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Abstract
Assessing groundwater quality is critical to regional water resource conservation and human health safety, especially in areas 
with co-existence of toxic constituents fluoride (F−) and arsenic (As). In this study, fourteen groundwater samples were col-
lected in Feng County, Northwestern Jiangsu Province to identify dominant contaminants and their spatial distribution and 
health risk. The composition and variation characteristics of major ions (K+, Na+, Ca2+, Mg2+, Cl−, SO4

2−, HCO3
−, and NO3

−) 
and trace elements (F−, As, and Mn) were analyzed. The hydrochemical results revealed that high F− groundwater was mainly 
distributed in the northern areas whereas As-riched groundwater was primarily distributed in southern areas. Notably, over 
85.7% and 21.4% of the shallow groundwater samples exceeded the drinking water quality standard of 1.5 mg/L for F− and 
10 µg/L for As, respectively. Based on the water quality index (WQI) appraisal result, 71.4% of the groundwater in the study 
area is classified as “poor”, and thus unsuitable for drinking directly. We assessed the human non-carcinogenic health risk 
of F− (HQFluoride) and As (HQArsenic) and the carcinogenic health risk of As (CRArsenic). The calculated hazard quotient (HQ) 
for F− indicated nearly all groundwater samples have an unacceptable risk (HQ > 1) for each age group. However, HQArsenic 
values revealed that 28.6%, 21.4%, 21.4%, and 21.4% of groundwater samples posed potential non-carcinogenic health risks   
for infants, children, females, and males, respectively. The calculated results of CRArsenic showed that 0%, 21.4%, 28.6%, and 
28.6% of groundwater samples posed unacceptable health risks (CR > 1.0 × 10−4) to infants, children, females, and males, 
respectively. The groundwater irrigation suitability assessment results showed that 21.4% of samples were doubtful to unsuit-
able for irrigation, and 85.7% owed magnesium hazards. The findings of this study will assist policymakers in formulating 
proper remedial policies and mitigation strategies to ensure the safety of drinking and irrigation water.
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Introduction

Worldwide, over 2.5 billion people rely on groundwater as 
a reliable   freshwater source for drinking (Liu et al. 2019a, 
b; Mahmud et al. 2020). Simultaneously, about 20% of agri-
cultural irrigation and 15% of industrial  water also depend 
on groundwater (Adimalla et al. 2018). In 2015, the United 
Nations made a universal call to ensure that all people have 
“clean drinking water and sanitation facilities” till 2030 in 
Sustainable Development Goal 6 (SDG-6) (Ruidas et al. 
2024). However, an increasing number of countries and 
regions are experiencing serious water security problems 
due to natural environmental changes and intensive anthro-
pogenic activities (industrial production, agricultural activi-
ties, wastewater discharge, etc.) (Xu et al. 2018; Liu et al. 
2020b; Tanwer et al. 2023). In recent decades, human health 
risks triggered by groundwater contamination have received 
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much attention in many countries, particularly in develop-
ing countries (Pal et al. 2022; Jaydhar et al. 2023; Ruidas 
et al. 2024). India and China are the worldwide hotspots 
in terms of fluoride (F−), nitrate (NO3

−), and arsenic (As) 
contamination in groundwater aquifers (Liu et al. 2015a, 
b; Ruidas et al. 2022, 2023a; Jaydhar et al. 2023). Accord-
ing to Cao et al. (2023), 260 million people are reportedly 
exposed to endemic fluorosis in 25 countries worldwide, 
with China being one of the most vulnerable countries 
(> 60 million people). It is reported that the accumulation 
of F− in groundwater primarily resulted from the weathering 
of fluorine-hosting minerals like fluorite, topaz, and apatite 
(Bhattacharya et al. 2017; Enalou et al. 2018; Elumalai et al. 
2019; Xu et al. 2023). Long-term consumption of high-flu-
oride groundwater (> 1.5 mg/L) may cause dental fluorosis, 
osteosclerosis, and mental retardation in children, despite 
fluoride’s role as an essential trace element (Jia et al. 2018; 
Hossain and Patra 2020; Jiang et al. 2022). Notably, the 
prolonged consumption of arsenic-containing groundwater 
(> 10 µg/L) can result in several health problems such as 
arsenic poisoning, cancer, and increased all-cause mortal-
ity (Pincetti-Zúniga et al. 2020; Podgorski and Berg 2022).

 It is reported that natural processes or anthropogenic 
input of F− and As have a significant impact on human 
health and crop growth (Bhattacharya et al. 2017; Ruidas 
et al. 2023b, 2024). Irrigating  crops and vegetables with 
F− and As contaminated groundwater is a key transfer route 
that F− and As entry into the human food chain via the 
water-soil-plant-food system (Huang et al. 2006; Bhattacha-
rya et al. 2010). Therefore, the combined effect of F− and As 
in groundwater will enhance the probability of related dis-
eases including chronic arsenic poisoning and endemic fluo-
rosis (Bhattacharya et al. 2020; Ruidas et al. 2023a, 2024). 
A detailed scientific assessment of groundwater quality for 
various uses is imperative to guide water resource manage-
ment. For example, Ruidas et al. (2024) and Pal et al. (2022) 
have been working on groundwater F− and As contamination 
along with associated health risks individually and combin-
edly in Bangladesh and India by utilizing various machine 
learning (ML), Random forest (RF), Multi-collinearity anal-
ysis, and GIS-based techniques.

Feng County, located in northwestern Jiangsu Province, 
is highly contaminated by F− since the Yellow River flood 
sediment contains a huge amount of F− to be released into 
the groundwater aquifer (Wang et al. 2023a; Chen et al. 
2023). Until now, rural area still relies on groundwater 
for industrial, agricultural, and domestic use although 5% 
of the residents have suffered from skeletal fluorosis and 
70% from dental fluorosis (Zhu 2007). Wang et al. (2023a) 
mainly focus on the groundwater cycle and hydrochemical 
evolution processes in Feng County using stable isotope and 
geochemical modeling. Chen et al. (2023) integrated self-
organizing maps with the Monte Carlo method to evaluate 

groundwater fluoride exposure and related health risks in 
the Fengpei plain. Further, Zhou et al. (2023) reported that 
the mean F− concentration reached 2.81 mg/L in the shal-
low groundwater of Feng County. Previous studies mainly 
reported natural processes and anthropogenic factors affect-
ing the hydrochemical characteristics of high-fluoride aqui-
fers. However, little literature has been reported in this 
region regarding the co-existence of toxic constituents 
F− and As and their associated health risks. Additionally, 
groundwater suitability for drinking and irrigation purposes 
was also not studied.

Based on the above context, a systematic and compre-
hensive evaluation of groundwater quality in the study 
area is urgently needed to ensure the local water resources 
safety. The main objectives of this study are to (1) evaluate 
the groundwater quality and its spatial variation based on 
GIS; (2) assess the groundwater suitability for drinking and 
irrigation purposes; and (3) determine the potential human 
health risks of F− and As for different age groups. This study 
can provide an important foundation for  formulating sus-
tainable groundwater resource protection schemes in the 
study area and similar areas experiencing serious F− and 
As contamination.

Study area

Feng County (116° 21′ 15″ –116° 52′ 03″ E, 34° 24′ 25″–34° 
56′ 27″ N) is located in northwestern Jiangsu Province with 
an area about 1450 km2 (Fig. 1). This area is character-
ized by a semi-humid monsoon climate, with an average 
annual temperature of 15.3 °C, a maximum temperature 
of 38.3 °C, and a minimum temperature of − 9.9 °C. The 
average annual precipitation and evaporation from 1956 to 
2020 were 733.82 mm and 1472.32 mm, respectively (Wang 
et al. 2023a). Evaporation is much greater than precipitation. 
The main surface water bodies in the study area include the 
Fuxin River and the Dasha River.

The study region belongs to the North China stratigraphic 
area geologically. The Quaternary strata are extensively 
developed and are approximately 270 m thick (Wang et al. 
2023a). The thickness of the Quaternary Holocene strata is 
11.0–15.0 m, mainly chalky sand and loamy soil. The thick-
ness of Middle and Upper Pleistocene strata is about 130 m, 
and the thickness of Lower Pleistocene and Tertiary Plio-
cene strata is about 180 m. The bedrock is Tertiary, and the 
lithology is mainly red sandstone and conglomerate inter-
bedded with colored shale, sandstone, and mudstone. There 
are three aquifers in the formation: the first aquifer is located 
above 50 m, with medium water-richness, mainly used for 
rural life and agricultural irrigation. The second aquifer 
(50–120 m) has low water-bearing and high mineralization. 
The third aquifer (100–200 m) has a strong water abundance 
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and good water quality, with a single well with a production 
rate of 70 m3/h, which is mainly used as urban industrial and 
domestic water.

Based on the land use data of the raster image in 2018 
(30m × 30m), the land use types in the study area mainly 
included agricultural, construction, and other land uses 
(Fig. 1). The  agricultural land was the highest  account-
ing for 77.4% of the total area, followed by construction 
and other lands use with the proportion of 18.2% and 4.4%, 
respectively. As reported by Liu et al. (2020a), land use pat-
terns may influence the distribution and transport of pollut-
ants and have a major impact on groundwater quality.

Material and methods

Sample collection and testing

Groundwater samples from 14 shallow wells were collected 
to investigate the concentrations of major ions and trace ele-
ments in November 2021 (Fig. 1). Most groundwater sam-
ples were taken from wells for domestic and irrigation sup-
plies with groundwater levels ranging from 33 to 40 m. A 
calibrated portable multi-parameter digital meter (HQ30d, 
HACH) was used to measure the pH and electrical conductiv-
ity (EC) of groundwater samples during the field investiga-
tion. The parameter values were recorded when the data on 

the dashboard remained stable. After pumping for approxi-
mately 5 min, the bottles were rinsed 2–3 times with sample 
water before being placed in polyethylene sampling bottles. 
The samples were filtered using 0.45 μm microporous filters 
and stored at 4 °C before being analyzed. 50 ml groundwa-
ter samples were acidified to pH < 2 with ultrapure HNO3

− to 
measure cations (K+, Na+, Ca2+, Mg2+). However, the other 
was kept without acidification for testing Cl−, SO4

2−, NO3
−, 

F−, As, and Mn.
The major cations (K+, Na+, Ca2+, and Mg2+) were meas-

ured by using an inductively coupled plasma optical emission 
spectrometer (Perkin-Elmer Optima 5300DV, USA). whereas 
major anions (Cl−, SO4

2−, NO3
−, and F−) were determined by 

ion chromatography (Thermo Fisher ICS600, USA). Alkalin-
ity (HCO3

−) was measured by using a titration method within 
24 h of sampling. The As and Mn content of the groundwater 
samples was analyzed by inductively coupled plasma mass 
spectrometer ICP-MS (NexION 2000, Perkin Elmer, USA). 
The original dataset in this study is sourced from Wang et al. 
(2023a), except Mn and As.

To ensure the reliability of the results, the charge balance 
errors (CBE) of cation and anion were checked by Eq. (1). The 
acceptable ion balance errors in this study were within ± 10%.

(1)CBE(% ) =

∑

Nc −
∑

Nb
∑

Nc +
∑

Nb

× 100%

Fig. 1   Location of sampling sites and land use types in the study area
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where  Nc and Nb represent the concentrations of anions and 
cations in meq/L, respectively.

Water quality index

The water quality index (WQI) approach  assessed groundwa-
ter suitability for drinking purposes by integrating data sets 
(Verma et al. 2020; Gao et al. 2021; Tanwer et al. 2023). In this 
study, 14 key parameters (pH, EC, TDS, K+, Na+, Ca2+, Mg2+, 
Cl−, SO4

2−, HCO3
−, NO3

−, F−, As, and Mn) were incorporated 
into the WQI to assess the quality of groundwater. All these 
chemical parameters have a direct and indirect influence on 
groundwater quality.

Based on its relative importance in human health assess-
ment, each physicochemical parameter was assigned a specific 
weighting (2 to 5) (Hossain and Patra 2020; Piyathilake et al. 
2022). In this study, the weights of SO4

2−, NO3
−, F−, As, and 

Mn were assigned 5 due to their importance in water quality 
assessment (Table 1). The WQI calculation consists of the 
following three steps:

(2)
Wi =

wi

n
∑

i=1

wi

(3)Qi =
ci

si
× 100

where Wi represents the relative weight of each water quality 
parameter; wi is the weight of each water quality parameter; 
Ci is the concentration of each chemical parameter “ i ” in 
each sample (mg/L); Si is the World Health Organization 
standard (WHO 2011) for each chemical parameter; Qi is the 
quality rating scale of the chemical parameter “ i ”, and “ n ” 
is the total number of parameters.

According to the WQI value, groundwater quality can 
be classified into the following five categories: “Excel-
lent” (WQI < 50); “Good” (50 ≤ WQI < 100); “Poor” 
(100 ≤ WQI < 200); “Very poor “(200 ≤ WQI < 300); 
“Unsuitable” (WQI ≥ 300).

Irrigation water quality evaluation

 Excessive dissolved ions in irrigation water will have physi-
cal and chemical effects on plants and agricultural soil, thus 
reducing productivity. Therefore, it is critical to evaluate the 
suitability of groundwater for irrigation. In this study, irriga-
tion assessment parameters such as sodium adsorption ratio 
(SAR), sodium percentage (%Na), residual sodium carbon-
ate (RSC), permeability index (PI), and magnesium hazard 
(MH) were used to evaluate the suitability of irrigation water 
(Bian et al. 2018; Hou et al. 2023; Hasan et al. 2023; Taloor 
et al. 2024). These indexes were calculated by Eqs. (5)–(9), 
respectively, where all ion concentrations are expressed in 
meq/L:

(4)WQI =

n
∑

i=1

Wi × Qi

Table 1   Statistical value of the 
physical and chemical indicators 
of groundwater samples in the 
study area

Chemical parameters Groundwater Parameters for WQI calculation

Min Max Mean SD WHO standards Weight ( w
i
) Relative 

weight 
( W

i
)

pH 7.3 7.8 7.5 0.2 6.5–8.5 4 0.0755
EC (μS/cm) 729.0 3030.0 1667.4 695.3 1500 4 0.0755
TDS (mg/L) 391.7 2132.3 1041.2 561.0 1000 4 0.0755
K+ (mg/L) 2.8 32.4 16.9 7.7 12 2 0.0377
Na+ (mg/L) 51.1 547.8 263.6 171.6 200 3 0.0566
Ca2+ (mg/L) 29.8 95.5 56.9 22.9 200 2 0.0377
Mg2+ (mg/L) 24.7 103.8 59.2 24.7 150 2 0.0377
Cl− (mg/L) 54.5 506.4 173.8 119.2 250 4 0.0755
SO4

2− (mg/L) 8.1 945.7 262.8 283.4 250 5 0.0943
HCO3

− (mg/L) 195.2 585.6 398.9 93.5 500 3 0.0566
NO3

− (mg/L) 0.9 88.5 24.9 31.9 50 5 0.0943
F− (mg/L) 1.3 5.5 3.4 1.4 1.5 5 0.0943
Mn (µg/L) 0.3 1536.4 250.1 437.1 100 5 0.0943
As (µg/L) 0.1 72.4 8.6 19.2 10 5 0.0943
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Health risk assessment

Non‑carcinogenic risk

Non-carcinogenic risk (NCR) was characterized by the 
hazard quotient (HQ) and HQ > 1 indicates the presence 
of non-carcinogenic risk (Nawale et al. 2021; Wang et al. 
2023b). In this study, HQFluoride and HQArsenic represent the 
non-carcinogenic health risks from F− and As contamina-
tion, respectively. In general, ingestion and dermal are the 
primary pathways of human exposure to contaminants (Li 
et al. 2021b; Liu et al. 2022). Given the potential hazards 
from oral intake are greatly higher than those from dermal 
contact (Liu et al. 2022),  only the oral ingestion exposure 
pathway is considered to assess the potential health risks in 
this study. Fluoride exposure in different age groups was 
calculated using Eq. (10) (Jaydhar et al. 2022). HQ can be 
calculated by dividing the estimated daily intake (CDI) by 
the safe dose (RfD), as expressed in Eq. (11).

where CDI indicates the daily intake dose from ingestion in 
drinking water (mg/kg/day); Cw is the contaminant (F− or 
As) level in groundwater (mg/L); IR is the intake rate (L/
day; 0.65 L/day for infants, 1.5 L/day for children, and 2.66 
L/day for adults) (Xiao et al. 2022a; Pasupuleti et al. 2022); 
ED is the exposure duration (years; 0.5, 6, 30, and 30 years 

(5)
SAR =

Na+
√

(Ca2++Mg2+)

2

(6)Na% =
(Na+ + K+) ∗ 100

(Ca2+ +Mg2+ + Na+ + K+)

(7)RSC = (HCO−

3
+ CO2−

3
) − (Ca2+ +Mg2+)

(8)PI =

�

Na+ +
√

HCO−
3

�

× 100
�

Ca2+ +Mg2+ + Na+
�

(9)MH =
Mg2+

Ca2+ +Mg2+
× 100

(10)CDI =
Cw × IR × ED × EF

BW × AT

(11)HQ =
CDI

RfD

for infants, children, females, and males, respectively) (Xiao 
et al. 2022b; Zeng et al. 2023); EF is exposure frequency 
(days/year; EF = 365 days/year); BW indicates average body 
weight (kg; 6.94 kg, 25.9 kg, 52 kg and 73 kg for infants, 
children, female, and male, respectively) (Liu et al. 2022; 
Hu et al. 2022; Zeng et al. 2023); AT is the average expo-
sure time (AT = 365 × ED); RfD denotes the reference dose 
(mg/kg/d), F− is 0.06 mg/kg/d (Zeng et al. 2023; Chen et al. 
2023) and As is 0.0003 mg/kg/d (Zhang et al. 2019; Qaiser 
et al. 2023).

Carcinogenic risk

Arsenic (As) is a typical carcinogen in groundwater that affects 
the public health of inhabitants through oral exposure path-
way (Rapant and Krčmová 2007; Bhattacharya et al. 2020). 
Chronic exposure to As-rich groundwater can lead to carcino-
genic risks (CR), such as skin cancer and kidney cancer (Zhu 
et al. 2023). Therefore, As was selected to assess the carcino-
genic risk of groundwater in the study. The carcinogenic risk 
value of As was calculated using the following formula:

where SF indicates the slope factor for carcinogenic con-
taminants (mg/kg/day)−1 (Zhu et al. 2023). The SF value for 
As was set at 1.5 (mg/kg/day)−1 in this study (Li et al. 2021a; 
Rashid et al. 2023). For carcinogenic effects, AT = 70 × 365 
(25550 days) because 70 years represent the adverse human 
health effects of As on a person’s lifetime (Zhang et al. 2019; 
Yuan et al. 2023; Rashid et al. 2023). The carcinogenic risk 
is an acceptable level if CR values of As via ingestion path-
way between 1 × 10−6 and 1 × 10−4 (USEPA 2004); while 
an unacceptable range when the CR values are larger than 
1 × 10−4 (Kumar et al. 2017; Rahman et al. 2022; Goswami 
et al. 2022).

Geostatistical analysis

The Geographic Information System (GIS) techniques have 
been widely adopted to identify the spatiotemporal variation 
of groundwater quality (Ruidas et al. 2021, 2023a; Jaydhar 
et al. 2022; Biswas et al. 2023). In this study, the spatial distri-
bution map of hydrochemical constituents and water quality 
index was generated by the inverse distance weighted (IDW) 
interpolation method in ArcGIS 10.2 software (Rahman et al. 
2022). The IDW method estimates the values of an attribute 
at unsampled points using the distance-weighted average of 
all data of the neighboring sampled sites (Atikul Islam et al. 
2017; Biswas et al. 2023).

(12)CRArsenic = CDIoral × SForal
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Results and discussion

Groundwater quality assessment

Hydrochemical characteristics and spatial distribution

The summary statistics  of the physical and chemical 
parameters in the groundwater samples are shown in 
Table 1. The pH varied from 7.3 to 7.8 with an average 
value of 7.5, indicating groundwater was slightly alka-
line. As specified by WHO (2011), the pH of all sam-
ples is below the limit (6.5–8.5). Total dissolved solids 
(TDS) varied from 391.7 to 2132.3 mg/L, with a mean 
value of 1041.2 mg/L. Approximately 42.9% of the water 
samples exceeded the permissible limit of 1000 mg/L. As 
shown in Fig. 2a, the TDS exceedance points were mainly 
distributed in the northern of the study area, which is an 
important industrial zone, implying that  the discharge of 
industrial pollutants will inevitably lead to groundwater 
contamination.

The trace elements can be effective in determining the 
potential contamination status of groundwater. It is note-
worthy that F− concentrations in groundwater in the study 
area ranged from 1.3 to 5.5 mg/L, with a mean value of 

3.4 mg/L. Notably, more than 85.7% of the groundwater 
samples had fluoride concentrations higher than the WHO 
guideline-recommended standard of 1.5 mg/L. As shown 
in Fig. 2b, the F− concentration of the shallow ground-
water rose from south to north in the study area. Accord-
ing to previous studies, high levels of F− concentration in 
groundwater are primarily due to fluoride-rich minerals 
existing in groundwater aquifers,  including clay particles, 
muscovite, biotite, and fluorite (Wang et al. 2023a; Chen 
et al. 2023). Arsenic concentrations in groundwater ranged 
from 0.1 to 72.4 µg/L, with a mean value of 8.6 µg/L 
(Table 1). The geological origins of high-As groundwater 
are mainly associated with the sedimentary environment 
of strata, such as the reductive dissolution of Fe (hydr)
oxides and the oxidation of sulfide minerals containing As 
(Zhang et al. 2019; Goswami et al. 2022). Nearly 21.4% of 
groundwater samples showed arsenic concentrations above 
the allowable limit of 10 µg/L set by the WHO (2011). 
Figure 2c shows that the As contamination in ground-
water was mainly concentrated in the southeastern part 
of the study area, such as Liangzhai and Dashahe. Par-
ticularly, the As concentration in Huashan town reached 
72.4 µg/L, indicating severe As contamination. Notably, 
co-occurrence of high F− and As  in 21.4% of groundwater 
samples increased the health risk relative to one toxicant, 

Fig. 2   Spatial variation of TDS, F−, As, and Mn concentration in shallow groundwater
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which was also observed in areas of Dharmanagar region 
(Bhattacharya et al. 2020) and Huaihe River Basin (Xu 
et al. 2023). The concentration of Mn in the current study 
varied between 0.3 and 1536.4 µg/L with a mean value of 
250.1 µg/L, and 42.9% of water samples were above WHO 
guideline for drinking water (100 µg/L) (Fig. 2d). It was 
notable that the high Mn concentrations (> 100 μg/L) of 
groundwater were mainly found in the south of the study 
area (Fig. 2d).

In the present study, K+ and Na+ concentrations in ground-
water ranged from 2.8 to 32.4 mg/L (mean 16.9 mg/L) and 
51.1 to 547.8 mg/L (mean 263.6 mg/L), respectively, indicat-
ing that Na+ concentrations in groundwater were significantly 
higher than K+ concentrations. More than 78.6% of sampling 
sites exceeded the WHO-recommended K+ permissible limit 
(12 mg/L), whereas 57.1% of samples had Na+ exceeding 
the threshold value of 200 mg/L (WHO 2011). As shown in 
Fig. 3a and b, the areas with excessive K+ and Na+ contents 
are mainly distributed in the southeast and northwest agricul-
tural areas. According to Wang et al. (2023a) and Chen et al. 
(2023), the dissolved Na+ in groundwater may not only be 
related to the widespread distribution of feldspar and hal-
ite in the aquifer but  also be probably attributed to cation 
exchange processes between groundwater and soil. It is noted 
that the widespread use of potassium fertilizers in agriculture 

can result in elevated K+ levels in groundwater, which can 
harm the nervous and digestive systems of humans through 
oral intake (Sharma et al. 2017). On the other hand, Ca2+ 
and Mg2+ concentrations ranged from 29.8 to 95.5 mg/L and 
24.7 to 103.8 mg/L with mean levels of 56.9 and 59.2 mg/L, 
respectively. It can be seen that Ca2+ and Mg2+ levels are all 
below the acceptable limits of 200 mg/L and 150 mg/L (WHO 
2011), respectively (Fig. 3). Related studies have shown that 
Ca2+ and Mg2+ in groundwater are mainly derived from the 
dissolution of carbonate and gypsum by weathering (Liu et al. 
2020a; Guo et al. 2023).

The statistical values and spatial variation of major ani-
ons (Cl−, SO4

2−, HCO3
−, and NO3

−) are depicted in Table 1 
and Fig. 4, respectively. According to WHO guidelines, the 
maximum permissible limit for Cl− is 250 mg/L (Liu et al. 
2022). In this study, Cl− concentration in the shallow ground-
water ranged from 54.5 to 506.4 mg/L, with about 21.4% of 
the samples exceeding the recommended permissible limit. 
Groundwater Cl− levels were high in Zhaozhuang, Wanggou, 
and Huankou, although mean values did not exceed the limit 
(Fig. 4a). High Cl− concentration in groundwater can induce 
hypertension, osteoporosis, and asthma in humans. Besides 
halite dissolution, industrial wastewater, compost, and waste 
leachate may also contribute to high Cl− concentrations in 
groundwater (Chen et al. 2023). The concentrations of SO4

2− in 

Fig. 3   Spatial variation of major cation concentration in shallow groundwater
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groundwater in the study area ranged from 8.1 to 945.7 mg /L 
(mean 262.8 mg/L). About 42.9% of sampled groundwaters  
exceeded the safety limit of 250 mg/L (WHO 2011). Ground-
water samples with high SO4

2− content mainly occurred in 
Shouxian, Changdian, Huankou, Shizhai, Shunhe, and Fanlou 
(Fig. 4b). Although SO4

2− has no toxicity it does change the 
level of methemoglobin and sulphaemoglobin in the human 
body when consumed in large amounts through drinking water 
(WHO 2011; Sharma and Kumar 2020). Gypsum dissolution 
and other anthropogenic sources (e.g., mining, fertilizer, etc.) 
may contribute significantly to high SO4

2− concentrations in 
groundwater (Kumar et al. 2017; Goswami et al. 2022). The 
concentration of HCO3

− in groundwater ranged from 195.2 to 
585.6 mg/L with a mean value of 398.9 mg/L. About 7.1% of 
the samples exceeded the limit of 500 mg/L allowed by WHO 
(2011). As reported by Wang et al. (2023a), silicate and carbon-
ate weathering in the study area may have been an important 
factor in increasing HCO3

− concentration of groundwater. Fur-
thermore, the alkaline environment promotes the enrichment 
of F− content (Chen et al. 2023). According to the spatial dis-
tribution map of HCO3

− in the study area (Fig. 4c), all samples 
were within the permissible range, except for the Fanlou. Shal-
low groundwater NO3

− concentrations in the study area ranged 
from 0.9 to 88.5 mg/L, with a mean of 24.9 mg/L. Naturally, 
precipitation or soil organic nitrogen are the main sources of 

groundwater NO3
−, which is present in the environment at low 

amounts (below 10 mg/L) (Mao et al. 2023). However, more 
than 28.6% of samples exceeded the natural environment con-
centrations and the contaminated areas were mainly located 
in the southeast (Fig. 4d). Therefore, NO3

− contamination in 
groundwater in the study area cannot be ignored. Chronic inges-
tion of NO3

−-contaminated groundwater can cause methemo-
globinemia in humans (Wang et al. 2023b). According to the 
field investigation, farmers in the study area use various nitroge-
nous fertilizers to increase crop yields, which inevitably elevated 
NO3

− levels in groundwater (Wang et al. 2023a).
In summary, the dominant orders of major cati-

ons and anions  concentration in the shallow groundwa-
ter of the study area were Na+  > Ca2+  > Mg2+  > K+ and 
HCO3

−  > SO4
2−  > Cl−  > NO3

−  > F−. The comparative analysis 
revealed that the groundwater suffered serious contamination 
from TDS, K+, Na+, Cl−, SO4

2−, NO3
−, F−, Mn, and As, with 

exceedance rates of 42.9%, 78.6%, 57.1%, 21.4%, 42.9%, 28.6%, 
85.7%, 42.9%, and 21.4%, respectively.

Drinking water suitability

WQI is a worthwhile approach for assessing groundwater 
quality and its suitability for drinking purposes (Hossain 
and Patra 2020; Liu et al. 2021). Several researchers (such 

Fig. 4   Spatial variation of major anionconcentration in shallow groundwater
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as Nizam et al. 2022 and Taloor et al. 2024) have employed 
this method to assess groundwater quality in their studies. 
The WQI values of the groundwater samples ranged from 
61.6 to 206.7, with a mean value of 125.7. According to 
the WQI classification, 28.6% of the groundwater samples 
were “good” quality, 64.3% were “poor” quality, and 7.1% 
were “very poor” quality. As shown in Fig. 5, the areas with 
“good” water quality were mainly concentrated in Sunlou 
and Fengcheng in the central part of the study area and 
Liangzhai in the southeast. However, a majority of the shal-
low groundwater samples were not suitable for drinking 
due to WQI values between 100 and 200. Human health 
is expected to be jeopardized if contaminated groundwater 
is consumed for an extended period. Consequently, seek-
ing alternative clean water sources for drinking is urgent 
for this area.

Irrigation water quality evaluation

Shallow groundwater is one of the main water sources for 
agricultural irrigation in the study area. Therefore, ground-
water irrigation suitability has a direct impact on the sus-
tainable development of local agriculture. High Na+ con-
centration in irrigation water reduces the permeability of 
the soil, resulting in alkaline soils unsuitable for cultivation 

(Li et al. 2018). High salinity inhibits water from reach-
ing the branches and leaves of plants, which is detrimen-
tal to crop growth (Sellamuthu et al. 2022). To check the 
suitability of the groundwater for irrigation uses, a set of 
determinants for irrigation water suitability was studied and 
outlined in Table 3 (Atikul Islam et al. 2017; Mohamed et al. 
2022). Typically, SAR and %Na are used to evaluate alkali 
damage of irrigation water (Wang et al. 2022; Mukherjee 
et al. 2022). SAR were classified as excellent (< 10), good 
(10–18), doubtful (18–26), and unsuitable (> 26) (Table 3) 
(Liu et al. 2022). Results showed that SAR values ranged 
from 1.21 to 12.82, with a mean of 5.61, indicating that 
all groundwater was suitable for irrigation (Table 2). Fur-
thermore, the %Na in irrigation water should not exceed 

Fig. 5   Spatial variation of WQI of shallow groundwater in the study area

Table 2   Summary statistics of groundwater quality indicators for irri-
gation

Parameters Min Max Mean SD

SAR 1.21 12.82 5.61 3.56
%Na 25.73 80.77 55.51 15.51
RSC  − 5.48 3.88  − 1.24 2.34
PI 48.81 90.94 69.87 12.04
MH 31.11 76.12 62.31 14.72
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60%, and when it does, groundwater becomes unsuitable 
for agricultural irrigation (Zhou et al. 2021). In Table 2, 
the variation of %Na ranged from 25.73 to 80.77%, with a 
mean value of 55.51%. In terms of %Na, about 7.1% of the 
water samples in the study area were unsuitable for irriga-
tion (Table 3). EC can be used to assess the groundwater 
salinity suitability for irrigation purposes. Based on the 
EC values, salinity hazards can be classified as excellent 
(EC < 250 µS/cm), good (250 < EC < 750 µS/cm), doubtful 
(750 < EC < 2250 µS/cm), and unsuitable (EC > 2250 µS/cm) 
(Sharma et al. 2017). The EC of groundwater in this study 
area ranged from 729 to 3030 µS/cm with a mean value of 
1667.4 µS/cm and 21.4% of the groundwater was unsuitable 
for irrigation regarding salinity hazards (Table 3).

According to the RSC classification (Table 3), groundwa-
ter with an RSC value < 1.25 is considered suitable for irriga-
tion purposes. In contrast, if the RSC value varies between 
1.25 and 2.5, the water quality is doubtful; water with an SAR 
value above 2.5, signifies that the water quality is unsuitable for 
irrigation (Panneerselvam et al. 2021). The results show that the 
RSC ranged between − 5.48 to 3.88 with a mean value of − 1.24 
(Table 2), and 92.9% of the samples were suitable for irrigation 
(Table 3). Only one sample (G12) had a SAR value of 3.88, 
indicating a higher risk of sodium toxicity and a negative impact 
on crop growth. The permeability index (PI) is an index to assess 
the permeability of  the soil.  Long-term groundwater irrigation 
with rich minerals such as Na+, Ca2+, Mg2+, and HCO3

−  will 

lower the soil permeability and reduce the crop yield. According 
to the PI classification (Table 3), PI > 75% was considered suit-
able for irrigation; 25% < PI < 75% was permissible for irriga-
tion; and when PI < 25%, it was not suitable for irrigation (Liu 
et al. 2022). Table 2 shows that the PI values in the study area 
ranged from 48.81 to 90.94 with a mean of 69.87, indicating that 
groundwater is suitable for irrigation. Overall, 28.6% of the sam-
ples were “good”, and the remaining  71.4% of samples  were in 
the “permissible” category (Table 3). Therefore, the groundwa-
ter samples show no evidence of a soil infiltration problem. The 
MH in groundwater samples ranged from 31.11 to 76.12 (aver-
age 62.31) (Table 2), with 85.7% of the water samples exceed-
ing the permissible limit (> 50%) (Table 3). This meant that the 
majority of the groundwater in the study area posed a significant 
magnesium hazard.

Besides the above parameters, USLL and Wilcox plots cor-
relating alkalinity and salinity have been widely used to evaluate 
groundwater suitability for irrigation (Mukherjee et al. 2022; 
Sellamuthu et al. 2022). The United States Salinity Laboratory 
plot (Fig. 6a) showed that 71.4% of the water samples are plotted 
in zone C3S1, indicating high salinity and low sodium hazards. 
One sample (7.1%) is scattered in zone C3S2, illustrating  high 
salinity and   medium sodium hazards. However, 21.4% of the 
samples are plotted in zone C4S2, showing very high salinity 
and medium sodium hazards. Wilcox plots (Fig. 6b) showed 
that 7.1%, 14.3%, and 42.9% of the water samples were plotted 
in the categories of “unsuitable”, “doubtful to unsuitable”, and 

Table 3   Groundwater quality 
classification for irrigation 
purposes in the study area

Parameters Range Category Samples

Number % of samples

Sodium hazard (SAR)  < 10 Excellent 12 85.7%
10–18 Good 2 14.3%
18–26 Doubtful – –
 > 26 Unsuitable – –

Residual sodium carbonate (RSC)  < 1.25 Suitable 13 92.9%
1.25–2.5 Doubtful – –
 > 2.5 Unsuitable 1 7.1%

Sodium percentage (%Na)  < 20 Excellent – –
20–40 Good 2 14.3%
40–60 Permissible 7 50.0%
60–80 Doubtful 4 28.6%
 > 80 Unsuitable 1 7.1%

Permeability index (PI)  > 75 Good 4 28.6%
25–75 Permissible 10 71.4%
 < 25 Unsuitable – –

Magnesium hazard (MH)  < 50% Suitable 2 14.3%
 > 50% Unsuitable 12 85.7%

Salinity hazard (SH)  < 250 Excellent – –
250–750 Good 1 7.1%
750–2250 Doubtful 10 71.4%
 > 2250 Unsuitable 3 21.4%
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“permissible to doubtful”, respectively. Therefore, alternate irri-
gation with fresh water is necessary to prevent the accumulation 
of sodium in the soil (Li et al. 2016).

To sum up, the most important factors affecting the 
irrigation water quality  are the high salinity and the 
magnesium hazard. High Mg2+ in agricultural water will 
reduce soil fertility and thus affect crop yields (Shaikh 
et al. 2020). As a result, groundwater that has not been 
treated for salinity reduction and Mg2+ control is not suit-
able for irrigation directly. Furthermore, sodium hazards 
in irrigation water should not be ignored.

Health risk assessment for F− and As in terms 
of drinking water

Non‑carcinogenic risk of F− and As

Given the study area is facing severe groundwater F− and As 
contamination, an assessment of the human health risks is 
needed. According to Table 4, HQFluoride ranged from 2.03 to 
8.62 (average 5.35), 1.25 to 5.33 (average 3.31), 1.08 to 4.60 
(average 2.85), and 0.77 to 3.28 (average 2.03) for infants, 
children, females, and males, respectively. Therefore, it can 
be presumed that all age groups have an alarming non-car-
cinogenic if prolonged ingestion of high F− groundwater in 
the study area.

Fig. 6   Irrigation water quality assessment in the study area: a USSL plot; b Wilcox plot

Table 4   Health risk assessment result for F− and As in terms of drinking water

Bold indicates the values exceed the health risk safe limit

Samples ID HQFluoride HQArsenic CRArsenic

Infants Children Females Males Infants Children Females Males Infants Children Females Males

G01 4.64 2.87 2.48 1.77 1.45 0.90 0.78 0.55 4.7E−06 3.5E−05 1.5E−04 1.1E−04
G02 6.43 3.98 3.43 2.45 0.45 0.28 0.24 0.17 1.5E−06 1.1E−05 4.7E−05 3.3E−05
G03 8.02 4.96 4.28 3.05 0.16 0.10 0.09 0.06 5.1E−07 3.8E−06 1.6E−05 1.2E−05
G04 6.57 4.06 3.51 2.50 0.28 0.17 0.15 0.11 9.1E−07 6.7E−06 2.9E−05 2.1E−05
G05 8.62 5.33 4.60 3.28 0.14 0.09 0.08 0.05 4.6E−07 3.4E−06 1.5E−05 1.1E−05
G06 4.88 3.02 2.61 1.86 0.13 0.08 0.07 0.05 4.1E−07 3.1E−06 1.3E−05 9.4E−06
G07 6.95 4.30 3.71 2.64 0.08 0.05 0.04 0.03 2.7E−07 2.0E−06 8.5E−06 6.0 E−06
G08 3.52 2.18 1.88 1.34 0.03 0.02 0.02 0.01 1.0E−07 7.4E−07 3.2E−06 2.3E−06
G09 4.32 2.67 2.31 1.64 0.76 0.47 0.40 0.29 2.4E−06 1.8E−05 7.8E−05 5.5E−05
G10 4.97 3.08 2.66 1.89 22.61 13.98 12.07 8.60 7.3E−05 5.4E−04 2.3E−03 1.7E−03
G11 2.05 1.26 1.09 0.78 4.81 2.97 2.57 1.83 1.5E−05 1.1E−04 4.9E−04 3.5E−04
G12 8.12 5.02 4.33 3.09 0.54 0.33 0.29 0.21 1.7E−06 1.3E−05 5.6E−05 4.0E−05
G13 3.71 2.30 1.98 1.41 0.89 0.55 0.48 0.34 2.9E−06 2.1E−05 9.2E−05 6.5E−05
G14 2.03 1.25 1.08 0.77 5.29 3.27 2.83 2.01 1.7E−05 1.3E−04 5.5E−04 3.9E−04
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Also, the values of HQArsenic were 0.03 to 22.61 (average 
2.69) for infants, 0.02 to 13.98 (average 1.66) for children, 
0.02 to 12.07 (average 1.43) for females, and 0.01 to 8.60 
(average 1.02) for males. Notably, 28.6%, 21.4%, 21.4%, and 
21.4% of the  groundwater samples have high arsenic non-
carcinogenic risks for infants, children, females, and males, 
respectively.

In summary, it can be seen from average that the order 
of non-carcinogenic health risks caused by F− and As is 
infants > children > females > males, which is consistent with 
the findings of Jiang et al. (2022) and Chen et al. (2023).

Carcinogenic risk of As

The results of the carcinogenic risk assessment showed 
that the potential CRArsenic values for infants, children, 
females, and males ranged from 1.0E−07 to 7.3E−05 (mean 
8.6E−06), 7.4E−07 to 5.4E−04 (mean 6.4E−05),  3.2E−06 
to 2.3E−03 (mean 2.8E−04), and 2.3E-06 to 1.7E-03 (mean 
2.0E-04), respectively. Accordingly, 0%, 21.4%, 28.6%, and 
28.6% of groundwater samples surpassed the carcinogenic 
tolerable risk values of 10−4 recommended by USEPA 
(2004). This indicated that As might pose a potential carci-
nogenic risk to the residents who used groundwater for their 
daily purposes (Rahman et al. 2022). Therefore, continuous 
monitoring of groundwater arsenic levels is recommended 
to identify spatiotemporal variations of potential As risks, 

particularly in the southeast of the study area where samples 
(G01, G10, G11, and G14) exceeded the limit values.

Groundwater sustainable management strategies

Based on the above analysis, an integrated conceptual model 
of groundwater quality and associated health risk assess-
ment was developed (Fig. 7). As stated in Sect. ”Health 
risk assessment for F− and As in terms of drinking water”, 
groundwater F− and As has a significant impact on ground-
water quality and associated health hazards in Feng County, 
particularly in the infants group. Hence, constant monitor-
ing of groundwater F− and As levels is needed to gain bet-
ter insight into the contamination dynamics and variation 
of health hazards (Goswami et al. 2022). Additionally, the 
Water Affairs Bureau should establish special  funding for 
machine learning projects to predict groundwater quality and 
enhance sustainable groundwater management  (Haggerty 
et al. 2023).

Monitoring and evaluating environmental pollutants are 
merely the first steps in improving groundwater quality. Pro-
moting low-cost technologies to remove F− and As could be 
a viable alternative for this region. Particularly, rural house-
holds should be provided with low-cost water purifiers, such 
as deionization and de-fluoridation filters. Water adminis-
tration authorities should prioritize initiating water quality 
improvement projects to reduce the human health risk of 
F− and As contamination in groundwater. More importantly, 

Fig. 7   The conceptual diagram demonstrating groundwater quality and associated health risks
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this region urgently needs to use the unpolluted deep ground-
water and surface water resources for drinking and irrigation 
purposes. Irrigation problems caused by high salinity and 
magnesium content in groundwater can be treated by dilut-
ing with  different freshwater  (Mukherjee et al. 2022).

Conclusions

In the present study, shallow groundwater quality and its 
suitability for drinking and irrigation, as well as F− and As 
health risks were evaluated in Feng County.  Results indi-
cated that about 85.7% of shallow groundwater samples 
exceeded the WHO drinking criterion for F−, followed by 
K+ (78.6%), Na+ (57.1%), TDS (42.9%), SO4

2− (42.9%), 
Mn (42.9%), Cl− (21.4%), and As (21.4%). Based on WQI 
assessment results, 28.6% of the groundwater was good 
quality, while 71.4% was unsafe for drinking. According 
to non-carcinogenic risk appraisal results, almost all age 
groups hold HQFluoride values > 1 and followed the order 
of infants > children > females > males. Nevertheless, only 
28.6%, 21.4%, 21.4%, and 21.4% of samples had HQArsenic 
values > 1 for infants, children, females, and males, respec-
tively. For carcinogenic risk, 0%, 21.4%, 28.6%, and 28.6% 
of groundwater samples have unacceptable CRArsenic values 
(> 1×10−4) for infants, children, females, and males, respec-
tively. According to the salinity and alkalinity indicators 
(SAR, RSC, %Na, PI, MH, and SH) and USSL and Wilcox 
plot, about 21.4% and 85.7% of groundwater samples were 
unsuitable for irrigation due to  they contained high salinity 
and magnesium hazards, respectively. The findings of this 
study could help government agencies or decision-makers 
adopt appropriate remedial measures to ensure residents’ 
health and help in achieving SDG-6 i.e., supplying clean 
and hygienic drinking water. Future in-depth studies could 
integrate aquifer geology and machine learning for ground-
water quality forecasting and safeguard public and ecologi-
cal health.
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