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Abstract
The Slide2 model was used to estimate seepage losses from canals after validation considering different canal geometries, lin-
ing thicknesses, and lining materials. SPSS was used to develop three models: NLR, MLP-ANN, and RBF-ANN. MATLAB 
software was used to write down the script code for the ANNs. Results showed that seepage losses were highly increased 
when the liner had high hydraulic conductivity, while with the increase of lining thickness, a noticeable reduction in seep-
age losses was obtained. The canal's side slope had a minimal effect on the seepage losses. Moreover, the MLP-ANN and 
RBF-ANN models performed better than the NLR model with determination coefficient (R2) of 0.996 and 0.965; Root-
Mean-Square-Error (RMSE) of 1.172 and 0.699; Mean-Absolute-Error (MAE) of  0.139 and 0.528; index of agreement 
(d) = 0.999 and 0.991, respectively. The NLR model had lower values of R2 = 0.906, RMSE = 1.198, MAE = 0.942, and 
d = 0.971. Thus, ANNs are recommended as a robust, easy, simple, and rapid tool for estimating seepage losses from lined 
trapezoidal irrigation canals.
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Introduction

Conservation of water supplies became very important while 
water loss due to seepage from open channels represents one 
of the major components of water loss. Lining irrigation 
canals is considered one of the most efficient ways of ame-
liorating water-conveying systems (Awan 2017). It improves 
the flow characteristics, reduces seepage losses, controls the 
weeds growing along the canal bed and sides, and reduces 

the maintenance cost for the canals (Abd-Elaty et al. 2022). 
Moreover, it aims to avoid the potential water logging risk 
of adjacent low agricultural lands due to seepage (Abd-Elziz 
et al. 2022). For lined canals, high velocities are permitted, 
which leads to saving in the canal cross-sectional area and 
the required expropriation width, thereby minimizing total 
construction cost (Eltarabily et al. 2020).

To reduce seepage discharges, canals can be lined using 
various materials like concrete, asphaltic concrete, flex-
ible membranes, compacted earth, and soil cement mixture 
(Waller and Yitayew 2015). The amount of seeping water 
depends on many factors, such as soil hydraulic conduc-
tivity, canal shape, wetted perimeter and side slopes, and 
the suspended solids in water (Mutema and Dhavu 2022). 
However, the amount of seepage under different lining mate-
rials should be studied and quantified to precisely select the 
suitable lining material (Elkamhawy et al. 2021). Seepage 
discharges can be measured in situ using inflow–outflow, 
ponding, and double-ring infiltration methods. Due to the 
difficulties of measuring seepage discharges in the field, ana-
lytical methods can be used (Eshetu and Alamirew 2018). 
However, analytical methods can be implemented to a lim-
ited extent due to assumptions rarely being met in the field 
(Eltarabily and Negm 2015).
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Based on knowledge of the hydraulic characteristics 
of a canal (e.g., discharge, velocity), canal geometry, and 
soil hydraulic properties, engineers such as Davis Wilson, 
Moritz, Molesworth, Yennidumia, and Ingham developed 
empirical formulas that are easy and simple to use (Kraatz 
and Mahajan 1982). Due to a wide range of constant coef-
ficients, these empirical relationships are insufficient. These 
equations' coefficients are usually defined for local condi-
tions and must be calibrated for another. Using soil hydraulic 
conductivity makes a constant coefficient unnecessary for 
empirical relationships.

Over the past few years, numerical methods have been 
widely used to estimate seepage losses from irrigation 
canals. These methods were flexible, rapid, and non-labo-
rious and had fewer inputs than physical models and field 
measurements (Rocscience 2002). The finite element model 
was used to estimate seepage losses from trapezoidal unlined 
and concrete-lined irrigation canals (Solomon & Ekolu 
2014). They studied different hydraulic parameters and lin-
ing materials. The Slide2 model was utilized to estimate 
seepage losses under a hydraulic structure (Kathem Taeh 
Alnealy, 2015). SEEP/W model was employed to investigate 
the effect of compacted earth lining on seepage losses. They 
stated that seepage losses could be reduced by 99.80% if 
the soil is highly compacted (El-Molla and El-Molla 2021).

Recently, researchers in many fields of science and engi-
neering have been interested in the ANN model. However, 
ANN can connect enormous and complex data sets without 
knowing how they are connected. The first use of ANN mod-
eling was in civil engineering at the beginning of the 1980s 
to improve the efficiency of construction tasks (Flood and 
Kartam 1994). Later, applications of ANN extend to water 

resources engineering, hydraulics, hydrology, and environ-
mental engineering (e.g., El-Din and Smith 2002; Shayya 
and Sablani 1998). Gokmen et al. (2005) used an ANN 
model to predict seepage losses through the Jeziorsko Dam 
(earth-fill type) in Poland with R2 = 0.96. El-kiki (2008) 
developed an ANN model for predicting the scour param-
eters downstream of the skew siphon pipes with R2 = 0.997. 
Although ANN was broadly applied in water resources and 
hydraulic fields, ANN has not been widely applied for esti-
mating seepage losses from irrigation canals, even lined or 
unlined, so far.

Based on the above, the main aim of this research is 
to investigate the effect of lining on seepage losses from 
lined trapezoidal irrigation canals with different geometric 
and hydraulic parameters. Moreover, it develops an accu-
rate model for calculating seepage losses from trapezoidal 
lined irrigation canals. We believe our findings will give 
clear insights regarding seepage losses under different lin-
ing materials and how to effortlessly estimate it without 
requiring further field measurements. These insights will 
be helpful for water resources specialists and decision-mak-
ers in Egypt and other countries with similar conditions to 
select the suitable lining material that can be used for lin-
ing irrigation canals and to manage the agricultural water 
budget precisely.

Materials and methods

The methodological approach used in the current study 
can be described as shown in Fig. 1. The Slide2 model 
was first validated using measured field data. It was used 

Fig. 1  Flow chart of methodological approach
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to conduct a parametric study to calculate seepage losses 
from lined trapezoidal irrigation canals with different 
geometric and hydraulic parameters and investigate the 
effect of lining on seepage losses. In addition, SPSS was 
used to develop three models; NLR, MLP-ANN, and RBF-
ANN models based on Slide2 results. Then, the developed 
models’ results were compared by the seepage losses esti-
mated from the Slide2 model by the statistical parameters. 
Moreover, MATLAB software was used to write script 
code for the ANNs.

Slide2 numerical model

Model description

In the current study, the Slide2 model was used to estimate 
the seepage losses from lined trapezoidal irrigation canals. 
Furthermore, to investigate the combined effect of canal 
geometry and lining type on seepage losses. The Slide2 
model can simulate water flow through a porous medium 
using a built-in finite element groundwater seepage anal-
ysis (Rocscience 2002). Confined and unconfined flow 
can also be simulated using this model. Equation 1 is the 
governing equation in the Slide2 model and was given by 
(Mahmud 1996):

where H is the total head and K is soil hydraulic conductivity.
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Model setup

Seepage flow was assumed to move vertically downwards, 
and no influence of groundwater on seepage was considered 
during the simulation (Rocscience 2002). To capture any 
slight change in fluxes within the simulation domain, mesh 
refinement was used during the discretization of the simu-
lation domain. Three thousand mesh elements of 3-noded 
triangles element were used to build the simulation domain. 
Figure 2a shows canal geometry and the parameters affect-
ing the seepage per canal unit length. Figure 2b shows the 
simulation domain and the imposed boundary conditions 
(BCs). A discharge section was drawn at the bottom of the 
domain to estimate the seepage flux (i.e., seepage losses (q)).

Effective parameters

The following parameters affect the seepage losses from 
lined trapezoidal canals. They are q seepage losses per 
canal unit length, water depth (y), bed width (b), the canal 
side slope (z), the thickness of lining material (tL), hydraulic 
conductivity of lining material (KL), and the soil hydraulic 
conductivity (K) under the canal.

By using dimensional analysis, the following expression 
(Eq. 2) can be written as:

By the application of Buckingham's � theorem (Hanche-
Olsen 2004), the � terms functional relation can be written 
as shown in Eq. (3):

(2)f
(
q, z, b, y,KL,K, tL

)
= 0

(a) (b)

KL

K 

Fig. 2  a Canal geometry and effective parameters, b Simulation domain and the imposed boundary conditions
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Model validation

To verify the accuracy of seepage losses obtained from the 
Slide2 model, the model results were compared to measured 
field values of a branch canal located in North Al-Hussainiya 
Plain, Sharqia Governorate, Egypt (MWRI 2021). Figure 3 
shows the canal location between latitudes 30° 58′ 33.7″ 
and 31° 00′ 42.6″ N and longitudes between 32° 04′ 32.7″ 
and 32° 05′ 23.2″ E. The measured field and Slide2 model 
values of seepage losses in the unlined and lined sections 
of the branch canal are shown in Table 1. Results showed 
that Slide2 model results were similar to the measured field 
values and thus ensured the accuracy of the Slide2 model 
regardless of the existence of calculated seepage losses by 
the model in the lined section that was mere to vanish (near 
to zero) as the field measured value. 

Simulation scenarios

After the validation process, a parametric study was conducted 
to calculate seepage losses from lined trapezoidal irrigation 
canals with different geometric and hydraulic parameters. Six 
hundred simulation scenarios were performed using the Slide2 
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model. The scenarios included different geometric and hydrau-
lic ratios for a trapezoidal irrigation canal. Table 2 shows the 
ratios of the modeled scenarios.

Statistical analysis

Based on the results of the simulated scenarios (i.e., q*), 
SPSS was used to develop three models for estimating seep-
age losses from lined trapezoidal irrigation canals based on 
the results of the Slide2 model. They were NLR, MLP-ANN, 
and RBF-ANN models, as described later in "Statistical analy-
sis" section. These models were built to investigate their abil-
ity to reduce seepage losses estimation for lined trapezoidal 
irrigation canals. NLR model was chosen to achieve higher 
accuracy than the linear regression model (Hosseinzadeh Asl 
et al. 2020; Salmasi and Abraham 2020). The determination 
coefficient (R2), root mean square error (RMSE), mean average 
error (MAE), and index of agreement (d) were the statistical 
parameters used to quantitatively analyze the NLR and ANNs 
performance. Moreover, MATLAB (R2019a) and its neural 
modeling application (Neural Network Toolbox; Demuth and 
Beale 1992) were used to write script code for the ANNs. 
The following are the expressions (Eqs. 4, 5, 6 and 7) for the 
statistical parameters mentioned above:
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Investigated 

Branch Canal

El Salam Canal

Fig. 3  Location of investigated branch canal

Table 1  Comparison between the seepage losses measured in the 
field and Slide2 model

Seepage losses Unlined section 
 (m2  s−1)

Lined section  (m2  s−1)

Field (MWRI 2021) 5.850 ×  10–3 –
Slide2 model 5.862 ×  10–3 9.933 ×  10–12

Table 2  The range of the studied geometric and hydraulic parameters

Parameter Values

b∗ 1, 2, 3, 4, 5
z 1, 1.5, 2
K∗ 0.0005, 0.001, 0.005, 0.01, 

0.05, 0.1, 0.3, 0.5
t∗ 0.01, 0.05, 0.10, 0.15, 0.20
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 where yi are the estimated values of seepage losses by Slide2 
model; ŷ are the predicted values of the seepage losses by 
the proposed models, and y is the mean value of the Slide2 
model scenarios.

Nonlinear regression model (NLR)

Nonlinear models are simple, interpretable, and predictive 
(Archontoulis and Miguez 2015; Hosseinzadeh Asl et al. 
2020). These models can accommodate a wide variety of 
mean functions. However, they can be less flexible than 
linear models (i.e., polynomials) regarding the data they 
can describe. However, nonlinear models appropriate for a 
given application can be more parsimonious (i.e., have fewer 
parameters) and more interpretable. Interpretability comes 
from associating parameters with a biologically meaningful 
process (Salmasi and Abraham 2020).

The following steps were used to develop the NLR model. 
They are (1) q* term was defined as the dependent vari-
able, (2) propose NLR equation, which is a function of the 
independent variables (i.e., b∗, z,K∗, and t∗ ), (3) enter the 
estimation parameters of the proposed NLR equation by 
assuming the starting value; Levenberg–Marquardt was the 
used estimation method, (4) Finally, the nonlinear regression 
analysis was started, and the model results were shown in the 
output log. By trial and error, the best form of the nonlin-
ear equation developed by the nonlinear regression analysis 
for the dependent variable q∗ was obtained. Equation 8 was 
proposed as follows:

where a, b, c, d, and e are constant parameters. The equation 
was calibrated using 70% of the scenarios and verified by 
the remaining 30%.

ANN models

ANN is an Artificial Intelligence machine learning tool that 
mimics human brain function. ANN can model both lin-
ear and nonlinear systems without the implicit assumptions 
made by most conventional statistical techniques. It has been 
utilized in numerous scientific and engineering disciplines 
(Chantasut et al. 2004). ANN is a powerful mathematical 
modeling tool that can process complex input–output rela-
tionships like the human brain. When presented with data 
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patterns, sets of historical input and output data describ-
ing the problem are modeled. ANN can map the cause and 
build relationships between the model input and output data. 
This mapping of input and output relationships in the ANN 
model architecture allows engineers to predict the value of 
the model output parameter with satisfactory accuracy if 
any reasonable combination of model input data is given. 
However, the success of an ANN application depends on 
the quality and quantity of the available data (Haykin et al. 
2012).

ANN model has seven major components, collectively 
known as the ANN architecture. These components are (1) 
processing units or neurons, (2) a state of activation, (3) an 
output function for each neuron, (4) a pattern of connectivity 
or weights between units, (5) a propagation rule for propa-
gating patterns of activities by the weights, (6) an activation 
function for combining the inputs impinging on a unit with 
the current state of that unit to produce a new level of activa-
tion for that unit, and (7) a learning rule whereby weights are 
modified by experience (Shayya and Sablani 1998).

Depending on the ANN software employed, the model 
developer may adjust or modify some of these components. 
In ANN applications, three stages are considered: training, 
validation, and testing. The purpose of training a network 
is to minimize the error between the outputs of the network 
and target values. Training of the algorithm reduces the error 
by adjusting the weights and biases of the network. In the 
training stage, input values are multiplied by respective con-
nection weights, and biases are added. The exact process is 
repeated for the output layer, where the output of the hidden 
layer is used as an input for the output layer. In the valida-
tion stage, the model performance is evaluated. In contrast, 
in the test stage, the model is tested to optimize its overall 
performance.

This study  used Multi-Layer Perceptron (MLP) and 
Radial Basis Function (RBF) neural networks. MLP and 
RBF networks are the most common feed-forward network 
type and consist of three layers, namely, input, output, and 
hidden layers as shown in Fig. 4a and b; (Ghorbani et al. 
2016). In the input layer of MLP, neurons only function as 
buffers for transmitting input signals to neurons in the hid-
den layer. In RBF, the input layer has neurons with an activa-
tion function that feeds the input signals to the hidden layer. 
Moreover, the connections between the input and hidden 
layer are not weighted. In the hidden layer of MLP, it com-
putes its output as a function of the sum of its input signals 
after weighting them with the strengths of their respective 
connections from the input layer.

In contrast, in the RBF, the hidden neurons are the pro-
cessing units that perform the RBF. Similarly, the output 
of neurons in the output layer of MLP is computed, while 
in RBF, the output neuron is a summing unit to produce 
the output as a weighted sum of the hidden layer outputs. 
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The most widely used MLP training algorithm is the Lev-
enberg–Marquardt back-propagation algorithm, which 
gives the weight of a connection between neurons (Haykin 
et al. 2012; Jayawardena et al. 1998).

Results and discussions

In this section, the Slide2 model results were demon-
strated, the effect of the hydraulic parameters on seep-
age losses was explored, and the ANNs investigated the 
importance of each parameter. In addition, the developed 
nonlinear equation was compared to other proposed mod-
els (i.e., MLP-ANN and RBF-ANN). Moreover, MATLAB 
was used to write down the script code of the ANNs.

Effect of the hydraulic parameters on seepage losses

Lining hydraulic conductivity (K*)

Eight ratios of K* were considered while keeping the t* con-
stant and equal to 0.20. The Slide2 model results showed 
that the hydraulic conductivity positively correlates with 
the seepage losses. Figure 5 shows the q* values under dif-
ferent K* and b* ratios when t* = 0.20 and z = 1. Seepage 
loss reduction percentages due to different K* and b* ratios 
when t* = 0.20 and z = 1 are shown in Fig. 6. To save space, 
only the results of z = 1 were presented as the same trend 
was obtained under other side slopes. Figures show that the 
lining process becomes useless after a specific hydraulic 
conductivity (K*) value of the lining material. For instance, 
a lining layer of (t* = 0.20) can lower seepage losses by a 

Fig. 4  a MLP-ANN and b RBF-ANN (Ghorbani et al. 2016)

Fig. 5  The q* values under 
different K* and b* ratios when 
(t* = 0.20) and z = 1
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mean percentage of 8.9, 20.4, 67.9, 82.6, 96.2, 97.4, 99.4, 
and 99.7% for the ratios of K* = 0.5, 0.3, 0.1, 0.05, 0.01, 
0.005, 0.001, and 0.0005, respectively. Figure 6 showed 
that regardless of the canal's inner side slope value, seepage 
losses were reduced for all b* ratios when the (K*) ratio 
decreased. 

Lining thickness (t*)

To investigate how different lining thicknesses affect seepage 
losses, five different t* ratios were considered while keep-
ing K* constant and equal to 0.1. The K* value of 0.1 was 
chosen because it is neither too low nor too high within the 
investigated range. At K* = 1, seepage losses are mitigated 
using lining material. Meanwhile, seepage losses nearly van-
ished at a low K* ratio (i.e., K* = 0.01 or less). Hence, to 
evaluate the effect of lining thickness on seepage, K* = 0.1 
was chosen. Lining thickness negatively correlates to the 
seepage losses for all investigated b* ratios at z = 1. Fig-
ure 7 shows that as t* increases, seepage losses decrease. 
The percentages of seepage loss reduction corresponding to 
different t* ratios for all investigated b* ratios are shown in 
Fig. 8. At K* = 0.1 and z = 1, the average percentage of seep-
age losses was reduced by 10.6, 22.7, 42.0, 63.4, and 68.5% 
for t* = 0.02, 0.05, 0.1, 0.15, and 0.2. At every 0.05 increase 
in the lining layer thickness ratio (t*), seepage losses will 
decrease by around 15% regardless of the canal's inner side 
slope. That occurred because water seeps from the same 
wetted perimeter in each ratio. 

Canal inner side slope (z)

Figure 9 shows the average seepage reduction at each K* 
ratio corresponding to z values. It can be noted that as the 
canal's inner side slope increases, the seepage losses term 
q* increase. At t* = 0.20, with every increase in the value 
of z by 0.5, the mean percentage of seepage losses can be 
reduced by 12.1, 23.3, 67.8, 84.5, 96.1, 97.3, 99.3, and 
99.7% for the ratios of K* = 0.5, 0.3, 0.1, 0.05, 0.01, 0.005, 
0.001, and 0.0005, respectively. Figure 10 shows the average 
seepage reduction at each t* ratio corresponding to different 
z values. At K* = 0.10, with every increase in the value of z 
by 0.5, the mean seepage losses reduction percentages are 
9.93, 22.6, 41.4, 61.1, and 67.8% for the case of tL/y = 0.02, 
0.05, 0.1, 0.15, and 0.2, respectively. Regardless of the b* 
ratio, as the K* ratio gets lower and the t* ratio gets higher, 
the seepage losses decrease at all z values. However, when 
the side slopes are flat, there is more seepage than the 
steep side slopes. That happens because flattening the side 
slopes creates a long-wetted perimeter. 

Statistical models

NLR model

To ensure the best fit to the Slide2 model results in seepage 
losses estimation from trapezoidal lined irrigation canals, 
the multi-variable nonlinear regression model (NLR) devel-
oped a nonlinear equation and estimated the values of the 
proposed parameters (i.e., a, b, c, d, and e), and by substitu-
tion in Eq. (8), the developed nonlinear equation (Eq. 9) can 
be written as follows:

Fig. 6  Seepage losses reduction 
under different K* and b* ratios 
when (t* = 0.20) and z = 1
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MLP‑ANN model

In this model, the scenarios were divided randomly in the 
training, validation, and testing stages as 79.3, 9.5, and 
11.2%, respectively. By trial and error, four hidden neurons 
were used. The hyperbolic tangent and linear functions were 
used as activation functions in the hidden and output layers, 
respectively, to obtain the best MLP-ANN of architecture 
(21-4-1).

(9)q∗ = 4.791 × (b∗)
0.423

× (z)0.265 × (K∗)
0.422

× (t∗)
−0.166 RBF‑ANN model

In this model, the scenarios were divided randomly in the 
training, validation, and testing stages as 91.2, 5.2, and 
3.8%, respectively. By trial and error, forty-three hidden 
neurons were used. The SoftMax and linear functions were 
used as activation functions in the hidden and output lay-
ers, respectively, to obtain the best RBF-ANN of architec-
ture (21-45-1).

Fig. 7  The q* values under 
different t* and b* ratios when 
(K* = 0.10) and z = 1

Fig. 8  Seepage losses reduction 
percentage under different t* 
and b* ratios when (K* = 0.1) 
at z = 1
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Importance of the investigated parameters by ANNs

Figure 11 showed the importance of each independent 
variable was investigated by ANNs that the dependent 
variable (i.e., q*) was affected by the independent vari-
ables (i.e., b*, z, K*, and t*) values by 27.8, 7.9, 100.0, 
26.1%, respectively. ANN's results showed that seepage 
was highly affected by the lining's hydraulic conductiv-
ity but was lightly affected by canal geometry and lining 
thickness. However, the side slope was the least important 
to the seepage loss estimation. Thus, the results agree with 
the results of the Slide2 model.

Performance of models

In this section, the comparison between the proposed models 
was investigated to obtain the best model. Table 3 shows the 
calculated statistics parameters for each model. Figure 12a–c 

showed the correlation between the Slide2 numerical model 
and the three proposed models (i.e., NLR, MLP-ANN, and 
RBF-ANN), respectively. Results indicated that MLP-ANN 
and RBF-ANN were the best models for estimating seepage 
discharges in lined trapezoidal canals with different geo-
metric and hydraulic parameters. That happened because 
ANNs had the highest R2 and d with the least RMSE and 
MAE. However, the NLR model can be applied in seep-
age estimation for trapezoidal lined irrigation canals as an 
alternative technique with a considerable difference in the 
seepage loss values. 

ANN developing via MATLAB

Figure 13 shows the programming procedure of ANN and 
the generated script code was developed. However, the fol-
lowing steps were applied sequentially:

Fig. 9  Seepage losses reduc-
tion percentage under different 
K* ratios and z values when 
(t* = 0.20)

Fig. 10  Seepage losses reduc-
tion percentage under different 
t* ratios and z values when 
(K* = 0.10)
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• Defining data in matrix form as (x = “Input'” and t = “Out-
put'”).

• Choosing a training function; (trainFcn = 'trainlm'; 
LM = 'trainlm'; %Levenberg–Marquardt).

• Creating a fitting network by defining hidden layer size;
• (hiddenLayerSize; net = fitnet(hiddenLayerSize,trainFcn)
• Setting up the division of data for training, validation, 

and testing stages (net.divideParam.trainRatio; net.
divideParam.valRatio; net.divideParam.testRatio)

Fig. 11  Importance percentage 
of each input

Table 3  Statistical parameters of the proposed models

Model R2 RMSE MAE Index of 
agreement 
(d)

NLR 0.906 1.198 0.942 0.971
MLP-ANN 0.996 1.172 0.139 0.999
RBF-ANN 0.965 0.699 0.528 0.991

Fig. 12  a q*(NLR) vs q* (Slide2), b q*(MLP-ANN) vs q* (Slide2), c q*(RBF-ANN) vs q* (Slide2)
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• Training the network; [net,tr] = train(net,t,y)
• Testing the network; y = net(x); e = gsubtract(t,y); perfor-

mance = perform(net,t,y)
• Viewing the developed network; view(net)

Conclusions and recommendations

In this study, the applicability of three models (NLR, 
MLP-ANN, and RBF-ANN) in estimating seepage losses 
from lined trapezoidal irrigation canals was investigated 
based on the scenarios conducted by the Slide2 numerical 
model. Consequently, the models’ results were compared 
with the Slide2 model results to obtain the best model.

Based on the results, the following conclusions can be 
drawn:

• The Slide2 model was reliable in estimating seepage 
losses from unlined and lined trapezoidal irrigation 
canals compared to measured field data.

• The ability of the lining to reduce seepage from the 
canal is affected by its hydraulic conductivity and thick-
ness, in which the seepage losses were highly increased 
as the lining's hydraulic conductivity increased. In con-
trast, the lining thickness causes a noticeable reduction 
in seepage losses. Nevertheless, the canal's side slope 
had a low impact on the seepage.

• The NLR, MLP-ANN, and RBF-ANN models can all 
be used to estimate seepage losses from lined trapezoi-
dal irrigation canals.

• The MLP-ANN and RBF-ANN models performed bet-
ter than the NLR model with R2 of 0.996 and 0.965; 
RMSE of 1.172 and 0.699; MAE of 0.139 and 0.528; 
d of 0.999 and 0.991, respectively.

• The NLR model can be applied in seepage estimation 
for lined trapezoidal irrigation canals as an alternative 
technique with a significant difference in the seepage 
losses with R2 of 0.906, RMSE of 1.198, MAE of 0.942, 
and d of 0.971.

• ANNs models are recommended as a robust and rapid 
tool for estimating seepage losses from trapezoidal 
irrigation canals with different geometries and lining 
materials.

Further research is recommended to develop an ANN 
model to estimate seepage losses for lined canals with dif-
ferent shapes. Moreover, to investigate the effect of shal-
low groundwater tables on seepage losses for unlined and 
lined irrigation canals.
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