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Abstract
Forecasting and extending streamflow is a critical aspect of hydrology, especially where the time series are locally unavail-
able for a variety of reasons. The necessity of preprocessing, model fine-tuning, feature selection, or sampling to enhance 
prediction outcomes for streamflow forecasting using ML techniques is evaluated in this study. In this regard, the monthly 
streamflow at Pol-Chehr station is analyzed using various monthly rainfall and streamflow time series data from different 
stations. The results of streamflow prediction in the k-folds cross-validator approach are generally better than those of the time 
series approach, except when raw data with no preprocessing or feature selection is used. Applying the simple SVR model 
to raw data leads to the weakest result, but using the GA-SVR model on raw data significantly increases the Nash coefficient 
by about 215% and 72%, decreases the NRMSE by about 48% and 36% in the k-fold and time series approaches, even with 
no feature selection. On the other hand, standardization produces highly accurate model predictions in both the k-fold and 
time series approaches, with a minimum Nash coefficient of 0.83 and 0.73 during the test period in the simple SVR model, 
respectively. Finally, using optimization algorithms like GA to fine-tune ML models and feature selection does not always 
yield improved prediction accuracy, but it depends on whether raw or preprocessed data is chosen. In conclusion, combin-
ing k-fold cross-validator and preprocessing typically yields highly accurate predictive results, with an R value exceeding 
93.7% (Nash = 0.83, SI = 0.55, NRMSE = 0.09), without requiring any additional fine-tuning or optimization. Using feature 
selection is only significant when utilizing the TS approach as well.
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Introduction

Predicting streamflow is crucial for water resource planning 
and management. However, various relationships and 
complex patterns have been proposed for predicting river 
flow, including conceptual rainfall–runoff patterns, time 
series patterns, and hybrid patterns. Due to a lack of precise 
understanding and the complexity of factors affecting river 
flow, these relationships often fail to match observed values 
(Moeeni et al. 2017a, b). One of the most prevalent analytical 

techniques for forecasting data is statistical modeling and 
regression. However, they frequently yield errors due to their 
linear problem-solving approach, which fails to accurately 
model the time variations of the phenomenon in question. 
Hence, selecting a model capable of precisely estimating 
streamflow based on influential factors is crucial. Currently, 
machine learning techniques such as support vector 
machines and genetic programming models are extensively 
employed to predict nonlinear phenomena. In recent times, 
the use of intelligent models has garnered considerable 
interest from researchers aiming to predict river flows with 
the utmost accuracy (Moeeni et al. 2017a, b).

In recent years, changes in social conditions, climate 
change, population growth, and improper use of available 
water resources have been known to be the causes of the 
decline in available water resources (Pourkheirollah et al., 
2023). Therefore, the need for integrated water resources 
management is clear. One of the most important parameters 
for the planning and sustainable management of water 
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resources is streamflow estimation (Parvaz and Shahoei 
2022). To manage water resources in the future, accurate 
and reliable river flow forecasts using intelligent data models 
are significantly provided (Yin et  al. 2018). Modeling 
hydrological time series using historical records plays an 
essential role in predicting different hydrological processes 
(Sahoo et  al. 2019). Data-driven models are relatively 
simple, but they are powerful methods for predicting river 
flow. The model-free hybrid methods are considered to use 
the strengths of each (Ebrahimi and Shourian 2022).

Forecasting models, especially support vector machine 
(SVM), provided outstanding performances in the predic-
tion of various hydrological variables, such as groundwater 
level prediction (Fatemi and Parvini 2022; Ebrahimi and 
Rajaee 2017; Gorgani et al. 2017; Fatemi et al. 2018; Soltani 
et al. 2022 and Soltani et al. 2023), flood prediction (Sahoo 
et al. 2021; Wu et al. 2019), runoff prediction (Nourmoham-
madi et al., 2023; Samantaray et al. 2021; Zaini et al. 2018; 
Moeeni et al. 2017a, b; Bell et al. 2012; Okkan and Serbes 
2012), sediment analysis (Samantaray et al. 2020) and rain-
fall forecasting (Ebtehaj et al. 2020). Recently, very impor-
tant progress has been made in recognizing the capability 
of SVR in modeling the rainfall–runoff process. Wu et al. 
(2019) developed a new model, HGA-SVR, for kernel func-
tion type and kernel parameter value optimization in SVR. 
This model is fitted to search for the optimal kernel function 
types and their parameters to improve SVR accuracy. The 
results showed that the new HGA-SVR model performed 
better than the previous models. Particularly, the new model 
could successfully obtain the optimal kernel type for their 
parameters with the lowest prediction error values.

To obtain SVR models that can predict highly accu-
rate set points, a new genetic algorithm method is applied 
(Sanz-Garcia et al. 2015). This proposal assigned feature 
selection, model tuning, and parsimonious model selection 
to accomplish robust SVR models. The results showed that 
GA-PARSIMONY, in comparison with classical GA, was 
able to produce more robust SVR models with fewer input 
features.

A set of 50 data-driven forecasting models such as SVR, 
Multivariate Adaptive Regression Line, MARS, and M5Tree 
for predicting river flow data in an ecologically important 
semi-arid mountainous region in the Pailugou watershed is 
applied in northwest China. To achieve stable and accurate 
prediction results, a random sampling of the entire river 
flow data is considered 80% for training and the rest for 
testing periods. They show that the M5Tree method can be 
successfully applied for short-term river flow forecasting 
in semi-arid mountainous regions, which may have useful 
implications in water resources management, ecological sus-
tainability, and river systems assessment (Yin et al. 2018).

Baydaroğlu et al. (2018) investigated river flow forecast-
ing using combined models of SVR with wavelet transform, 

singular spectrum analysis, and a chaos approach for the 
Kızılırmak River in Turkey. These three methods were suc-
cessful in generating the input matrix for SVR, while the 
SVR-WT combination resulted in the highest determination 
coefficient and the lowest mean absolute error. Sahoo et al. 
(2019) analyzed the suitability of SVR to model the monthly 
low-flow time series for three stations in the Mahanadi River 
basin, India. The accuracy of the SVR model with two dif-
ferent framework models (ANN-ELM and GPR) is evaluated 
by different statistical criteria such as r2, RMSE, MAE, and 
Nash–Sutcliffe coefficient. To model monthly low flows in the 
Mahanadi River Basin, India, the results confirm that SVR 
can be suitably used. They suggest that to predict low flow 
(discharge Q75), the SVR model can be used as a new accurate 
data-intelligent approach based on past data on water resources 
and their dependent catchment.

A robust meta-model for river flow prediction, a feature-
based adaptive combiner (FBAC), is introduced that uses 
features extracted from data. To build this model, some data-
driven techniques are used, like Artificial Neural Networks 
(ANN), Random Forest Regression (RFR), SVR, and a modi-
fied Dynamic K-Nearest Neighbor (DKNN). FBAC is applied 
to two years of daily Azad reservoir inflow in western Iran. The 
results of FBAC in terms of reducing the RMSE value show 
a 31.8% and 29.5% improvement in accuracy compared to the 
best individual and combined models, respectively (Ebrahimi 
and Shourian 2022). Regardless of access to knowledge-based 
or data-driven models and various modeling techniques such 
as human activity and climate change, accurately predicting 
monthly runoff remains a challenging task. The application 
of a hybrid SVM-SSA model, support vector machine with 
Salp Swarming Algorithm, and conventional SVM and ANN 
models is investigated by Samantaray et al. (2022) for runoff 
forecasting in the Baitarani River Basin, Odisha, India. Test 
results indicated that SVM-SSA can be suggested for modeling 
the difficulty of relations between the rainfall–runoff process 
and forecasting runoff.

This study proposes a method for prediction of the spatial 
and temporal patterns of streamflow using the SVR and RF 
models, with optimized parameters through the GA model. 
The significance of this approach lies in its analysis of the 
impact of preprocessing, model fine-tuning, feature selec-
tion, and sampling on prediction results. Essentially, it iden-
tifies the essential training methods and those that are not 
necessary.

Materials and methods

Support vector machine and regrossor

The theory of the support vector machine (SVM) technique 
is comprehensively described by many researchers (Vapnik 
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1998; Chen and Yu 2007; Noori et al. 2011) which is briefly 
explained in this paper. SVR, a type of SVM, is a relatively 
new and improved data-driven model that is based on statisti-
cal learning theory (Vapnik, 1995). It is initially applied to 
solve pattern recognition and classification problems then it’s 
generally used to solve regression problems.

In a regression SVM model, the functional dependence of 
the dependent variable y is estimated on a set of independent 
variables x. It assumes, like other regression problems that the 
relationship between the independent and dependent variables 
is given by a deterministic function f(x) plus the addition of 
some noise Eqs. (1, 2).

The noise is also named error tolerance (ε). However, w 
and b are vectors of coefficients and constant, the regression 
function parameters, and ∅ the kernel function. Then find-
ing a functional form for f(x) is a target. By training the SVR 
model on training data, it could be achieved. In this process, 
the sequential optimization of an error function is involved. 
An e-insensitivity loss function is presented for the convex 
optimization formula as follows:

Subject to:

(1)f (x) = WT
⋅ �(X) + b

(2)y = f (x) + noise

(3)min�(w; �) =
1

2
w2 + C

(

n
∑

i=1

�i

)

(4)yi
(

wTxi + b
)

≥ 1 − �i; � ≥ 0; i = 1.… .N

where � is a slack variable that penalizes training error by the 
loss function for the chosen error tolerance. C is a positive 
regularization parameter that shrinks the weight parameters 
while minimizing the empirical error in the optimization 
problem (see Fig. 1).

Genetic algorithm

The genetic algorithm (GA) is a powerful method for the 
heuristic development of large-scale combinatorial optimi-
zation problems. It encodes the problem as a set of strings 
that contain tiny particles; after that, they apply changes 
to the strings to stimulate the process of gradual evolution. 
It is a well-known metaheuristic algorithm that draws its 
inspiration from biological evolution. The GA apes the 
Darwinian notion of nature’s survival of the fittest. J.H. 
Holland suggested GA in 1992. Chromosome representa-
tion, fitness selection, and biologically inspired operators 
make up the fundamental components of GA. Addition-
ally, Holland developed a unique component known as 
Inversion, which is typically utilized in GA implementa-
tions (Holland 1975; Katoch et al. 2021). In comparison 
with traditional optimization algorithms, there are many 
advantages to genetic algorithms, like the ability to deal 
with complex problems and parallelism. It can also con-
sider various types of objective functions, such as linear 
or nonlinear, stationary or nonstationary, continuous or 
discontinuous, or with random noise (Moeeni et al. 2017a, 
b). In this study, the GA application is used by the scikit-
opt (Version 0.6.6) library in the Python programming 
language.

Fig.1   Nonlinear support 
vector machine with 
Vapnik’s e-insensitive loss 
function(Yaseen et. Al, 2016)
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Feature selection

Feature selection is the process of reducing the number of 
variables. In this method, the variables that are most effec-
tive in terms of the desired feature are selected based on a 
series of specific criteria to predict the target variable in 
the prediction models. As the number of desired features 
increases, the model’s prediction ability also increases. But 
it is only up to a certain level, so from this specific level 
onwards, the model would be faced with a problem called 
the curse of dimensionality. In this case, the performance 
of the model gets worse and worse, so only those features 
should be selected that can efficiently predict the desired 
variable. In this research, the Random Forest algorithm is 
used because it is a very efficient and simple method.

Random Forest

Random Forest is an ensemble learning method based on 
decision trees that are commonly used in classification and 
regression problems. It builds decision trees on different 
samples and takes their majority choice for classification and 
the average in the case of regression. It was first introduced 
by Breiman in 2001. Owing to its simple structure and high 
performance, it is widely used in many supervised learning 
applications.

k‑fold cross‑validator

In data resampling methods, one of the most commonly 
used algorithms is cross-validation to estimate the prediction 
model’s error and to tune model parameters (Berrar 2019). It 
is usually used to avoid overfitting when using a supervised 
machine learning model to consider part of the available data 
as a test set. In this method, first the data sets are randomly 
mixed, and then they are divided into k-folds, dividing all 
the samples into k groups of samples. The prediction model 
is trained by k − 1 folds, and the rest fold is used for the test 
period. In this study, the k-fold cross-validator scikit-learn 
library in the Python programming language is applied to 
find the best combination of a dataset in the train and test 
periods for the prediction model, disregarding the sequence 
of the data set.

Data preprocessing

Data normalization is one of the common methods in fore-
casting modeling that is used to better harmonize the data 
and increase the speed and accuracy of the models. In this 
method, the data is standardized using the formula (5). 
where Zi, t is the standardized data in month i of year T, 

xi, T is the initial data, xT  is the average of the data and 
ST is the standard deviation of the data. It should be noted 
that after the end of time series forecasting and extension, 
the model results should be inverted to the original data 
format. For this purpose, formula (6) is used; yi.T  is the 
inverse function of Zi, t:

Study area

In this study, the time series of five different locations is 
used. The Pol-Chehr, Hydarabad, and Dooab hydrometric 
stations, as well as the Hydarabad and Aran climate 
stations, are located in the Gamasiab sub-basin in 
Kermanshah province, Iran (Fig. 2). The geographical 
characteristics of these stations are shown in Table 1.

In this research, to select the model features of Pol-
Chehr discharge as dependent variable, the independent 
variables that have the greatest impact on the forecasting 
model are considered in Eq. (6):

According to Eq. (7), the discharge flow of Pol-Chehr 
station is a function of two parameters of monthly rainfall 
at two stations, Hyderabad, and Doab, and also two 
monthly discharges at Hyderabad and Aran stations. The 
schematic of rivers and hydrometric stations located in this 
basin is shown in Fig. 3:

The discharge duration curve of each hydrometric 
station for 47 years as a monthly time series is presented 
in Fig. 4. According to the below diagram, it can be seen 
that the highest amount of discharge is recorded at Pol-
Cheher station, which is almost equal to 260 CMS because 
this station is located at the end of the water basin. And 
also, the lowest flow rate recorded in it is equal to zero. 
Furthermore, in the mean flow of Pol-Cheher, Hyderabad, 
and Doab stations, the flow rate 50% of the time is equal 
to 11.52, 4.33, and 5.49 CMS, respectively. In Pol-
Cheher station, in 5.5% of the time duration, river flow 
is equal to zero and the river is dry, but this value has 
happened less than 2 and completely zero percent of the 
time in the Hyderabad and Doab stations. For the monthly 
rainfall analysis in the Hyderabad and Aran stations, the 
rainfall duration curve is considered as shown in Fig. 5. 
According to this figure, the amount of rainfall in 50% of 
the time duration is observed at about 29.1 and 24 mm in 

(5)Zi.T =

(

xi.T − xT
)

ST
; yi.T =

(

ST × Zi.T
)

+ xT

(6)Qpol−chehr = f
(

QHydarabad ⋅ QDooab ⋅ PHydarabad ⋅ PAran

)
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Hyderabad and Aran stations, respectively. Also, there is 
no rain in about 31 and 29 percent of the time duration for 
these two climate stations.

Introducing scenarios and cases

According to Fig. 3, different scenarios are defined as vari-
ous parameters in different places used in the GA-SVR 
model inputs. Sixteen different types of input combinations 
are considered for the monthly discharge forecasting at Pol-
Chehr station as follows:

Fig. 2   Case studies location: 
gamasiab sub-basin

Table 1   Geographical characteristics of the stations

Latitude Longitude Site

Hydrometric S
34° 20′ 11″ 47° 25′ 36″ Pol-Chehr
34° 25′ 05″ 47° 27′ 10″ Hydarabad
34° 22′ 13″ 47° 54′ 04″ Dooab
Climate S
34° 24′ 00” 47° 27′ 00″ Hydarabad
34° 24′ 52” 47° 55′ 15″ Aran

H. Station (X)

H. Station (Y)
River

Dinavar River Khoramrud River

Gamasiab River

Aran St.

Doab St.
Pol-Chehr 

Fig. 3   The schematic of rivers and hydrometric stations
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Fig. 4   The discharge duration curve of hydrometric stations



	 Applied Water Science          (2024) 14:110   110   Page 6 of 15

	 1.	 Time series approach, raw data, all features, simple 
SVR-RBF; TS_raw_all_SVR

	 2.	 Time series approach, preprocessing, all features, sim-
ple SVR-RBF; TS_pre_all_SVR

	 3.	 Time series approach, raw data, feature selection, sim-
ple SVR-RBF; TS_raw_FS_SVR

	 4.	 Time series approach, preprocessing, feature selection, 
simple SVR-RBF; TS_pre_FS_SVR

	 5.	 k-fold approach, raw data, all features, simple SVR-
RBF; K-fold_raw_all_SVR

	 6.	 k-fold approach, preprocessing, all features, simple 
SVR-RBF; K-fold _pre_all_SVR

	 7.	 k-fold approach, raw data, feature selection, simple 
SVR-RBF; K-fold _raw_FS_SVR

	 8.	 k-fold approach, preprocessing, feature selection, sim-
ple SVR-RBF; K-fold _pre_FS_SVR

	 9.	 Time series approach, raw data, all features, Genetic 
Algorithm + SVR-RBF; TS_raw_all_GA-SVR

	10.	 Time series approach, preprocessing, all features, 
Genetic Algorithm + SVR-RBF; TS_pre_all_ GA-SVR

	11.	 Time series approach, raw data, feature selection, 
Genetic Algorithm + SVR-RBF; TS_raw_FS_ GA-
SVR

	12.	 Time series approach, preprocessing, feature selection, 
Genetic Algorithm + SVR-RBF; TS_pre_FS_ GA-SVR

	13.	 k-fold approach, raw data, all features, Genetic Algo-
rithm + SVR-RBF; K-fold_raw_all_ GA-SVR

	14.	 k-fold approach, preprocessing, all features, Genetic 
Algorithm + SVR-RBF; K-fold _pre_all_ GA-SVR

	15.	 k-fold approach, raw data, feature selection, Genetic 
Algorithm + SVR-RBF; K-fold _raw_FS_ GA-SVR

	16.	 k-fold approach, preprocessing, feature selection, 
Genetic Algorithm + SVR-RBF; K-fold _pre_FS_ GA-
SVR

Evaluating model accuracy

For forecasting the monthly discharge at Pol-Chehr sta-
tion, the performance of the SVR-GA model is evalu-
ated by some statistical indices. Thus, the capability of 
the SVR-GA model in different scenarios is evaluated in 
terms of correlation coefficient (R), Nash–Sutcliffe (NSE), 
scatter index (SI), and normalized root mean square error 
(NRMSE), which are defined as follows:

Here xi and x represent the observed values and their 
mean values; yi and y are the predicted values and the 
mean of predicted values, respectively. For a better 
understanding of the overall workflow in this study, a 
block diagram and a flowchart on the algorithm is depicted 
in Figs. 6 and 7.

(7)R =

∑n

i=1

�

xi − x
��

yi − y
�

�

∑n

i=1

�

xi − x
�2 ∑n

i=1

�

yi − y
�2

(8)NSE = 1 −

∑n

i=1

�

xi − yi
�2

∑n

i=1

�

xi − x
�2

(9)SI =
RMSE

x

(10)
NRMSE =

�

∑n

i=1
(xi−yi)2

n

xmax − xmin

Fig. 5   The rainfall duration 
curve of climate stations
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Results and discussion

In this research, to answer this question, do the AI models 
usually need preprocessing, model fine-tuning by an opti-
mization algorithm, feature selection methods, or sampling 
for model training to improve the prediction results? In 
this regard, two scenarios of using time series or consid-
ering data with a k-fold cross-validation methodology are 
defined. Then, two approaches were considered for predict-
ing monthly streamflow: using raw data or applying pre-
processing to it. Furthermore, in each approach, two meth-
ods of model input selection have been investigated in the 
prediction model based on the feature selection method or 
including all inputs. Finally, in all cases, a simple RBF and 
an optimized SVR model with a genetic algorithm have been 
used for the forecasting of the monthly streamflow. In all 
cases, 80% and 20% of the data are considered for model 
training and testing, respectively. All the coding has been 
done on the Python programming language platform, espe-
cially by Numpy, Scipy, Matplotlib, Pandas, Sklearn, and 
Scikit-opt libraries. In addition, the simple SVM model is set 
to C = 1, Epsilon = 0.01, and the RBF kernel. The max_depth 
in Random Forest is also considered equal to 30.

Table 2 shows the results of monthly discharge mod-
eling for the combinations presented in cases 01–16. The 
comparison of indices from cases 01–08, considering the 
k-fold approach, demonstrates that the performance of the 
models for all cases is better than the time series approach, 
except for cases 03 and 04 in the test period. In these cases, 
if the raw data with no preprocessing and also feature 
selection are simultaneously considered, the results will 
lead to inferior, case03 (R = 0.77, Nash = 0.44, SI = 0.99, 
NRMSE = 0.16) and case04 (R = 0.92, Nash = 0.78, 
SI = 0.63, NRMSE = 0.10), rather than the same cases in 
the time series approach, cases 11(R = 0.87, Nash = 0.71, 
SI = 1.02, NRMSE = 0.05) and case 12 (R = 0.90, 
Nash = 0.79, SI = 0.86, NRMSE = 0.04), regardless of which 
simple or SVR-GA models are applied in the test period.

If the k-fold approach is used on the raw data with 
no preprocessing or feature selection, the results of the 
simple SVR model would be the weakest among all cases 
(R = 0.76, Nash = 0.25, SI = 1.14, NRMSE = 0.18) in the 
test period. By adding feature selection, the results have 
gradually improved, but the Nash coefficient and NRMSE 
are still below 0.5 and reduced by 11%, respectively 
(R = 0.77, Nash = 0.44, SI = 0.99, NRMSE = 0.16). 
By applying the GA-SVR to the raw data, the indices 
would be significantly improved (R = 0.93, Nash = 0.80, 
SI = 0.59, NRMSE = 0.09) so that the Nash coefficient 
increases more than three times even if feature selection is 
not used. In other words, unlike the simple SVR model, the 
use of feature selection in the GA-SVR model (R = 0.92, 
Nash = 0.78, SI = 0.63, NRMSE = 0.10) will not have a 
significant effect on the results of the model. When using 
preprocessing and standardization in the k-fold approach, 
the model prediction results are very accurate for all 
cases, regardless of whether a simple SVR or GA-SVR 
model, feature selection, or all features are used. So 
that the minimum R value is more than 0.93 (the Nash 
coefficient is obtained between 0.83 and 0.96) in the model 
test period. Fatemi and Parvini (2022) show that using 
preprocessing, in particular, standardization on time series 
with a sinusoidal form of the ACF diagram always leads 
to improved forecasting model accuracy, and this property 
is more effective than using the model tuning. The Pole-
Chehr ACF diagram is in sinusoidal form and is depicted 
in Fig. 8.

In the time series approach, applying simple SVR to the 
raw data achieved the weakest performance in the test period 
(R = 0.71, Nash = 0.45, SI = 1.41, NRMSE = 0.07) between 
all cases, like the k-fold approach, but the minimum Nash 
coefficient started at 0.45, about 80% more than the k-fold 
approach. By adding GA-SVR or feature selection in this 
case, the model performance is considerably improved by 
reducing NRMSE by 28% (R = 0.89, Nash = 0.77, SI = 0.90, 
NRMSE = 0.05) or (R = 0.87, Nash = 0.71, SI = 1.02, 

Raw data &         
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Preprocessing & 

K-fold 

FS-

Random 
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Raw data & TS

Preprocessing & 

TS FS-

Random 
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SVR-

GA
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Raw data &         
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All 

Features

Simple 
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TS 
All 
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Simple 

SVR-

RBF

Model 

Evaluation 

Conclusion 

Fig. 6   A block diagram of the overall workflow
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NRMSE = 0.05). Applying feature selection and GA-SVR 
is simultaneously inefficient on the results, with less than 5% 
improvement in the Nash coefficient in this case.

Whenever preprocessing is added to the TS, like the 
k-fold approach, the results are significantly boosted for all 
cases, but the range of the Nash coefficient and NRMSE are 
changed from 0.73 to 0.79 and 0.045–0.05, respectively. It 
shows that applying the FS or GA-SVR is not necessary in 
this case. Finally, between the considered cases in the k-fold 
approach, the best results of the model are calculated in case 

08, using preprocessing, adding FS, and applying GA-SVR 
(R = 0.98, Nash = 0.96, SI = 0.26, NRMSE = 0.04).

The Taylor diagram and the results of different models are 
depicted in Figs. 9 and 10, respectively, for the k-fold, cases 
01–08, and the TS approach, cases 09–16, in the test period. 
As it can be seen from these Figs., the best cases in the 
k-fold and TS approaches are cases 08 and 12, respectively. 
For more analysis of the model prediction in low and peak 
flow, the box plot of all cases is depicted in Fig. 11. As 
the maximum discharge of Pol-Chehr is 259.9 cms, it is 

Fig. 7    A flowchart on the 
algorithm
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K-fold Time K-fold CV Time Series
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N
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model

Accepted
NoYes



Applied Water Science          (2024) 14:110 	 Page 9 of 15    110 

calculated by a model to be more than 200 cms in cases 06 
and 08, and especially in case 08, it is more than 250 cms 
for the k-fold approach, but this is about 100 cms for the best 
case. It mentions that the k-fold approach predicted the peak 
flows of Pol-Chehr discharge better than the TS approach, 
which is also defined in Figs. 10 and 11.

For a better low- and peak-flow analysis of different 
approaches in the test period, the lowest and highest values 
of five monthly discharges are considered. Q6, Q7, Q31, 
Q33, and Q45 in the range of 173–236 cms, and also Q84, 

Q85, Q96, Q107, and Q109 in the range of 47–174 cms, 
represent the peak flows in the k-fold and TS approaches, 
respectively. For the low flows, Q35, Q47, Q53, Q67, and 
Q86 are in the range of 0–0.42 cms, and also Q50, Q55, 
Q74, Q89, and Q100 are in the range of 0.01–0.43 cms. The 
model prediction for the low and peak flows in all cases of 
two different approaches is shown in Figs. 12 and 13. Based 
on Fig. 12, the maximum difference of low flows between 
the observed and model in case 08, the best-selected model 
for the k-fold approach, is calculated at 0.78 cms and 

Table 2   Results of statistical indicators for SVR models with different approaches

Bold values indicate the best values of indices in the train and test for all cases

Case Approach Pre- process Feature Sel SVR model Epsilon C Train Test

R Nash SI NRMSE R Nash SI NRMSE

01 k-fold No No Simple 0.1 1 0.783 0.423 1.080 0.109 0.762 0.254 1.143 0.182
02 k-fold No No SVR -GA 0.053 19.43 0.955 0.894 0.463 0.047 0.932 0.799 0.594 0.095
03 k-fold No Yes [1, 2] Simple 0.1 1 0.830 0.610 0.888 0.090 0.770 0.441 0.990 0.158
04 k-fold No Yes [1, 2] SVR -GA 0.018 17.37 0.953 0.897 0.457 0.046 0.915 0.776 0.627 0.100
05 k-fold Yes No Simple 0.1 1 0.970 0.931 0.374 0.038 0.937 0.825 0.554 0.088
06 k-fold Yes No SVR -GA 0.002 16.27 0.996 0.991 0.135 0.014 0.970 0.922 0.369 0.059
07 k-fold Yes Yes [1, 2] Simple 0.1 1 0.977 0.949 0.321 0.033 0.962 0.884 0.451 0.072
08 k-fold Yes Yes [1, 2] SVR -GA 0.013 3.99 0.992 0.985 0.176 0.018 0.981 0.961 0.263 0.042
09 TS No No Simple 0.1 1 0.797 0.433 0.987 0.125 0.712 0.449 1.406 0.072
10 TS No No SVR -GA 0.084 18.90 0.970 0.927 0.354 0.045 0.893 0.774 0.901 0.046
11 TS No Yes [1, 2] Simple 0.1 1 0.830 0.612 0.817 0.103 0.869 0.708 1.023 0.053
12 TS No Yes [1, 2] SVR -GA 0.047 19.38 0.980 0.953 0.284 0.036 0.897 0.792 0.863 0.044
13 TS Yes No Simple 0.1 1 0.988 0.972 0.218 0.027 0.876 0.733 0.979 0.050
14 TS Yes No SVR -GA 0.032 1.08 0.989 0.976 0.201 0.025 0.872 0.738 0.970 0.050
15 TS Yes Yes [1, 2] Simple 0.1 1 0.992 0.981 0.179 0.023 0.910 0.788 0.871 0.045
16 TS Yes Yes [1, 2] SVR -GA 0.052 4.10 0.994 0.989 0.140 0.018 0.897 0.783 0.883 0.045

Fig. 8   The ACF diagram: pol-
chehr discharge time series
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occurred in Q67. In case 12, this value of 2.47 cms happened 
in Q50 for the TS approach. In similar terms, the maximum 
difference is 91.8 and 93.2 cms for cases 08 and 12, which 
are in Q31 and Q96, respectively, in Fig. 13.

Conclusion

Streamflow prediction is a crucial parameter for planning 
and managing water resources sustainably, especially in cli-
mate change and improper use of water resources. The study 
focuses on whether ML models usually need preprocessing, 
model fine-tuning, feature selection, or sampling to enhance 
prediction results for streamflow forecasting. In this regard, 
the monthly streamflow in Pol-Chehr station is determined 
by the monthly rainfall time series in Hyderabad and Doab 
stations, as well as the monthly streamflow time series in 
Hyderabad and Aran stations. The results are shown that 
the k-fold cross-validator approach generally outperforms 
the time series approach, except in cases where raw data 
with no preprocessing (Nash = 0.25, NRMSE = 0.18) and 
feature selection (Nash = 0.44, NRMSE = 0.16) are used. In 
these cases, the time series approach yields better results 
regardless of which simple (Nash = 0.45, NRMSE = 0.07) 
or SVR-GA (Nash = 0.79, NRMSE = 0.04) model is applied 
in the test period.

The k-fold scenario, when applied to raw data without 
preprocessing and feature selection, yields the weakest 
results for a simple SVR model. However, adding feature 
selection gradually improves the results although the Nash 
coefficient and SI remain below 0.5 and 1. On the other 
hand, using the GA-SVR model on raw data significantly 

improves the indices, including an increase of more than 
three times in the Nash coefficient, even without feature 
selection. Interestingly, feature selection does not have a 
significant effect on the results of the GA-SVR model.

Preprocessing, particularly standardization, produces 
highly accurate model predictions in the k-fold approach. 
This applies to both simple SVR and GA-SVR models, 
regardless of feature selection or the inclusion of all features. 
The minimum R value is above 0.93, with a Nash coefficient 
ranging from 0.83 to 0.96 during the model test period.

In the time series scenario, using simple SVR on raw data 
performed poorly in the test period, like the k-fold approach, 
with a minimum Nash coefficient of 0.45 and a maximum 
NRMSE of 0.072. However, adding feature selection sig-
nificantly improved the model’s performance in the Nash 
coefficient by increasing 58%. Replacing simple SVR with 
GA-SVR yields significant improvements in the Nash coef-
ficient and NRMSE, the increase is 72% while the decrease 
is 36% in case.

The addition of preprocessing techniques to the time 
series scenario, like the k-fold scenario, greatly improves 
the results in all cases, even in simple SVR. However, it 
does alter the range of the Nash coefficient. This suggests 
that using feature selection (FS) or GA-SVR is not required 
in this particular scenario. The best results for all cases are 
obtained in case 08 of the k-fold approach, where preproc-
essing, FS, and GA-SVR are applied, resulting in high val-
ues for the model’s Nash coefficient of 0.96.

In conclusion, preprocessing techniques significantly 
enhance the results in k-fold and time series scenarios; the 
best performance is achieved by combining preprocessing 
and GA-SVR, and using FS mostly improves the results 

Fig. 9   Taylor diagram for different approaches in the test period: a k-fold, b TS
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in the time series scenario. The graphical conclusion is 
depicted in Fig. 14.

Fig. 10   a The prediction 
results of different models for 
the k-fold approach in the test 
period. b The prediction results 
of different models for the TS 
approach in the test period

Fig.11   The box plot of different models in the test period
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Fig. 12   a The model prediction 
in low flows for all cases of the 
k-fold approach. b The model 
prediction in low flows for all 
cases of the TS approach

(a)

(b)
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Fig. 13   a The model prediction 
in peak flows for all cases of the 
k-fold approach. b The model 
prediction in peak flows for all 
cases of the TS approach

(a)

(b)
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