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Abstract
Prediction of rainfall-runoff process, peak discharges, and finally flood hydrograph is essential for flood risk management 
and river engineering projects. In most previous studies in this field, the precipitation rates have been entered into the models 
without considering seasonal and monthly distribution. In this study, the daily precipitation data of 144 climatology stations 
in Iran were used to evaluate the seasonal and monthly pattern of flood-causing precipitation. Then, by determining the 
rainy seasons and seasonal fit of precipitation with a probabilistic model and using regional precipitation, a semi-distributed 
conceptual model of rainfall-runoff (MORDOR-SD) was trained and validated using the observed discharge data. Flood 
prediction was performed using climatic data, modeling of hydrological conditions, and extreme flow data with high per-
formance. According to the results, the Nash–Sutcliffe and Kling–Gupta coefficients were 0.69 and 0.82 for the mean daily 
streamflow, 0.98 and 0.98 for the seasonal streamflow, 0.98 and 0.94 for the maximum discharges, and 0.57 and 0.78 for low 
flows, respectively. Moreover, the maximum daily discharges in different return periods were estimated using the results of 
the MORDOR-SD model, considering the probability distribution function of the probabilistic model of central precipitation 
(MEWP), the probabilistic model of adjacent precipitation, and probability distribution function of the previous precipita-
tion. Finally, the extreme flows were predicted and compared using different methods including the SCHADEX, regional 
flood analysis, GRADEX, and AGREGEE. The results showed that the methods GRADEX, AGREGEE, and SCHADEX 
have the highest performance in predicting extreme floods, respectively.

Keywords SCHADEX method · GRADEX method · AGREGEE method · Rainfall-runoff model · Streamflow

Introduction

Prediction is of prime importance in natural disaster man-
agement; consequently, extreme flood prediction helps 
experts minimize its deleterious effects. During recent years 

hydrological and statistical communities developed extreme 
flood prediction approaches (Brigode et al. 2014). Based 
on their probability distributions, these methods calculate 
the average return period to extreme streamflows based on 
their probability distributions. In classical flood frequency 
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analysis (FFA) and using extreme value theory, by fitting an 
estimated probability distribution to the observed stream-
flow values, the probability distribution of the maximum dis-
charges or extreme floods is defined (Fréchet 1927; Gumbel 
1958; Khaleghi and Varvani 2018; Singh and Strupczewski 
2002; Merz and Bloschl 2008). The FFA methods have some 
limitations, the main disadvantage of these models is that 
most do not allow the generation of temperature time series, 
which is essential in predicting how snow melts. Moreover, 
most of them work only in a daily time step which makes 
this method unsuitable for small and fast responding water-
sheds. The FFA approach also has the problem of the statisti-
cal period of the flood data being insufficient in some cases. 
Further, due to climate changes or anthropogenic activities 
may not have suitable stationary.

Other models such as HEC-HMS use parameters such as 
land use/land cover, soil permeability, and other hydrologi-
cal conditions to predict the volume and peak of floods due 
to the lack of adequate and appropriate hydrometric data 
(Gholzom and Gholami 2012; Varvani and Khaleghi 2018). 
The curve number (CN) method is one of the widely used 
approaches in this category for estimating direct runoff from 
rainfall events. Despite its popularity and ease of use, event-
based models have several limitations. Reliance on a single 
parameter (CN), assuming a constant initial abstraction ratio 
and sensitivity to antecedent moisture conditions (AMC) can 
lead to significant uncertainty in runoff prediction (Varvani 
and Khaleghi 2018; Theodosopoulou et al. 2022).

Rainfall-runoff models have been widely used in 
extreme flood prediction and are more important than sta-
tistical methods, especially for predicting floods with high 
return periods (Lawrence et al. 2014; Gholami and Sahour 
2021). In addition, stochastic prediction approaches have 
made their appearance during the last two decades (Cal-
ver and Lamb 1995; Franchiniet al. 1996; Cameron et al. 
1999; Blazkova and Beven 2002; Sivapalan et al. 2005a). 
These methods are defined from a statistically based flood 
sample analysis predicted by rainfall-runoff models, which 
are linked to a probabilistic precipitation model that can 
be developed in the context of a continuous prediction or 
the form of a single prediction or a series of event-based 
predictions. In recent years, with the strengthening of the 
computing power of computers to predict precipitation 
as input to models, continuous methods have been much 
more advanced than event-based methods (Boughton and 
Droop 2003; Pathiraja et al. 2012). A variety of observed 
rainfall features can be replicated by continuous stochas-
tic rainfall methods, according to different studies (e.g.,, 
Rodríguez-Iturbe et al. 1987; Cowpertwait 1995; Schmitt 
et al. 1998; Arnaud and Lavabre 1999; Willems 1999; Ols-
son and Burlando 2002; Bernarda et al. 2007; Lennartsson 
et al. 2008; Papalexiou et al. 2011). Continuous predic-
tion methods are limited by the complexity of stochastic 

rainfall patterns, according to Rogger et al. (2012). Water-
shed saturation hazards are explained by the rainfall-runoff 
model based on the sophistication of the extreme stream-
flow prediction exercise (Verhoest et al. 2010; Pathiraja 
et al. 2012; Li et al. 2013; Gholami et al. 2021). Rainfall-
runoff models can predict flood events using the marked 
rainfall events. These approaches must be able to repro-
duce the three following factors that are important in flood 
generation: (a) the stochastic rainfall models specify rain-
fall hazards, (b) hydro-climatological records describe the 
watershed saturation hazard, and (c) rainfall-runoff models 
describe the rainfall-runoff transformation (Gholami et al. 
2009; Brigode et al. 2014). The entire complex steps for 
extreme flood prediction described in the preceding sec-
tions are presented by a creative method called SCHADEX 
(Simulation Climato-Hydrologique pour l’Appréciation 
des Débits EXtrêmes). Paquet et al. (2013), and Garava-
glia (2011) proposed the SCHADEX as a semi-continuous 
stochastic prediction method that predicts rainfall hazards 
on an event-basis while predicting watershed saturation 
hazards through continuous rainfall-runoff modeling. 
Based on a daily and hourly assessment of twenty rain-
fall-runoff models, the SCHADEX approach structure 
was used to develop a lumped conceptual rainfall-runoff 
model (Mathevet 2005; Andreassian et al. 2006). In their 
impressive study, which was tested on a sample of 313 
watersheds, the results showed that MORDOR's rainfall-
runoff model structure is more efficient, robust, and accu-
rate (Paquet et al. 2013). Different studies were performed 
using the lumped MORDOR rainfall-runoff model for the 
SCHADEX approach (Garavaglia et al. 2012; Penot et al. 
2014; Valent et al. 2014; Evin et al. 2016; Valent and 
Paquet 2017). The new model aims to assess the impact 
of model equations and spatial separation on streamflow 
prediction, snowpack representation, and evapotranspira-
tion prediction. However, there is little evidence that this 
approach is more accurate than the classic one in terms of 
the various streamflow signatures, evapotranspiration, and 
snow predictions (Duan et al. 2006; Hollander et al. 2009; 
Garavaglia et al. 2017).

Climate variability, especially its changes during the 
year, strongly affects the frequency of floods in two ways: 
directly through seasonal changes in the characteristics of 
storm events and indirectly through seasonal precipitation 
and evapotranspiration on the previous humidity conditions 
of the basin (Sivapalan et al. 2005a). Seasonality of storm 
specifications and AMC on flood frequency are of prime 
importance, these effects, have never been evaluated in any 
of the flood frequency models in the past studies. While 
the continuous modeling that will be used in this research 
has this advantage over the event based models in that the 
rainfall-runoff model continuously calculates the AMC. 
Mathematical models recognizing seasonality must be the 
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links between long-term water balance models and derived 
flood frequency models (Sivapalan et al. 2005b). In the 
mountainous watersheds, snowmelt is a very important fac-
tor in flood occurrence and the model used in the prediction 
should have a suitable solution for its participation in peak 
streamflow. In event based methods, especially in the areas 
where accumulation and melting are quite different seasons 
or spatially varying in watershed topography, it can be a 
particular challenge. Spatial discretization is a component 
of the semi-distributed hydrological model incorporated in 
this research. Based on elevation zones, this discretization is 
both efficient and parsimonious for mountainous hydrology.

In this study, a new approach is proposed to predict the 
hydro-climatic process in mountainous watersheds. The 
proposed method does not only consider climate variability 
but also would be more accurate rather than conventional 
methods in extreme flood prediction. None of the studies 
employed a semi-distributed rainfall-runoff model and sea-
sonality of water balance characteristics altogether. The goal 
of this study is to model extreme floods using hydro-climatic 
data in mountainous watersheds.

Materials and methods

Study area

In this study, the Bakhtiary watershed was selected for the 
hydro-climatic method for extreme flood prediction. This 
watershed is located in the southwest of Iran at the eastern 
longitude of 48° 15´ to 50° 20´ and the northern latitude of 
32° 30´ to 33° 30 (Fig. 1). Iran’s Meteorology Organization 
(IMO) and Iran Water Resources Management Organization 
(IWMO) are two governmental organization that has respon-
sibility for measuring, recording and publishing rainfall, dis-
charge, temperature and other climatologic and hydrologic 
data in Iran. For areal precipitation calculation, daily data of 
some rain gauge stations inside and outside of the Bakhtiary 
watershed was used, and eight stations belong to IWMO and 
eight stations belong to IRIMO (Fig. 1). The study water-
shed has a cold mountain climate. The predominant shape of 
precipitation is rain, but snowfall is also observed. Further, 
the height of the watershed area varies between 394 and 
4049 m.

Model input data

Air temperature (evaporation), precipitation, soil mois-
ture, and streamflow are the main variables in hydrology 
that describe the hydrological function of watersheds. Reli-
able time series are necessary for research and operational 
applications, such as water resource management, flood 
or drought predetermination, flow forecasts, and climate 

variability analysis (Tencaliec et al. 2016). The term that is 
used to data quality-check and/or fill the gap is data screen-
ing, which is used for precipitation, temperature, and stream-
flow datasets and represents a great challenge in hydrology 
and geosciences in general.

Availability of records in the same base time for two dif-
ferent resources of data is necessary for areal rainfall compu-
tations. In other words, some years have missing data; there-
fore, to reconstruct precipitation data, a statistical method 
was used. The nearest and more completed time series rain 
gauges inside and close to the case study were acceptable for 
this purpose. Reconstructing missed rainfall data according 
to multilinear regressions (Tencaliec et al. 2016) based on 
neighboring stations, led to the creation of the same base 
time series for rainfall data. Thiessen polygon method was 
used to compute an aerial averaged precipitation that is esti-
mated using the location of rain gauge stations (Table 1). 
For this purpose, 16 reconstructed rain stations were taken 
into account; consequently (Fig. 1), concerning the weight 
of each station that participated in the calculation of areal 
precipitation. Finally, six rain gauges participate in areal 
precipitation computation (Table 2).

Temperature is of prime importance in this study. The 
source station for temperature that has adequate data 
(1976–2013) is the Tange-Panj station. Using means of the 
regression model coefficients, all odd daily data for years 
2000, 2004, 2005, 2006, and 2009 missing temperature dates 
were reconstructed, finally, to verify these processes and the 
double homogeneity test, the useful approach proposed by 
Musy et al. (2005) was used. Ellipse de Bois is an approach 
that can lead to reducing the effect of cumulative residuals 
in the regression method.

Tange-panj-e-Bakhtiary station is a hydrometric station 
that is located in the watershed outlet, therefore, to evalu-
ate discharge data accuracy, two stations (Sepiddasht and 
Talezang stations) around this station were selected as a 
base station for data homogeny test. These two stations are 
located up-stream and down-stream of Tange-panj station. 
To identify the odd or biased year, the cumulative residuals 
for each base station versus Tange-panj were calculated, and 
then confidence interval ellipses around cumulative residuals 
via parameters calculations were drawn. Fortunately, there 
are no outlier data in stations and Tange-panj, for Sepid-
dasht and Talezang stations. To complete the discharge data 
series for modeling, reconstruct missing data by regression 
model according to the nearest stations around Tange-panj 
for some dates used.

Hydro‑climatic modeling of extreme flood 
occurrence

Extreme hydrological events have been studied a lot 
in recent decades, but due to the spatial changes of 
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precipitation processes that cause streamflow, establish-
ing a clear view of how streamflow has changed and its 
changes in the future are not easily predictable (Wang 
et al. 2008). There are different statistical tools for assess-
ing changes in extremes (Şen et al. 2017), Mann–Kendall 

trend test (Mann 1945; Kendall 1948), which is a rank-
based non-parametric method, is applied for maximum 
yearly discharges in the present study. Because the esti-
mated p value is lower than the significance level (p 
value > 0.05), one should reject the null hypothesis H0, 

Fig. 1  A Location of the study 
watreshed in Iran, B Location 
of the study river, meteorologi-
cal stations, and hydrometric 
station
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and accept the alternative hypothesis Ha (There is a trend 
in the series). The risk of rejecting the null hypothesis 
H0 while it is true is lower than 1.52%. The continuity 
correction was performed. Ties were detected in the used 
data and the appropriate corrections were used and Sen's 
slope is equal to 7.

The non-parametric Pettitt’s test method (Pettitt 1979) 
was used to define the point of change in time series that 
separates the whole period into the disturbed and undis-
turbed periods. Pettit’s test can be used to identify whether 
two selected data samples belong to an equivalent popula-
tion supported by the mean of your time series and there-
fore the Mann–Whitney statistic. Therefore, Pettit’s test 
was used for the time series of flow discharge for the Bakh-
tiary watershed. As the computed p value (0.046) is lower 
than the significance level alpha = 0.05, one should reject 
the null hypothesis H0, and accept the alternative hypoth-
esis Ha (There is a date at which there is a change within 
the data). The risk of rejecting the null hypothesis H0 while 
it is true is lower than 4.62 percent. The terms “natural” and 
“disturbed” periods were defended for discharge time series 
(Kakaei et al. 2019). Generally, changes in land use and crop 
patterns might have caused the pattern in discharge time 
series, as well as abstraction from surface and groundwater 
resources in watersheds. In this study, the period 1951–1976 
was introduced as a disturbed period, and 1976–2013 was 
defined as a natural period. Consequently, a natural period 
calibration and validation should be performed on the hydro-
logical model. Finally, the following methods were used to 
predict extreme flows.

The SCHADEX method

SCHADEX is a probabilistic method that uses time series of 
precipitation, discharge data, and air temperature, as well as 
flood hydrographs for predicting semi-continuous extreme 
floods. The precipitation hazard and the watershed satura-
tion hazards are two assumed natural hazards and the gen-
eral idea behind SCHADEX for extreme floods stochastic 
prediction framework based on a rainfall-runoff model. A Ta
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Table 2  Selected rain gauges and weights for predicting the areal pre-
cipitation

Stations name Altitude Weight for 
Thiessen calcu-
lation

Tang-e-panj Bakhtiary 540 0.18
Kazemabad 1750 0.09
Sokaneh 2000 0.31
Zardefahreh 2392 0.29
Abtorki 2290 0.07
Daran 1712 0.06
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daily time step was used in this stochastic prediction frame-
work, although sub-daily applications were also possible. 
A semi-distributed rainfall-runoff model is used, meaning 
input values should represent area averages based on the 
range of elevations of the watershed. Event basis predic-
tion for areal rainfall hazard and continuous rainfall run-off 
modeling for modeling watershed saturation hazard used in 
the SCHADEX approach, imply semi-continuous modeling 
in the SCHADEX stochastic prediction framework. Simu-
lating rainfall events rather than a continuous rainfall series 
reduces the complexity of probabilistic modeling of dry and 
wet sub-periods. The rainfall events are considered in three 
parts, the central precipitation and the two adjacent precipi-
tations, which are smaller than the central one. The rainfall 
event is based on the correlations between rainfall and peak 
flows (Paquet et al. 2013).

The peak-to-volume ratio is employed to convert the 
daily discharge distribution (QJ) into a peak discharge dis-
tribution (QX), by transferring the cumulative distribution 
function (CDF) of daily discharges to a CDF of peak dis-
charge: QX(T) = K.QJ(T), where T is the return period (Tr). 
The peak-to-volume ratio is often estimated as the mean 

peak-to-volume ratio K = E [QX(i)/QJ(i)] of a selection of 
the observed discharges during major floods.

In the study watershed, 26 hydrographs were evaluated. 
The maximum discharge rates of the selected hydrographs 
were between 16.6 and 1143 cubic meters per second. The 
mean-centered peak-to-volume ratio K is 1.35.

Probabilistic rainfall model

According to much of the hydrological literature of recent 
years, a critical step in predicting extreme flood quantiles 
is to treat the exact prediction of extreme rainfall quan-
tiles. Based on the theory of extreme values, one of many 
solutions is the use of an asymptotic model to describe the 
stochastic behavior of extreme value processes. Independ-
ence, stationarity, and homogeneity are three hypotheses for 
modeling extremes based on standard methodology. Gara-
vaglia et al. (2010a, b) introduced the concept of the multi-
exponential weather patterns (MEWP) distribution as a way 
to probabilistically describe central rainfall. This concept 
served as the foundation for Paquet et al. (2013) to develop 
the SCHADEX method. For the definition of a MEWP 
model, we have to classify a WP at the regional scale in 

Fig. 2  Overview of MORDOR SD model components and fluxes (left), hypsometric curve, and elevation zones for Bakhtiary watershed
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advance. To model each sub-sample under consideration, an 
exponential law is used. The global distribution of MEWPs 
encompasses various exponential laws that intertwine to 
form a comprehensive framework. The frequency of each 
WP central rainfall observation is the basis for weighting 
this compound. The formulation of the MEPM distribution 
for a specific season is provided in Eqs. (1) and (2):

where i is the selected season, CR is the observed central 
rainfall, j is the studied WP, p is the CR event probability 
of occurrence of the WP,  nWP is the number of WP, F is 
the marginal distribution, and u is a threshold for selecting 
heavy rainfall observation. The SCHADEX framework does 
not utilize the complete rainfall data series to emphasize 

(1)Fi(CR) =

nwp
∑

j=1

Fi
j
(CR) ∗ pi

j

Fi(CR) =

nwp
∑

j=1

[

1 − exp(−
CR − ui

j

λi
j

)

]

∗ pi
j
(2)

the MEWP distributions. Instead, we employ CR to select 
the central rainfall sample, which allows for a peak-over-
threshold (POT) sampling approach for the observed daily 
rainfall series. The relation between MEWP probability and 
return period is given in Eq. (3):

 where T is the return period in years, n is the size of the 
precipitation observation sub-sample under consideration, 
and N is the number of years in the CR series under consid-
eration. Using a bottom-up approach suggested by (Brigode 
et al. 2013), four typical atmospheric circulations for Iran 
have been identified. These weather patterns according to 
meteorological genesis produce distinct weather patterns 
that align with Iran's climatology. This enables the division 
of seasonal rainfall records into more uniform sub-samples. 
Since 1951, each day has been linked to a specific WP. It 
is crucial to consider seasonality when creating rainfall 

(3)T(CR) =
1

1 − F(CR)
n

N

Fig. 3  Residual plot for raw 
temperature data, Bakhtiary VS 
NCEP

Fig. 4  Confidence Interval 95% 
limit lines around predicted 
value for Bakhtiary Versus 
T2M-NCEP
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probabilistic models, as the relevant seasons need to be 
identified and defined.

Rainfall‑runoff model

To utilize the SCHADEX method effectively, it becomes 
necessary to have a rainfall-runoff model that serves two 
main purposes. Firstly, it helps to assess the saturation 
hazard in the study watershed. Secondly, it facilitates the 
conversion of various "extreme synthetic rainfall events" 
into extreme floods. The MORDOR-SD (Garavaglia et al. 
2017) model is an improved version of the MORDOR 
(Garçon 1996) model, incorporating a spatial discretization 
scheme. This daily semi-distributed continuous model offers 

enhanced capabilities for analysis and modeling. The eleva-
tion zone approach is the basis of this discretization, there-
fore, meteorological forcing spatial variability is described 
by their orographic gradient. In this approach, assume that 
spatial variability for temperature and precipitation is mainly 
driven by elevation. The majority of model variables are 
computed for each elevation zone, exception for groundwater 
and outflow content. These two variables are evaluated on a 
global scale, encompassing the entire watershed. The com-
plete hydrological modeling scheme is described in detail 
in Garavaglia et al. (2017). The MORDOR-SD model was 
calibrated for the Bakhtiary watershed based on a genetic 
algorithm Wang (1991) using a multi-criteria composite 
objective function that is minimized during calibration, it 
is expressed as (Eq. 4):

Fig. 5  "Ellipse de Bois" 
schematic view for checking 
homogeneity test, A Tange-
panj versus surface temperature 
of NCEP/NCAR reanalysis 
database (1976–2013), B 
Tange-panj-e-Bakhtiary VS 
Sepiddashtzaz (1962–2007), 
and C Tange-panj-e-Bakhtiary 
VS Talezang (1962–2007)
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where KGE is the Kling–Gupta efficiency (Gupta et al. 
2009), which is made up of three elements: correlation, vari-
ance bias, and mean bias. The triple focus on time series 
 (KGEQ), seasonal streamflow  (KGEQsea) and flow duration 
curve  (KGEFDC) can correctly identify the various compo-
nents of the model. The model was evaluated using the split-
sample test as recommended by Klemes (1986) and Gha-
rari et al. (2013). For the Bakhtiary watershed, we divided 
the complete data into two periods (P1 = 1976–1984 and 
P2 = 1984–2012). Initially, the models were calibrated dur-
ing period P1 and then proceeded to validate them during 
period P2. The first year of the prediction was assumed to 
be the warm-up period. The function of periods was later 
swapped, with P2 being used for calibration and P1 for 
validation.

Model performance was evaluated using the classical 
Nash–Sutcliffe efficiency (NSE). The final component of 
the prediction evaluates the ability of the model to accurately 

(4)OF =
(

1 − KGEQ

)

+
(

1 − KGEQsea

)

+ (1 − KGEFDC)
predict the maximum daily flows. The calculated NSE value 
for the maximum daily flows induced by the observed cen-
tered rainfall event was 0.97. Represents inter-annual flow 
regimes and CDFs calculated for observed and predicted 
maximum daily flows. A flowchart of rainfall-runoff mod-
eling steps by the MORDOR-SD method is given in Fig. 2.

Results

To accurately assess the practical applicability of the sto-
chastic semi-continuous prediction method, it is essential 
to compare it with conventional methods. Therefore, four 
various models were used for extreme discharge prediction. 
A residual plot for raw temperature data on the surface of the 
Bakhtiary watershed is given in Fig. 3. The confidence inter-
val (95%) around the predicted value is shown in Fig. 4. Fur-
ther, the "Ellipse de Bois" schematic view for checking the 
homogeneity test was performed. The results of the Tange-
panj versus surface temperature of NCEP/NCAR (National 

Fig. 6  A Mann–Kendall trend 
test, and B Pettit’s test for maxi-
mum yearly discharge analysis 
in the hydrometric station (mu1 
is mean discharge of period 1, 
and mu2 is mean discharge of 
period 2)
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Centers for Environmental Prediction/National Center for 
Atmospheric Research) reanalysis database (1976–2013) 
were shown in Fig. 5A. Further, Tange-panj-e-Bakhtiary VS 
Sepiddashtzaz (1962–2007), and Tange-panj-e-Bakhtiary 
VS Talezang (1962–2007) were shown in Figs. 5B, C

The Bakhtiary Watershed is divided into four distinct sea-
sons, spring, summer, autumn, and winter. These seasons are 
categorized as follows concerning to the distribution of the 
MEWP: (a) February, March, October, and November, (b) 

April and May, (c) June to September, and (d) January and 
December. The period from January to December presents 
the greatest risk of heavy rainfall. Throughout the entire sea-
son, the MEWP distribution estimates that the daily rain-
fall for a 1000-year event is 226 mm. The resulting global 
MEWP model of central rainfall is shown from a CDF per-
spective. The model fits very well with the observed central 
rainfall and clearly states that there is no significant bias 
in the observed highest quantiles. Climatic and discharge 

Fig. 7  MEWP distribution and WP for February, March, October, and November central rainfall

Fig. 8  Comparison of the 
observed and predicted inter-
annual flow regimes in Bakh-
tiary watershed
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data were analyzed. Mann–Kendall trend test and Pettit’s 
test were performed for maximum yearly discharge analy-
sis in the hydrometric station and the results were given in 
Fig. 6. Moreover, Fig. 7 shows the MEWP distribution for 
February, March, October, and November central rainfall. 
One way to assess the effectiveness of a model is by com-
paring its predicted values to the actual observed values. In 
this case, Fig. 8 displays a comparison of the inter-annual 
flow regimes in the Bakhtiary watershed, showing both the 

observed and predicted values. Further, Fig. 9 shows the 
main components of the MORDOR-SD model in the one 
year of the prediction period.

CDFs for the maximum daily flows generated by the 
observed centered rainfalls were calculated and the results 
were shown in Fig. 10. A Comparison of CDFs calculated 
for the maximum daily flows generated by the observed cen-
tered rainfalls was performed. The SCHADEX method was 
used for predicting daily discharge and the model results 

Fig. 9  Main components of model and various observed and predicted parameters (in1994-1995) by MORDOR-SD model
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were compared with the observed discharge values. Fig-
ure 11 shows the distribution of daily discharge (Q24) values 
based on the SCHADEX prediction. Further, hydrographs 
were selected for computing the peak-to-volume ratio. The 
scatter plot for the peak-to-volume ratio is given in Fig. 12. 
Furthermore, the CDF of predicted peak discharges and 
corresponding observations (QXc) is given in Fig. 13. The 
predicted 1000-year peak discharge is 9196 cubic meters 
per second. According to the results, the Nash–Sutcliffe and 
Kling-Gupta coefficients were 0.69 and 0.82 for the mean 
daily streamflow, 0.98 and 0.98 for the seasonal streamflow, 
0.98 and 0.94 for the maximum discharges, and 0.57 and 
0.78 for low flows, respectively. Then, the daily discharges 
in different return periods were estimated using the results 
of the MORDOR-SD model, considering the probability 

distribution function of the probabilistic model of central 
precipitation (MEWP), the probabilistic model of adjacent 
precipitation, and the probability distribution function of the 
previous precipitation.

Daily discharges with different return periods were esti-
mated by different methods. These discharges were com-
pared with the recorded discharges in hydrometric sta-
tions and also with each other to evaluate the performance 
of methods and select the optimal method for predicting 
extreme flows. A comparison of the predicted discharges 
1000 years (QTr = 1000) given by the SCHADEX, GRADEX 
(Gradient of the Exponential Distribution), and AGREGEE 
methods with statistical flood frequency analysis was given 
in Fig. 14. A generalization of the Gradex model that is 
designed to estimate the flood frequency curve, for a specific 
duration using a combination of observed flow, rainfall, and 
historical information.

Discussion

The agreement between the observed and predicted distribu-
tions of peak and daily discharges is highly satisfactory. It 
is important to highlight that these impressive results have 
been achieved without any need for parameter adjustments 
to enhance the fit of the peak or daily distributions with the 
observational data. The originators of this method attribute 
this success to two factors: the effective use of MEWP's 
probabilistic rainfall model with appropriate seasonal divi-
sions, and the optimization process of the rainfall-runoff 
model. The findings indicated a strong correlation between 
the long-term patterns of peak and daily discharge, regard-
less of whether the data was obtained from centered rainfall 
events or annual maximum sampling. The MEWP model's 
distributions revealed that the exponential function accu-
rately describes the asymptotic behavior of daily discharges. 
Paquet et al (2013), Brigode et al. (2014), and Valent et al. 
(2017) also present, MEWP's probabilistic rainfall model 
provided satisfying results in the rainfall-runoff modeling.

The prediction of snow cover area, snow equivalent 
water, and runoff in the Bakhtiary watershed demonstrates 
improved performance during both the calibration and vali-
dation phases when utilizing semi-distributed approaches. 
In this updated iteration of MORDOR-SD, the equations 
employed have undergone revision to more accurately depict 
the crucial elements of hydrology, including snow and evap-
otranspiration. Additionally, efforts were made to minimize 
the number of model parameters. Furthermore, semi-distrib-
uted schemes were assessed to spatialize elevation zones. In 
the initial assessment, the main emphasis was on forecast-
ing runoff using a split-sample test that considered multiple 
criteria. In the subsequent evaluation, two separate hydro-
logical variables were assessed, which were not included 

Fig.10  Comparison of CDFs calculated for the maximum daily flows 
induced by the observed centered rainfalls
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in the model training process. Snow and evapotranspiration 
show some evidence for this performance in predicting the 
accuracy of hydrological parameters. Considering snow, 
evaporation, and transpiration are pieces of evidence for 
this performance in predicting the accuracy of hydrological 
parameters, which are from the results of Garavaglia et al. 
(2017) in 50 watersheds in France, whose average area is 
911  km2 and their average height is 981 m a.s.l.

To assess the accuracy of the SCHADEX prediction, we 
visually assessed its performance by comparing the theo-
retical CDFs of the average daily flows with the observed 
flow or discharges linked to the central rainfall events. The 
results showed that when including additional information, 
all the modeling methods produce higher estimates com-
pared to statistical flood frequency analysis. In particular, 

SCHADEX, AGREGEE, and GRADEX show significantly 
over estimations values. In contrast, none of the traditional 
methods (GEV, Gumbel), however, could successfully pre-
dict historical floods (three events on 12 Mar 2005, 30 
Mar1997, and 9 Feb 2006) in Fig. 14, while interestingly 
GRADEX and SCHADEX completely fitted on extreme 
values for mentioned events.

The periods utilized for the SCHADEX predictions, 
which span from around 1976–2012, are slightly shorter 
compared to the periods employed for statistical flood fre-
quency analysis and other modeling techniques, which cover 
the years 1955–2013. This discrepancy may potentially 
affect the assessment and comparison process. Previous 
research has demonstrated that when examining the sensi-
tivity analysis of different elements within the SCHADEX 

Fig. 11  A Distribution of daily discharge (Q24) values based on SCHADEX prediction, as compared with the observed daily discharge associ-
ated with centered rainfall events (QJc), B Distribution of daily discharge values based on SCHADEX prediction in seasons (a) to (d)
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method to variations in hydro-climatological conditions, it is 
crucial to utilize a minimum of 20–30 years of high-quality 
climatological data in the development of the precipitation 
probabilistic model (Brigode 2103; Brigode et al. 2014). 

Concerning the discussion by Lawrence et al. (2014) nonsta-
tionary precipitation data for SCHADEX application espe-
cially under semi-arid to arid conditions (i.e., most areas of 
Iran’s climate conditions) due to the most relevant result, 
implies that a degree of stationarity over the entire period 
of interest, as well as a suitable number of rainfall events for 
the modeling and analysis.

The SCHADEX approach can to identify potential flood 
risks during different seasons, which may not be accurately 
depicted by the annual maximum flow series. Additionally, 
unlike continuous prediction methods, this approach avoids the 
need to use a complex climatic generator to assess a series that 
spans an extremely long period, such as 1000 years or more, to 
evaluate a collection of events with high return periods.

The extreme flow rates were predicted and compared using 
different methods and the results showed that the methods 
GRADEX, AGREGEE, and SCHADEX have the highest 
performance in extreme flow modeling, respectively. How-
ever, rainfall-runoff models consider the advantages of their 
purity, such as ease of learning and use, and the possibility 
of evaluating different scenarios (Kayan et al. 2021; Gholami 
and Sahour 2021).

Conclusions

This study is the first application of the SCHADEX meth-
odology that applied in Irena’s climate condition, if cali-
bration and validation of the SCHADEX method in several 
watersheds of various climate genesis and physiography 
have been acceptable results, it can replace instead of 
FFA methods used in Iran. In parallel with the scientific 
evaluation of semi-continuous rainfall–runoff, prediction 

Fig. 12  A Hydrographs selected for computing the peak-to-volume ratio, and B The scatter plot for peak-to-volume ratio

Fig. 13  CDF of predicted peak discharges estimated T-year floods
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is actively continuing particularly, comparisons with 
other current methods (regional frequency analysis, or 
rainfall–runoff models). One disadvantage of the SCHA-
DEX model, compared to the other prediction methods 
discussed, is its higher level of complexity. As a result, it 
may require more effort from the user, while in GRADEX 
and AGREGEE some parameters (i.e., precipitation and 
historical flood data) help to find relevant results simply. 
New research for verifying some assumptions for these 
parsimonious methods, in Iran’s climate conditions and 
weather genesis will be interesting in future studies. The 
current version of SCHADEX necessitates the utiliza-
tion of recorded discharge daily for model calibration. 
Additionally, it requires hourly discharge data to evalu-
ate the peak-to-volume ratio, which is essential in pre-
dicting instantaneous discharge values. However, obtain-
ing such data is often challenging in watersheds where 
conceptual flood estimates are needed. The predictions 
of extreme values from various hydrological models in 
the SCHADEX study are consistent when the appropriate 
optimization method is used, particularly in optimizing 
the maximum values, and when a thorough validation of 
the optimization results is conducted. It is suggested for 
future studies the implementation of a comprehensive fully 
distributed model of the rainfall-runoff system, incorporat-
ing a fine time step (e.g., hourly) to encompass large-scale 
and ungauged watersheds. In addition, other models are 
used for predicting rainfall-runoff, namely IHACRES, and 
GR4J, which utilize rainfall, stream flow, and evaporation 
data to determine unit hydrographs and component flows.
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