, third, fourth, and 
fifth-order) were tested to find the best predictive model. For 
model construction, 66% of the samples are used to train 
the proposed models, and the rest are proposed for testing. 
Finally, sensitivity analysis is also performed to select the 
most effective predictors that have a large impact on the ds

ht
.

Graphical representations and statistical measures were 
used to evaluate the performance of each model to assess 
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predictive ability. The performance of the applied models 
in the training phase is shown in Table 3. Overall, most of 
the applied models achieved good predictions for ds

ht
 , with the 

exception of the classical RSA (RMS2) and ANN models, 
respectively. For example, the ANN and the classical RSM 
models were founded with a higher prediction error: MAE 
of 0.121 and 0.141; RMSE of 0.176 and 0.194; MAPE of 
0.237 and 0.269; RRMSE of 29.163 and 32.077; R of 0.825 
and 0.781; and WI of 0.902 and 0.867. On the other hand, 
the HORSM

5
 , and HORSM

6
 provided excellent predic-

tions with lower MAE (0.090, 0.087), RMSE (0.133, 0.131), 
MAPE (0.188, 0.184), RRMSE (22.018, 21.709), R (0.904, 
0.906), and WI (0.948, 0.949). Also, based on the results 
presented in Table 3, both  HORMSM3 and  HORSM4 exhibit 
a relatively similar performance in predicting the depth of 
scour. The MAE is 1.04/0.097, RMSE is 1.47/1.38, RRMSE 
is 24.57/22.752, R is 0.881/0.897, MAPE is 0.216/0.202, 
and WI is 0.934/0.943, respectively, for  HORSM3/HORSM4. 
Thus, the statistical analysis shows that the performance of 
HORSM

5
, and HORSM

6
 is very similar in the training phase.

In this study, a visualization comparison is also per-
formed to visually analyze the performance of each pro-
posed model compared to the observed targets. The scatter 
plots shown in Fig. 4 provide further information on both 
the performance of the applied model and the deviation 
between predicted and observed ds/ht in the training phase. 
The graphs visually display the relationship between pre-
dicted and measured values of depth scour. These figures 
help to assess the accuracy of the prediction model and 
understand how closely the predicted values align with 

the actual measurements. They also indicate the variability 
in the model's predictions by showing how the predicted 
points are spread out around the measured values. Addi-
tionally, scatter plots provide the value of R2, which is a 
statistical measure of how well the model fits the data. It 
can be observed that the classical RSM and ANN models 
provide poor predictions that are further away from the 
corresponding (actual) values. Moreover, the classical 
RSM and ANN models have a significantly low predictive 
capacity in terms of the coefficient of determination of the 
correlation ( R2 ). Upon observation, it is evident that both 
the classical RSM and the generated predicted samples 
deviate significantly from the fit line in the scatter plot. 
The respective values of R2 for these models are 0.611 and 
0.680. In contrast, the applied models such as HORSM

3
 , 

HORSM
4
 , and HORSM

5
 , as well as HORSM

6
 , provide a 

good and higher value of R2 . Additionally, the estimated 
points of both models show less scattering around the ideal 
line (1:1), indicating a higher quality of prediction. More-
over, the  HORSM6 model exhibits the highest accuracy 
with an R2 value of 0.822, followed by  HORSM5 with an 
R2 value of 0.817,  HORSM4 with an R2 value of 0.804, and 
 HORSM3 with an R2 value of 0.775.

To further visually examine the performance of the 
model, we constructed both a Taylor plot (Taylor 2001) 
and a violin plot (Hintze and Nelson 1998). Three statis-
tics, namely the Root Mean Square Difference (RMSD), 
the normalized standard deviation, and the correlation 
coefficient, are used to create the Taylor plot, which is 
a polar plot. The higher the power of the model in the 

Fig. 5  Violin plots showing 
visual comparison between 
actual and predicted values of ds

ht
 

during the training phase
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Taylor plot, the closer the model values are to the observed 
values (Sigaroodi et al. 2014). A violin plot is a boxplot 
that is combined with a kernel density plot to show the 
distribution of the data. From Fig. 5, it can be seen that 
the classical RSM and ANN models have a major prob-
lem in predicting ds

ht
 . However, the HORSM models with 

high-order polynomial functions provide satisfactory pre-
dictions. From Fig. 6, it can be seen that the HORSM

4
 , 

HORSM
5
 , and HORSM

6
 models are very close to the 

location of the observed ds
ht

 , which means that there is a 
very good agreement between the predicted and observed 
values. Furthermore, from the figure, it can be observed 
that both HORSM

5
 and HORSM

6
 models are the closest to 

the benchmark value (represented by the measured point). 
These models also exhibit the highest correlation, the few-
est RMSD, and a closer standard deviation to the observed 

measured point according to the Taylor diagram. Overall, 
the HORSM

5
 and HORSM

6
 models are the best models 

according to the quantitative and visual analysis. Moreo-
ver, the performance of these models in the training phase 
is very similar.

In order to select the best and most reliable predictive 
models, some recent studies have shown that the training step 
is not sufficient and may lead to misleading judgments due 
to different conditions that may occur in the calibration pro-
cesses (Alomar et al. 2020; Hameed et al. 2021c, a). There-
fore, the testing phase is crucial for identifying the most 
accurate model. Moreover, the best model is able to perform 
well in both the training and testing phases. The quantita-
tive evaluation of all applied models in the testing phase is 
summarized in Table 4. According to Table 4, the HORSM

5
 

model has the lowest prediction error (MAE = 0.083, 

Fig. 6  The Taylor diagram 
shows the similarity between 
the applied model predictions 
and the observed values of ds

ht
 

during the training phase
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Table 4  The performance 
metrics used to evaluate the 
efficiency of the models in the 
testing phase

Model MAE RMSE MAPE RRMSE R WI

Classical RMS 0.122 0.206 0.171 32.312 0.900 0.868
HORSM

3
0.097 0.139 0.156 21.818 0.945 0.954

HORSM
4

0.095 0.134 0.164 21.036 0.935 0.962
HORSM

5
0.083 0.115 0.135 18.079 0.955 0.972

HORSM
6

0.111 0.181 0.217 28.363 0.884 0.936
ANN 0.098 0.162 0.142 25.462 0.941 0.927
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MAPE = 0.135, RMSE = 0.115 and RRMSE = 18.079) and the 
highest similarity with the observed scour values (R = 0.955, 
and WI = 0.972) compared to the other models. Similar to the 
training phase, both  HORSM3 and  HORSM4 exhibit similar 
performance in the testing phase, as shown in Table 4. How-
ever, HORSM4 demonstrates slightly better accuracy. The 
statistical performance for  HORSM3 and  HORSM4 includes 
lower prediction error with MAE (0.097 and 0.095), RMSE 
(0.139 and 0.134), MAPE (0.156 and 0.164), and RRMSE 
(21.818 and 21.036). Additionally, both models achieve 
good accuracy with R (0.954 and 0.935) and WI (0.954 
and 0.962). Overall, the excellent ability of the HORSM

5
 

model shows in the reduction of RMSE values by 44.17%, 
17.27%, 14.18%, 36.46% and 29.01% compared to the classi-
cal RMS,HORSM

3
 , HORSM

4
 , HORSM

6
 , and ANN models, 

respectively. Moreover, the evaluation of the visualization 

in scatter plots (see Fig. 7) shows that the HORSM
5
 model 

has the highest similarity of predictions with the actual val-
ues with an R2 is 0.912, followed by HORSM

3
(R2 = 0.894), 

ANN ( R2 = 0.886), HORSM
4
(R2 = 0.874), the classical 

RMSE model ( R2 = 0.810), and HORSM
6
 ( R2 = 0.874).

On the other hand, Fig.  7 shows that although the 
HORSM

6
 model has excellent accuracy in the training 

phase, it has the lowest predictive capacity in the testing 
phase. In addition to its poor prediction, HORSM

6
 also pro-

vides negative estimates. The situation can be interpreted 
that this model suffers from overfitting in the training phase 
and therefore has shown its weaknesses in providing more 
reliable estimates in the testing phase. The violin diagram 
(Fig. 8) shows the ability of each model to predict scour 
depth. Some of the applied models provided very poor esti-
mates, such as HORSM

6
 , and ANN. The model ANN is not 
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 during the testing phase
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Fig. 9  The Taylor diagram 
shows the similarity between 
the applied model predictions 
and the observed values of ds

ht
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able to efficiently estimate the higher value of scour depth. 
On the other hand, the HORSM

6
 model fails to simulate the 

lower value of scour depth. However, the HORSM
5
 model 

is superior compared to the other models and manages to 
simulate the highest and the lowest value of the scour depth.

Finally, as can be seen in Fig. 9, a Taylor diagram is cre-
ated for the test data set to allow a more comprehensive 
evaluation and to select the best predictive models. As for 
the best predictive model, the results from Fig. 9 are consist-
ent with previous evaluations, whether quantitative, visual, 
or both. It can be seen that the HORSM

5
 model is the best 

model because it has a very good agreement between its 
predictions and the observed values. Moreover, all previ-
ous evaluations have shown that HORSM is very sensitive 
to the order of the polynomial degree. Thus, it can be seen 
that HORSM with a fifth-degree polynomial gives the best 
predictions and outperforms the AI model (ANN).

Comparison of the attained results to sophisticated 
models and empirical relations

The obtained results from the best predictive model in this 
study ( HORSM

5
) are validated against well-established 

empirical equations and other AI models. Comparing the 
performance of the proposed model in predicting the scour 
depth with models developed in the literature may give a 
clear and important impression about the efficiency and 
validity of the proposed model.

Sharafati et  al. (Sharafati et  al. 2020a) developed a 
hybrid model based on the integration of the bio-inspir-
ited algorithm (invasive weed optimization (IWO)) and 

adaptive neuro-fuzzy inference system (ANFIS) to esti-
mate the souring depth. The applied model (ANFIS-IWO) 
managed to provide satisfactory accuracy of prediction 
(R = 0.932), and however, this model also generated 
relatively higher prediction error (RMSE = 0.148, and 
MAE = 0.108). Furthermore, an empirical equation-based 
model is created by (Guan et al. 2016; Sharafati et al. 
2020a) to predict the souring depth. The results showed 
the accuracy of the model was not accurate as expected, 
providing a higher prediction error with RMSE = 0.447, 
and MAE = 0.395. Based on the reported results from both 
models, it can be concluded that the pattern of the scour-
ing depth is complicated and the existing model could not 
efficiently capture the underlying relations between predic-
tors and scouring depth.

For further quantitative comparison, the accuracy of 

the proposed model of this study compared with more and 

Fig. 10  Comparison between the accuracy of the proposed model and other models developed in the previous study throughout the testing stage

Table 5  Different input combinations used to perform the sensitivity 
analysis

Combinations Absent Inputs

I d50/ht [z/ht, Uo/Uc]
II z/ht [d50/ht, Uo/Uc]
III Uo/Uc [d50/ht, z/ht t]
IV [z/ht, Uo/Uc] d50/ht
V [d50/ht, Uo/Uc] z/ht
VI [d50/ht, z/ht] Uo/Uc
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advanced models developed in previous studies (Elkiki 
2018; Guven and Gunal 2008b; Goel and Pal 2009; Guven 
2011; Najafzadeh 2015; Sattar et al. 2018) in terms of cor-
relation coefficient (R). Figure 10 summarizes the predic-
tion accuracies of eight different AI modeling techniques. 
The reviewed models yielded good estimates, having higher 
similarity between their targets and the actual scouring 
depth. Besides, the correlation coefficient of these models 
varies between 0.905 and 0.948, while the proposed model 
( HORSM

5
) showed the highest accuracy (R = 0.955). Lastly, 

the validation illustrates that the HORSM
5
 model achieved 

higher prediction accuracy compared to other models. 

Sensitivity analysis

In hydraulic engineering, it is important to determine which 
parameters have a significant effect on scour depth ( ds

ht
 ). In 

this section, we explain the approach used to select the 
most important predictors. After selecting the best predic-
tive model ( HORSM

5
 ), different input combinations were 

used to train the model. All possible input combinations 
were considered when performing the sensitivity analysis 
(see Table 5). It is important to mention that the model is 
trained with 66% of the data and the remaining data are 
used for testing. According to the results of the testing phase 
(see Fig. 11), the most important critical case is the second 
case (combination II). The most important indication is that 

the prediction accuracy decreases drastically when the fac-
tor (z/ht) is not present. Moreover, the factor z/ht is very 
important for the dynamics of the scour depth compared to 
other factors. The second and third important parameters are 
Uo/Uc, and d50/ht, respectively.

Discussion

The primary focus of this paper is to explore the possibil-
ity of utilizing a suitable and efficient prediction model for 
accurately estimating the depth of scouring downstream 
of weirs. The accurate estimation of scouring depth holds 
significant importance in the field of water resources as it 
ensures the sustainability of hydraulic structures. However, 
predicting the depth of scouring poses a considerable chal-
lenge in the hydraulic discipline due to the involvement of 
various complex parameters, such as irregular geometry, the 
natural characteristics of water flow dynamics, and the non-
linear movement of sediments. The limitations of existing 
empirical formulas necessitate the development of advanced 
models capable of accurately predicting the impact of these 
parameters on scouring patterns. Additionally, a reliable 
predictive model would greatly assist in the sustainable 
design of hydraulic structures. In this study, the HORSM 
was employed, equipped with different orders of high-order 
polynomial functions ranging from two to six. The findings 
of this research indicate that  HORSM5 is the most effective 

Fig. 11  Results of sensitivity 
analysis for different combina-
tions
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model, demonstrating superior performance compared to 
AI-based models (ANN). The fifth order of the HORSM 
polynomial function provides the most precise predictions, 
exhibiting a higher R2 of 0.912 and WI of 0.972 when com-
pared to the values obtained using ANN (R2 = 0.886 and 
WI = 0.927). Furthermore, the accuracy of the predictions 
is evidenced by a reduction in mean square error of up to 
44.17% and 29.01% in comparison with classical RSM and 
ANN, respectively.

In addition, the proposed model, HORSM5, was validated 
against various sophisticated models and empirical models 
developed in previous works, including DNN, hybrid model 
(GMDP-PSO), SVR, and other ML-based models (refer to 
Fig. 10) (Elkiki; Guven and Gunal 2008b; Goel and Pal 
2009; Guven 2011; Najafzadeh 2015; Sattar et al. 2018). 
The correlation coefficients of these models ranged from 
0.905 to 0.948, while the  HORSM5 model demonstrated the 
highest accuracy, with a correlation coefficient of approxi-
mately 0.955. The validation results clearly indicate that 
the HORSM5 model outperforms other models in terms of 
prediction accuracy.

In the comparative analysis,  HORSM5 outshined ANN by 
reducing the RMSE by a notable 29%, showcasing its robust 
capability to discern complex patterns and interdependen-
cies within the data, which translated into enhanced predic-
tion precision. On the other hand, ANN's performance was 
less effective when compared to  HORSM5. The diminished 
accuracy of ANN may be linked to a confluence of issues. 
Firstly, the training data may have lacked quality or been an 
ill fit for the model's learning process. Secondly, there may 
have been difficulties in fine-tuning the hyperparameters 
effectively. Thirdly, the algorithm might have encountered 
obstacles in avoiding local minima. Finally, the limited num-
ber of training samples for ANN could have hindered its per-
formance. More training samples would have allowed ANN 
to efficiently learn and improve its predictive capabilities by 
increasing its capacity to capture underlying patterns and 
relationships in the data. Collectively, these factors played 
a part in undermining the ANN's predictive performance as 
observed in the research.

Conclusion

In this study, an improved version of the RSM model 
was used as a predictive model for predicting scour depth 
downstream of weirs, which is considered one of the most 
important parameters in the hydraulic field. The traditional 
RSM was developed using high-order polynomial func-
tions with two to six polynomial degrees, which gave rise to 
the HORSM approach. The traditional RSM and HORSM 
models were trained and validated using 186 experimen-
tal data. In addition, these models were validated using the 

ANN model as an efficient form of artificial intelligence 
model. The experimental samples were randomly divided 
into training and testing sets, with a ratio of 66% for train-
ing and 34% for testing. Various statistical metrics, includ-
ing RMSE, R, MAE, R2, MAPE, WI, and RRMSE, were 
employed to evaluate the prediction accuracy. The study 
found that the HORSM equipped with fifth-order polyno-
mial functions provided the best prediction accuracy and 
outperformed the standard RSM and ANN models. The 
proposed model demonstrated a reduced prediction error 
for scour depth compared to other models, with values of 
MAE = 0.083, RMSE = 0.115, and MAPE = 0.135. Addition-
ally, it exhibited high accuracy, as reflected in R = 0.955, 
and WI = 0.972, indicating superior performance. Also, a 
sensitivity analysis was performed to assess the impact of 
various hydraulic and geometric parameters on scour depth 
prediction. The absence of the factor (z/ht) significantly 
decreased prediction accuracy, highlighting its crucial role in 
scour depth dynamics. Additionally, Uo/Uc and d50/ht were 
identified as the second and third most important parameters, 
respectively. The proposed model can be used to estimate 
the marginal power functions in reliability planning and 
to predict other parameters in the hydraulic domain, such 
as the discharge coefficient and scour depth around bridge 
piers. Moreover, the proposed approach is very powerful for 
large data sets. However, when few or small data points are 
available ( N <

(n+1)(n+2)

2
+ (Q − 2) ∗ n2 ), the HORSM may 

not provide satisfactory predictions, which in turn limits its 
use. Therefore, it is important for the future to improve the 
HORSM approach to solve various engineering problems 
with few samples (observations) and large input vectors. 
Thus, this study proposes the following recommendations:

1. Employing principal component analysis (PAC) to 
decrease the dimensionality of the processed data for 
higher-order response surface methodology (HORSM).

2. Utilizing a regularization parameter to improve the per-
formance of the HORSM model.

Appendix 1

Data set

d50/ht Z/ht Uo/Uc ds/ht

0.014964 2.591241 0.059048 0.405109
0.010123 1.012346 0.270565 0.654321
0.01 1.731707 0.110377 0.45122
0.039806 6.893204 0.041109 0.825243
0.142 10.18 0.022517 1.3
0.014336 1.433566 0.156566 0.681818
0.025949 4.493671 0.076923 0.537975
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Data set

d50/ht Z/ht Uo/Uc ds/ht

0.021505 1.344086 0.233766 0.752688
0.13125 6.63125 0.024586 0.5625
0.15 7.371429 0.028686 0.857143
0.107335 2.415027 0.073342 0.447227
0.013355 2.312704 0.170093 0.732899
0.014388 0.179856 0.921769 0.719424
0.013355 2.312704 0.093661 0.521173
0.086061 6.739394 0.010863 0.333333
0.053097 1.769912 0.132716 0.973451
0.157778 10.91111 0.034682 2.222222
0.016942 2.933884 0.141784 0.764463
0.02971 5.144928 0.041109 0.471014
0.016803 2.909836 0.140845 0.79918
0.049569 1.767241 0.125436 0.668103
0.010789 1.868421 0.140845 0.552632
0.011748 2.034384 0.041109 0.30086
0.154043 4.757447 0.02501 0.468085
0.10101 2.020202 0.092297 0.589226
0.03268 0.653595 0.37377 0.588235
0.017316 0.692641 0.454545 0.606061
0.031944 1.138889 0.186174 0.375
0.013758 2.38255 0.041148 0.369128
0.124481 1.244813 0.148036 1.037344
0.029487 1.051282 0.173434 0.487179
0.009762 1.690476 0.170093 0.666667
0.025786 2.578616 0.070915 0.691824
0.052036 1.855204 0.108619 0.678733
0.11194 1.865672 0.098458 0.652985
0.017647 1.823529 0.179104 0.382353
0.161538 8.130769 0.016129 0.5
0.142 10.08 0.027136 1.7
0.015 1.25 0.294118 0.4
0.011714 2.028571 0.141784 0.485714
0.084 4.564 0.026251 0.44
0.022905 3.96648 0.076923 0.642458
0.010789 1.078947 0.181087 0.592105
0.025381 1.42132 0.209581 0.203046
0.031507 1.123288 0.070972 0.273973
0.016078 1.607843 0.156566 0.647059
0.049398 8.554217 0.021134 0.686747
0.228261 11.30435 0.010142 0.543478
0.249655 7.262069 0.019036 0.413793
0.019712 3.413462 0.07685 0.552885
0.068047 2.426036 0.070972 0.532544
0.010789 1.868421 0.07685 0.342105
0.01038 1.037975 0.249503 0.632911
0.058974 2.102564 0.186174 0.846154
0.009762 0.97619 0.270565 0.619048
0.017826 1.782609 0.102145 0.630435
0.021552 2.586207 0.112637 0.560345

Data set

d50/ht Z/ht Uo/Uc ds/ht

0.091 10.46 0.01416 1
0.00988 1.710843 0.156514 0.578313
0.009425 1.632184 0.170093 0.655172
0.041667 1.369048 0.188366 0.238095
0.362 10.25 0.014493 0.65
0.202857 14.54286 0.012181 1.428571
0.01025 1.025 0.102145 0.35
0.016129 0.16129 0.86692 0.376344
0.03605 1.285266 0.173434 0.673981
0.038206 1.362126 0.050107 0.282392
0.012733 2.204969 0.110377 0.512422
0.031579 1.473684 0.194203 0.263158
0.031944 1.138889 0.108619 0.402778
0.017982 3.114035 0.110377 0.657895
0.019431 3.364929 0.041109 0.450237
0.019011 1.064639 0.319149 0.494297
0.006098 1.585366 0.321569 0.487805
0.15 7.3 0.032713 1
0.021466 3.717277 0.021134 0.340314
0.023599 1.179941 0.267157 0.589971
0.016803 2.909836 0.021134 0.368852
0.019231 1.076923 0.308383 0.576923
0.012853 2.225705 0.110377 0.489028
0.157778 11.34444 0.017341 1.333333
0.00988 0.987952 0.205411 0.537349
0.1 5.457143 0.012456 0.261905
0.011615 1.161473 0.070915 0.396601
0.084559 3.014706 0.125436 0.691176
0.034743 1.238671 0.026753 0.135952
0.018667 1.066667 0.315657 0.933333
0.010123 1.012346 0.227545 0.580247
0.012424 2.151515 0.041109 0.30303
0.01025 1.775 0.156514 0.6375
0.012349 1.23494 0.038382 0.271084
0.0875 4.741667 0.02381 0.4375
0.074194 2.645161 0.049356 0.387097
0.016078 2.784314 0.093661 0.568627
0.022654 1.553398 0.198044 0.809061
0.016803 1.680328 0.129949 0.594262
0.014236 1.423611 0.181087 0.642361
0.009425 1.632184 0.140845 0.471264
0.016598 0.373444 0.687943 0.497925
0.117417 1.604697 0.115204 1.272016
0.030263 1.078947 0.159059 0.460526
0.012577 2.177914 0.021134 0.276074
0.010649 1.844156 0.041109 0.246753
0.014778 0.8867 0.377224 0.246305
0.021026 3.641026 0.110377 0.717949
0.155365 4.746781 0.02794 0.515021
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Data set

d50/ht Z/ht Uo/Uc ds/ht

0.010513 1.051282 0.156566 0.512821
0.039423 3.942308 0.070915 0.980769
0.07 8.053846 0.026192 1.230769
0.190526 5.642105 0.026448 0.421053
0.089686 1.943199 0.100633 0.822123
0.022989 0.804598 0.371287 0.689655
0.0568 4.572 0.029395 0.44
0.047674 8.255814 0.041109 0.697674
0.084559 3.014706 0.026753 0.330882
0.012275 2.125749 0.110377 0.449102
0.1222 1.466395 0.125691 0.305499
0.042424 1.575758 0.162921 0.787879
0.284 20.28 0.006981 1.6
0.021354 3.697917 0.041109 0.40625
0.012615 2.184615 0.07685 0.4
0.034431 1.227545 0.125436 0.329341
0.038679 6.698113 0.041148 0.566038
0.039048 3.904762 0.038382 0.619048
0.011389 1.972222 0.093661 0.472222
0.011081 1.108108 0.102145 0.418919
0.168372 5.274419 0.014638 0.27907
0.011233 1.945205 0.110377 0.410959
0.01025 1.775 0.059048 0.3
0.011081 1.918919 0.126177 0.548649
0.168372 5.32093 0.012129 0.395349
0.011748 1.174785 0.227545 0.630372
0.010789 1.868421 0.140845 0.565789
0.112994 1.883239 0.097125 0.847458
0.010033 1.839465 0.216828 0.568562
0.105634 0.96831 0.196783 1.144366
0.034454 5.966387 0.041109 0.697479
0.011714 2.028571 0.076923 0.377143
0.031944 1.138889 0.142164 0.472222
0.032394 1.15493 0.049356 0.239437
0.121704 1.37931 0.134323 0.811359
0.084 4.544 0.028232 0.48
0.017012 2.946058 0.07685 0.60166
0.010649 1.844156 0.140845 0.454545
0.110577 3.942308 0.050107 0.528846
0.055288 1.971154 0.090268 0.504808
0.033333 3.333333 0.070915 0.813008
0.023563 2.356322 0.102145 0.747126
0.010933 1.893333 0.171188 0.586667
0.22625 6.6 0.022363 0.4375
0.02157 0.560828 0.48264 0.474547
0.037217 1.326861 0.159059 0.582524
0.041667 1.485507 0.142164 0.623188
0.006 1.06 0.461783 0.28
0.009647 1.670588 0.126177 0.458824

Data set

d50/ht Z/ht Uo/Uc ds/ht

0.091 10.37 0.017532 1.2
0.010847 1.084656 0.129949 0.462963
0.014437 1.443662 0.102145 0.528169
0.012166 2.106825 0.140845 0.563798
0.142 10 0.0306 1.8
0.119522 1.294821 0.143762 0.896414
0.155556 7.762963 0.021159 0.592593
0.012934 2.239748 0.076923 0.425868
0.011905 0.992063 0.410646 0.793651
0.101111 10.96667 0.037812 2.444444
0.034328 1.223881 0.188615 0.656716
0.017155 2.970711 0.021134 0.359833
0.030667 1.093333 0.188615 0.541333
0.075833 8.541667 0.03228 1.5
0.011582 2.00565 0.110377 0.437853
0.012424 1.242424 0.205411 0.69697
0.01025 1.775 0.093661 0.4375
0.096154 1.442308 0.13689 1.041667
0.012424 2.151515 0.126177 0.590909
0.160889 4.968889 0.022129 0.444444
0.032578 1.161473 0.125436 0.453258
0.011233 1.123288 0.205411 0.575342
0.011233 1.945205 0.059048 0.342466
0.035019 1.478599 0.179907 0.700389
0.009951 1.723301 0.041109 0.276699
0.047674 8.255814 0.021134 0.697674
0.032764 1.168091 0.090268 0.353276
0.015873 0.904762 0.233062 0.603175
0.076757 6 0.018244 0.513514
0.05291 2.010582 0.113953 0.687831
0.103806 1.038062 0.185418 1.124567
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