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Abstract
Sediment and nutrient pollution in water bodies is threatening human health and the ecosystem, due to rapid land use changes 
and improper agricultural practices. The impact of the nonpoint source pollution needs to be evaluated for the sustainable 
use of water resources. An ideal tool like the soil and water assessment tool (SWAT) can assess the impact of pollutant 
loads on the drainage area, which could be beneficial for developing a water quality management model. This study aims 
to evaluate the SWAT model’s multi-objective and multivariable calibration, validation, and uncertainty analysis at three 
different sites of the Yarra River drainage area in Victoria, Australia. The drainage area is split into 51 subdrainage areas in 
the SWAT model. The model is calibrated and validated for streamflow from 1990 to 2008 and sediment and nutrients from 
1998 to 2008. The results show that most of the monthly and annual calibration and validation for streamflow, nutrients, 
and sediment at the three selected sites are found with Nash–Sutcliffe efficiency values greater than 0.50. Furthermore, the 
uncertainty analysis of the model shows satisfactory results where the p-factor value is reliable by considering 95% prediction 
uncertainty and the d-factor value is close to zero. The model's results indicate that the model performs well in the river's 
watershed, which helps construct a water quality management model. Finally, the model application in the cost-effective 
management of water quality might reduce pollution in water bodies due to land use and agricultural activities, which would 
be beneficial to water management managers.
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Introduction

The excessive land use changes and various agricultural 
practices are causing the accumulation of sediments 
in water bodies and a shortage of potable water, which 
threatens human health and ecosystems. The impact of 
the alteration of tropical rainforest to agricultural land 
decreases the porosity of the topsoil resulting in leaching 
of nutrients, incremental runoff, eutrophication of water 
and erosion. The complexity of agricultural land manage-
ment is immense as several parameters, such as chemical 
transport, hydrological factors, topographical features, 
land use patterns, and soil characteristics, are required to 
determine the transport mechanism of non-point source 
(NPS) pollution. The management of drainage areas with 
mathematical computer models is becoming a cost-effi-
cient evaluation means in abridging the difficult challenges 
(water pollution) from agricultural practices and land use 
activities (Guo et al. 2002; Ahsan et al. 2023).

The unique hydrological location and limited water 
quality data availability have greatly influenced the appli-
cation of water quality models for the drainage areas in 
Australia (Grayson et al. 1999; Croke and Jakeman 2001; 
Ahsan et al. 2023). The limited information on soil types, 
erosion or geographical ecosystem and land use data also 
complicated the advancement of water quality models 
(Kragt and Newham 2009). A few investigators (Borah 
and Bera 2003; Ahsan et  al. 2023) recommended the 
implementation of physics-based models in agricultural 
NPS contamination modeling as the nature of pollution 
is scattered and compulsive. Thus, creating an efficient 
water quality management strategy, becomes a great chal-
lenge for the drainage area in the poor data situations of 
Australia. U.S. EPA (2002) suggested the use of the tech-
nically sound, vigorous, and justifiable model for gener-
ating model outcomes for projects ranging from regula-
tion to investigation. For this, the ability of a model for 
assessing the simulation and forecast of streamflow and 
component of water quality is done by the calibration, vali-
dation, sensitivity, and uncertainty analysis (Rafik et al. 
2023). Furthermore, it was found that the calibration and 
validation processes became more complicated due to 
the increased model parameters, multiple locations, and 
number of subdrainage areas responded to the forecasting 
(like streamflow, nitrogen, sediment, and phosphorus). In 
such a case, van Griensven et al. (2002) suggested that the 
number of factor adjustments during calibration can be 
reduced by a sensitivity analysis for the solution of such 
types of models. Multiple objectives are used in the cali-
bration of a drainage area model to assess the pact between 
the observed and simulated values. The optimization of 
the objectives is performed using several goodness-of-fit 

predictors (for example, coefficient of determination, and 
Nash–Sutcliffe efficiency), several variables (sediment, 
water, nutrients, and energy), and several sites (Niraula 
et al. 2012; Nasirzadehdizaji and Akyuz 2022).

The multiple factors in the water quality model compli-
cate the calibration process by assessing the relationships 
between numerous estimated outcomes and one factor. This 
can happen when the alteration of one factor causes one 
estimated variable to more directly overlap with measured 
values and another estimated variable to less directly overlap 
with calculated values (White and Chaubey 2005). Thus, a 
stepwise calibration process in rational order is performed 
frequently, because of the overlapping between factors and 
estimated outcomes and measurement ambiguity (Madsen 
2003). The SWAT model simplifies the calibration process 
problem by performing an orderly optimization of the objec-
tive function: (1) Surface runoff, (2) Total flow and base 
flow, (3) Nitrogen, (4) Phosphorus, and (5) Sediment (Santhi 
et al. 2001; Kirsch et al. 2002; Xue et al. 2022). A flowchart 
for the calibration of streamflow, nutrients, and sediment 
recommended by Arnold et al. (2012) (modified from Santhi 
et al. 2001) is applied in this research, as shown in Fig. 10 
(Appendix). The hydrologic outcomes (base flow, total 
streamflow, and surface runoff) are initially calibrated as 
they cause an impact on the other outcome factors (nutrients 
and sediments). Furthermore, after hydrologic calibration, 
the sediment is calibrated as sediment can affect the trans-
port of phosphorus in the catchment, and after phosphorus 
calibration, nitrogen calibration is performed due to the huge 
uncertainty in phosphorus estimation by the model from 
multiple sources (Campbell and Edwards 2001; Oduor et al. 
2023). The validation of the model is performed similarly to 
the calibration process with the estimated and measured val-
ues in assessing, whether the objective function is fulfilled 
with a different dataset other than the calibration process 
(Aibaidula et al. 2023). The validation helps to assess the 
model whether calibrated properly if not, and then revision 
of the calibration process needs to be done again.

The uncertainty of the model seeks to quantitatively 
evaluate the reliability of the model’s outcome. The vari-
ous sources of modeling uncertainties should be analyzed, 
and the outcome of the model can be characterized with 
an acceptable limit (Gupta et al. 1998; Vrugt et al. 2003; 
Aibaidula et al. 2023). The extent of the uncertainties in the 
model was calculated using the p-factor and d-factor values 
(Abbaspour et al. 2004). The ideal value of the p-factor was 
considered, where the uncertainty was 95% in the predic-
tion of the observed data. However, the d-factor ideal value 
is close to zero, which means that the uncertainty in the 
estimated outcome is reduced.

The study aims to evaluate the calibration, validation, 
and uncertainty analysis of a water quality model at dif-
ferent sites of the middle Yarra River drainage area in 
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Victoria, Australia with SWAT. The calibration of the 
streamflow at three sites is done from 1990 to 2002 and 
validation from 2003 to 2008. Furthermore, the calibration 
of the sediment and nutrients is done from 1998 to 2004 
and validation from 2005 to 2008. This is the first time at 
three different sites calibration, validation, and uncertainty 
analysis are done for managing the quality of water.

Methodology

Location

In the Victoria state of Australia, the Yarra River covers a 
drainage area of 4000 km2, which supplies potable water 
to the mass people and many agricultural industries. It 
covers most of the agricultural land cover other than natu-
ral vegetation and urban land cover. The drainage area is 
segregated into lower, middle, and upper portions because 
of land use activities.

The middle yarra drainage area (MYDA) is chosen for 
this study (Fig. 1), which covers an area of 1511 km2 and 
is one of the largest pollutant flow sources in the Port Phil-
lip Bay territory (EPA Victoria 1999; Melbourne Water 
2010).

Model data insertion

The SWAT2005 model’s interface, named ArcSWAT, is uti-
lized in this study, which is created by the USDA-ARS as 
a hydrological tool for drainage areas (Arnold et al. 1998; 
Winchell et al. 2009). The SWAT model has the potential 
to simulate the effect of sediment, agricultural chemicals, 
and water loads on complicated drainage areas with differ-
ing land use, soils, and management situations over a long 
period. Moreover, the model also has a robust uncertainty, 
sensitivity, and autocalibration analysis tool. Due to its mul-
tiple facilities, the model has been widely recognized by 
many researchers to do long-duration continuous simula-
tions in the agricultural drainage area (Gassman et al. 2015; 
Ahsan et al. 2023). Table 1 depicts the essential data along 
with their sources for the model’s calibration and operation. 
The monitoring locations and digital input maps for stream-
flow and climate data are shown in Fig. 2.

The SWAT model applies ASTER 30 m GDEM in this 
study, as shown in Fig. 2a. The soil labels, as shown in 
Fig. 2b, follow the prevalent principal profile form illus-
trated by the Factual Key in brackets of the Australian 
Soil Classification System (Northcote 1979; Isbell 2002). 
In the drainage area, two prevailing soil varieties are 35% 
Dermosol and 54% Sodosol, and their several soil charac-
teristics are presented. Furthermore, about 32% of the total 

Fig. 1   The middle yarra drainage area (MYDA) (Das et al. 2022)
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region is covered by pastures, as shown in Fig. 2c of the 
MYDA. As per the SWAT model guideline, the land use 
category is re-categorized and created in accordance with 
the conditions of the SWAT model for the MYDA, as the 

model has a pre-defined land use category that generates a 
link with the land use map (Winchell et al. 2009).

The climate data are compiled for the 1980–2008 
phase. The MYDA average monthly temperature and 

Table 1   SWAT model data reference (Das et al. 2022)

Data Reference

Digital elevation model (DEM) ASTER 30 m GDEM, jointly developed by The Ministry of Economy, Trade, and Industry (METI) of Japan 
and the United States National Aeronautics and Space Administration (NASA) (http://​aster​web.​jpl.​nasa.​gov/​
gdem-​wist.​asp)

Soil Atlas of Australian Soils from Australian Soil Resource Information System (ASRIS) developed by CSIRO and 
Department of Agriculture, Fisheries and Forestry (DAFF) (http://​www.​asris.​csiro.​au)

Land use 50 m grid raster data for the period of 1997 to May 2006 collected from Australian Bureau of Agricultural and 
Resource Economics and Sciences (ABARES) (http://​adl.​brs.​gov.​au/​landu​se)

Climate 16 rainfall stations, and 4 temperature (max and min), solar radiation, wind speed and relative humidity sta-
tions data from SILO climate database (http://​www.​longp​addock.​qld.​gov.​au/​silo) and Bureau of Meteorology 
(BoM) (http://​www.​bom.​gov.​au/​clima​te/​data/)

Streamflow and water quality Daily streamflow and water quality monthly grab sample data for the monitoring stations from Melbourne 
Water (http://​www.​melbo​urnew​ater.​com.​au/)

Crop management practices Manure, fertilizer type and application rate, tillage practices, cropping seasons, and irrigation rate from Austral-
ian Bureau of Statistics (http://​www.​abs.​gov.​au), Department of Environment and Primary Industries (http://​
www.​depi.​vic.​gov.​au/) and Melbourne Water (http://​www.​melbo​urnew​ater.​com.​au/)

Fig. 2   Soil varieties, DEM, land use, and monitoring locations map for the SWAT model at the MYDA (Das et al. 2022)

http://asterweb.jpl.nasa.gov/gdem-wist.asp
http://asterweb.jpl.nasa.gov/gdem-wist.asp
http://www.asris.csiro.au
http://adl.brs.gov.au/landuse
http://www.longpaddock.qld.gov.au/silo
http://www.bom.gov.au/climate/data/
http://www.melbournewater.com.au/
http://www.abs.gov.au
http://www.depi.vic.gov.au/
http://www.depi.vic.gov.au/
http://www.melbournewater.com.au/
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precipitation are shown in Fig. 11 (Appendix). The high-
est rainfall appears in September, and the lowest rainfall 
appears in February. Thus, the highest temperature alters 
from 11.4 °C (July) to 25.3 °C (February), and the lowest 
temperature alters from 4.4 °C (July) to 12.3 °C (Febru-
ary). An immediate decrease in yearly mean precipitation 
(from 1140 to 922 mm) from 1997 forward is shown in 
Fig. 12 (Appendix), implying terrible drought events in 
the MYDA, recognized as a millennium drought.

The calibration of base flow, total streamflow, and sur-
face runoff can accurately represent the subsurface and 
surface hydrological processes. In this study, an automatic 
digital filter-based software named “Base flow Filter Pro-
gram” (USDA-ARS 1999) is utilized to segregate base 
flow (Arnold et al. 1995). In the MYDA, the base flow 
split revealed that it contributes mostly to the total stream-
flow (about 75%). The addition of streamflow and water 
quality from the Upper Yarra into the MYDA is done by 
the SWAT model “upstream inlet point” function, and the 
streamflow and water quality data are compiled from the 
Millgrove station (Fig. 2d).

SWAT model: system, calibration, validation, 
sensitivity, and uncertainty analysis

In accordance with the instructions of the SWAT 2005 
version interface named ArcSWAT, all the required data-
sets and input database files (Winchell et al. 2009) are 
compiled and arranged for this study model. The MYDA 
is partitioned into 51 subdrainage areas and 431 hydro-
logical response divisions (HRDs). Curve Number (C.N.), 
Penman–Monteith, and Muskingum techniques to assess 
runoff, PET, and channel routing with NPK transformation 
are used for hydrological method modeling.

The inbuilt sensitivity, auto-calibration, and uncertainty 
tool of the SWAT performs the uncertainty, calibration, 
and sensitivity analysis of the model in the MYDA three 
sites. In the SWAT model, 26 streamflow, 6 sediments, 
and 9 nutrient factors are present, where each factor has 
a primary value and default limits. During the calibra-
tion operation, the model outcome variables are altered 
by evaluating the preliminary values of the factors that 
are sensitive, while other factors remain the same. In order 
to assess, the streamflow factors in the SWAT model, as 
per Van Griensven et  al. (2006), the LH-OAT (Latin-
Hypercube and One-Factor-At-a-Time) sensitivity analysis 
technique is utilized. Furthermore, the auto-calibration of 
ParaSol (SCE-UA) is applied to the streamflow factors 
by assessing the sensitivity outcomes. Moreover, ParaSol 
(SCE-UA) also delivers options for determining uncer-
tainty analysis (Van Liew and Veith 2010; Green and Van 
Griensven 2008).

Selected sites of the MYDA for calibration, 
validation, and uncertainty analysis

The assessment of the model in supplement to the graphi-
cal approaches mentioned by Moriasi et al. (2007) is done 
by Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), 
and the ratio of the root mean square error to the standard 
deviation of calculated data (RSR). The optimum value of 
PBIAS and RSR is 0, where negative and positive signs of 
PBIAS imply overprediction and underprediction, respec-
tively. As suggested by Moriasi et al. (2007), a simulated 
model can be evaluated as satisfactory if RSR ≤ 0.70 and, 
NSE > 0.50 and if PBIAS <  ± 25% for Streamflow and 
NSE > 0.50 and RSR ≤ 0.70, and if PBIAS ≤  ± 55% for TSS 
and PBIAS ≤  ± 70% for TN and TP for a monthly time step. 
The uncertainty analysis is assessed as “good” simulations if 
a 95% probability range of the p-factor and d-factor estima-
tion for each simulated factor is achieved, otherwise termed 
as “not good” simulation (Van Liew and Veith 2010; Green 
and Van Griensven 2008). Finally, the coefficient of cor-
relation (R2) is considered for the assessment of the model 
outcome.

Melbourne Water Corporation’s monitoring network is 
the main streamflow and water quality monitoring system, 
which is placed in the Yarra River drainage area. The Yarra 
River drainage area comprises 70 streamflow gauging sta-
tions and 33 water quality monitoring stations for measuring 
the varying quality of water. By assessing the stations, three 
sites are selected based on the multisite, multi-objective, and 
multivariable calibration objectives of MYDA water qual-
ity management, as shown in Fig. 3. They are mentioned as 
Site-1, Site-2, and Site-3. The locations of the sites on the 
basis of streamflow and water quality monitoring stations 
are shown in Tables 6 and 7 (Appendix). Furthermore, the 
three sites are spatially distributed over the entire MYDA, 
and site 3 is the drainage area outlet.

Results and discussion

Calibration and validation of SWAT model 
at different sites of MYDA

Streamflow

In accordance with the sensitivity results, 15 factors are cat-
egorized as extremely significant and significant in accord-
ance with the classification of ratings by Van Griensven 
et al. (2006). Details of the factors, durations of calibration 
and validation, ParaSol (SCE-UA) auto-calibration (Reck-
how 1994; Aibaidula et al. 2023), and manual tuning of the 
SWAT are found in Das et al. (2022) and Ahsan et al. (2023).
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During the calibration period for total streamflow 
and base flow at all three sites (monthly and annual), the 
SWAT model operates very well (R2 > 0.75, NSE > 0.75, 
RSR < 0.60, and PBIAS 10%, as shown in Table 2). Like-
wise, runoff calibrations (monthly and annually) at all 3 
sites are also acceptable, as per the suggestion of Mori-
asi et al. (2007). However, the site 2 calibration outcome 
(monthly and annual) (NSE > 0.78, R2 > 0.90, RSR < 0.50, 
and PBIAS < 22%) of total streamflow, base flow, and run-
off imply that it is more satisfactory than the other 2 sites. 
Through the calibration, the model, in general, underpre-
dicts the flows in monsoon (1990–1996) and overpredicts the 
flows in summer (1997–2002) based on monthly data. The 
overprediction in the dry period may be due to the underpre-
diction of the usage of water in irrigation, as the duration of 
the usage of water is challenging to evaluate due to the stor-
age. Overall, during calibration, the model underpredicts the 
runoff, base flow, and total streamflow (monthly and annual), 
whereas the PBIAS outcome is positive, representing under-
estimation. Furthermore, the runoff underprediction is much 
higher than base flow, where PBIAS values of runoff are 
greater.

In validation, total streamflow performance ratings are 
satisfactory based on annual and monthly data at 3 sites 
(NSE > 0.75, RSR < 0.50, R2 > 0.75, and PBIAS 10%, 
as shown in Table 2), but the annual value of site 1 is 

unsatisfactory (NSE < 0.50 and RSR > 0.7). However, the 
base flow and runoff results of site 1 are unsatisfactory, with 
NSE < 0.70 and RSR > 0.70, even though there is some eas-
ing on the monthly and annual step guideline. Furthermore, 
the validation of sites 2 and 3 is satisfactory in terms of 
runoff and base flow.

The SWAT model simulation findings from this study 
are found to be reliable with other SWAT research such 
as Kirsch et al. (2002), Green and Van Griensven (2008), 
and Gasirabo et al. (2023). In NSW, the Mooki catchment 
also overestimates some lower flows and small peaks, while 
underestimating the peak runoff in the SWAT model simu-
lation (Vervoort 2007). Additionally, Watson et al. (2003) 
found that the Woady Yaloak River watershed overpredicts 
the low flows in the SWAT model application in Victoria.

Sediment and nutrients

In accordance with the sensitivity analysis findings, 13 
parameters are rated as extremely significant, as per the 
rating classification by Van Griensven et al. (2006). These 
are CH_COV, CH_EROD, NPERCO, PHOSKD, PPERCO, 
RCHRG_DP, SOL_LABP, SOL_NO3, SOL_ORGN, SOL_
ORGP, SPCON, SPEXP, and ULSE_P from higher to lower 
levels, respectively. ParaSol (SCE-UA) auto-calibration 
is done at the MYDA's outlet on the 13 most important 

Fig. 3   Selected sites in the 
MYDA for calibration, uncer-
tainty, and validation analysis
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parameters (as stated above) for sediment (TSS) and nutri-
ents (TP and TN). The simulated values for sediment (TSS) 
and nutrients (TP and TN) are calibrated with the data from 
1998 to 2004, and then confirmed with the data from 2005 
to 2008. This time period captures all changes that could 
happen in the patterns of sediment and nutrients. In addi-
tion, manual tuning of the SWAT model in-stream and nutri-
ent cycling parameters is applied for in-stream and nutri-
ent cycling process calibration. The different sites of the 
MYDA’s calibration and validation are shown in Table 3.

Warrandyte (Site‑3)  In this site, the calibration outcomes for 
the monthly are satisfactory, but the annual are very good for 
sediment (TSS monthly: NSE > 0.50, RSR < 0.70, R2 > 0.75, 
and PBIAS < 15%, and TSS annual: NSE > 0.75, RSR < 0.50, 
R2 > 0.90, and PBIAS < 15%, as shown in Table  3), as per 
Moriasi et al. (2007). Likewise, for sites- 1 and 2, the calibration 
results of the TN monthly and annual are also very good. How-
ever, the TP monthly outcomes are satisfactory (NSE > 0.50, 
RSR ≤ 0.70, R2 > 0.50, and PBIAS < 25%), and the annual out-
comes are very good (NSE > 0.65, RSR < 0.70, R2 > 0.85, and 
PBIAS < 25%), as shown in Table 3. Likewise, for sites- 1 and 
2, the model underpredicts the monthly peak loads for TP and 
TSS loads (Fig. 4), but overpredicts the TN loads.

In the validation operation, the model outcomes were sat-
isfactory for monthly and annual TSS loads (NSE > 0.65, 
R2 > 0.75, RSR < 0.60, and PBIAS <  ± 30%, as shown 

in Table 3), as per Moriasi et al. (2007). The TN loads 
(monthly) are very good (NSE > 0.75, R2 > 0.80, RSR < 0.50, 
and PBIAS <  ± 25%), as shown in Table 3. Furthermore, 
the validation outcome of TP monthly loads is satisfactory 
(NSE > 0.65, R2 > 0.95, RSR < 0.60, but PBIAS ≤  ± 70), 
but annual loads, are unsatisfactory (RSR > 0.70 and 
NSE < 0.50), as shown in Table 3. The model overpredicts 
the monthly loads as shown in Fig. 5, as the PBIAS values 
are negatively shown in Table 3. The TSS and TN overpre-
dictions, are much less than the TP.

Yarra Grange (Site‑2)  In this region, the calibration out-
comes for the monthly and annual sediment are very good 
(NSE > 0.75, RSR < 0.50, R2 > 0.90, and PBIAS < 15%, 
as shown in Table 3), as per Moriasi et al. (2007). Like-
wise, the results of the TN loads of monthly and annuals 
are also very good (NSE > 0.75, RSR < 0.50, R2 > 0.90, 
and PBIAS <  ± 25% shown in Table 3). However, the TP 
outcomes are unsatisfactory, like at Site-1 (RSR > 0.70 
and NSE ≤ 0.50), as shown in Table 3. The model under-
predicts the monthly peak loads for TP and TSS loads 
(Fig. 6) but overpredicts the TN loads for similar reasons 
at Site-1.

In the validation operation, the model outcomes are 
satisfactory for monthly and annual TSS loads (monthly: 
NSE > 0.65, R2 > 0.85, PBIAS <  ± 30% but RSR < 0.70, 
and annual: ENS

2 > 0.65, R2 > 0.85, RSR < 0.60, and 

Table 2   Calibration (1990–
2002) and validation (2003–
2008) of streamflow at 3 sites of 
the MYDA

Positive and negative PBIAS values mean underprediction and overprediction, respectively in percent. 
Monthly simulations are satisfactory if NSE > 0.50 and RSR ≤ 0.70, and if PBIAS ± 25% for streamflow as 
per Moriasi et al. (2007)

Monthly Annual

R2 NSE PBIAS RSR R2 NSE PBIAS RSR

Total streamflow Calibration Site-1 0.81 0.79 10 0.45 0.85 0.79 10 0.46
Site-2 0.94 0.93 6 0.27 0.96 0.92 6 0.28
Site-3 0.93 0.89 10 0.34 0.96 0.87 10 0.36

Validation Site-1 0.80 0.76 22 0.49 0.77 0.49 20 0.72
Site-2 0.88 0.88 1 0.35 0.94 0.85 1 0.38
Site-3 0.82 0.82 -3 0.43 0.87 0.81 − 3 0.43

Base flow Calibration Site-1 0.83 0.60 6 0.63 0.95 0.94 2 0.25
Site-2 0.93 0.93 2 0.26 0.95 0.94 2 0.25
Site-3 0.93 0.89 6 0.33 0.95 0.88 6 0.35

Validation Site-1 0.71 0.56 26 0.66 0.67 0.22 26 0.89
Site-2 0.83 0.83 -6 0.41 0.90 0.77 − 6 0.48
Site-3 0.81 0.79 -11 0.46 0.84 0.71 − 11 0.54

Runoff Calibration Site-1 0.66 0.59 20 0.64 0.84 0.63 20 0.60
Site-2 0.91 0.84 21 0.40 0.98 0.79 21 0.46
Site-3 0.84 0.80 23 0.45 0.97 0.76 23 0.49

Validation Site-1 0.85 0.77 11 0.47 0.82 0.65 11 0.59
Site-2 0.87 0.85 19 0.39 0.98 0.77 19 0.47
Site-3 0.82 0.79 19 0.46 0.87 0.70 19 0.55
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Table 3   Calibration (1998–
2004) and validation (2005–
2008) of TSS, TN, TP at 3 sites 
of the MYDA

Positive and negative PBIAS values mean under prediction and over prediction, respectively in percent. 
Monthly simulations are satisfactory if NSE > 0.50 and RSR ≤ 0.70, and if PBIAS ≤  ± 55% for TSS and 
PBIAS ≤  ± 70% for TN and TP as per Moriasi et al. (2007)

Monthly Annual

R2 NSE PBIAS RSR R2 NSE PBIAS RSR

Sediment (TSS) Calibration Site-1 0.67 0.67 8 0.58 0.84 0.74 8 0.51
Site-2 0.92 0.89 14 0.32 0.91 0.80 14 0.45
Site-3 0.77 0.62 2 0.61 0.91 0.78 2 0.47

Validation Site-1 0.97 0.63 − 29 0.61 0.99 0.77 − 29 0.48
Site-2 0.86 0.66 − 17 0.63 0.85 0.72 − 17 0.53
Site-3 0.78 0.68 − 17 0.56 0.85 0.69 − 17 0.55

Total nitrogen (TN) Calibration Site-1 0.80 0.77 − 8 0.48 0.93 0.76 − 8 0.49
Site-2 0.92 0.92 − 1 0.28 0.98 0.98 − 1 0.15
Site-3 0.86 0.79 15 0.46 0.96 0.79 15 0.46

Validation Site-1 0.67 0.55 − 21 0.67 0.72 0.43 − 21 0.75
Site-2 0.84 0.83 − 8 0.42 0.99 0.89 − 8 0.32
Site-3 0.83 0.78 − 5 0.47 0.98 0.95 − 5 0.22

Total phosphorus (TP) Calibration Site-1 0.47 0.46 13 0.74 0.58 0.49 13 0.72
Site-2 0.48 0.45 18 0.74 0.74 0.50 18 0.71
Site-3 0.53 0.51 19 0.70 0.89 0.69 19 0.56

Validation Site-1 0.87 0.61 − 81 0.62 0.95 0.05 − 81 0.97
Site-2 0.95 0.62 − 53 0.61 0.94 0.01 − 53 1
Site-3 0.97 0.71 − 56 0.54 0.97 0.35 − 56 0.81

Fig. 4   Warrandyte (Site-3) monthly calibration of TP, TN and 
TSS (Ahsan et al. 2023)

Fig. 5   Warrandyte (Site-3) monthly validation of TSS, TN and 
TP (Ahsan et al. 2023)
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PBIAS <  ± 30% as shown in Table  3), as per Moriasi 
et al. (2007). The annual and monthly TN loads are good 
(NSE > 0.75, RSR < 0.50, R2 > 0.80, and PBIAS <  ± 25%), 
as shown in Table 3. Furthermore, the validation outcomes 
of TP loads for monthly are satisfactory (NSE > 0.50, 
RSR < 0.70, R2 > 0.95, and PBIAS ≤  ± 70), but the annual 
outcomes are unsatisfactory (RSR > 0.70 and NSE < 0.50, as 
shown in Table 3). The model overpredicts the monthly peak 
loads, as shown in Fig. 7, as the PBIAS values are negative, 
as shown in Table 3. The TSS and TN overprediction are 
much less than the TP.

Woori Yallock (Site‑1)  In this region, the calibration out-
comes for the monthly and annual sediment are good 
(TSS monthly: NSE > 0.50, R2 > 0.75, RSR < 0.70, and 
PBIAS < 15%, and TSS annual: NSE > 0.75, R2 > 0.90, 
RSR < 0.50, and PBIAS < 15%, as shown in Table  3), 
according to Moriasi et al. (2007). The calibration results of 
the TN monthly and annuals are also very good (NSE > 0.75, 
R2 ≥ 0.80, RSR < 0.50, and PBIAS ≤  ± 15%). However, the 
TP outcomes are unsatisfactory (NSE ≤ 0.50, R2 < 0.60, 
RSR > 0.70), as shown in Table 3. The model underpredicts 
the monthly peak loads for TP and TSS loads (Fig. 8) as the 

PBIAS values are positive, illustrating underprediction, but 
overpredicts the TN loads as the PBIAS values are negative.

In the validation operation, the model outcomes were 
satisfactory for monthly and annual TSS loads (monthly: 
NSE > 0.50, R2 > 0.95, RSR < 0.70, and PBIAS <  ± 55%, 
and annual: NSE > 0.75, R2 > 0.95, RSR < 0.50, and 
PBIAS <  ± 30%, as shown in Table 3), as per Moriasi et al. 
(2007). The monthly TN loads are satisfactory (NSE > 0.50, 
R2 > 0.65, RSR < 0.70, and PBIAS <  ± 70%), but the annual 
loads are unsatisfactory (RSR > 0. 70 and NSE < 0.50), as 
shown in Table 3. Furthermore, the validation outcomes of 
TP loads for annual and monthly are both unsatisfactory 
(NSE < 0.50, RSR > 0.70, and PBIAS ≥  ± 70, as shown in 
Table 3). The model overpredicts the monthly peak loads, as 
shown in Fig. 9, as the PBIAS values are negative, as shown 
in Table 3. The TSS and TN overpredictions are much less 
than the TP.

Calibration and validation outcomes

The simulation results of the MYDA SWAT model are con-
sistent with those of other SWAT studies. The SWAT model 
overpredicts the load of nutrients in the validation period 
because of the minor variation in the outcome of manure 

Fig. 6   Yarra Grange (Site-2) monthly calibration of TSS, TN and TP Fig. 7   Yarra Grange (Site-2) monthly validation of TSS, TN and TP
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or fertilizer that occurred during the calibration period, 
according to Green and Van Griensven (2008). Furthermore, 
they also showed that overprediction might occur because 
of precipitation events that occurred soon after manure or 
fertilizer was used. Likewise, Neitsch et al. (2002) found 
that for correct modelling, a precise report on the quantity 
and date of pesticide, manure or fertilizer handling is vital, 
and it is not often present. Moreover, load overprediction 
may occur with randomly defined usage dates, which over-
lap with a rainy day. However, farmers do not need to use 
manure or fertilizer on rainy days. As a result, Holvoet et al. 
(2005) recommended tackling this dilemma with a correct 
calibration using inverse modelling approaches and which 
case is used in this study (adjusting the usage and dates of 
fertilizers and manure during the calibration process). Fur-
thermore, in the Nil catchment in Belgium, Holvoet et al. 
(2005) performed a sensitivity examination with SWAT on 
pesticides and hydrology and found that the errors that may 
occur in precipitation or usage rates are much less significant 
than the date of pesticide usage.

In general, the SWAT model performed poorly (in terms 
of NSE values) in calibration at site-1 which includes the 
subdrainage areas of the Woori Yallock Creek as shown in 
Tables 2 and 3. The Woori Yallock Creek is a contributing 

branch to the Yarra River, where the flow rate is very low 
and ceases to flow during dry periods. In addition, fewer 
water quality grab sample data were available for this site 
(site-1). Moreover, the input data for developing the model, 
such as crop and land management data, were coarse (i.e., 
sparse) at site-1 compared to the other two sites (site-2 and 
3). This is also reflected in the uncertainty analysis with low 
p-factor values as shown in Tables 4 and 5. The streamflow 
statistics at the data sites are shown in Table 8 (Appendix) 
and the constituent concentration statistics at the data sites 
are shown in Table 9 (Appendix).

Uncertainty analysis of nutrients, sediment, 
and streamflow

The outcome of the uncertainty analysis of nutrients, sedi-
ment, and streamflow is shown in Table 4. The outcome 
shows that the model’s prediction is fairly reliable in the 
sense that the uncertainty limit is narrow, which means the 
d-factor values are very little. However, the p-factor val-
ues are very small too. For the hydrology of four tributaries 
in the Lake Tana drainage area in Ethiopia, Setegn et al. 
(2008) discovered similar results. Their results show that 
the d-factor varies from 0.02 to 0.01 and the p-factor varies 

Fig. 8   Woori Yallock (Site-1) monthly calibration of TP, TN and TSS Fig. 9   Woori Yallock (Site-1) monthly validation of TP, TN and TSS
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from 15 to 21%. The TSS and TP predictions show more 
uncertainties from the uncertainty outcomes.

There may be two causes; the p-factor values in the 
MYDA’s water quality are very small. Firstly, the model 
uses a very low tolerance value of the objective function for 
determining ‘good’ and ‘not good’ simulations. For this, 
the uncertainty limits are narrow and bracket small num-
bers for the observed data. The uncertainty analysis done by 
Yang et al. (2008) in the Chaohe Basin in China by the same 
model shows a p-factor value of 18% and a d-factor value of 
0.08 in the calibration duration.

Abbaspour et al. (2004) did the uncertainty analysis by 
the SUFI-2 method, where they considered ± 10% uncer-
tainty in the calibration of observed streamflow data. If it 
is considered in the similar way, i.e., ± 10% uncertainty in 
the streamflow, nutrients, and sediment observed data in 
the model, then the p-factor values were increased signifi-
cantly as shown in Table 5 compared to the p-factor values 
in Table 4.

Conclusions

The development of a reliable drainage area water qual-
ity model and its validation on the basis of the real-world 
drainage area is a great challenge. Such a model could save 
money and time. Therefore, the MYDA water quality man-
agement model is developed as per the guidelines stated. 
The SWAT-inbuilt LH-OAT and Parasol (SCE-UA) are 
used in this study for assessing multisite, multifactors, and 
multi-objective uncertainty, and auto-calibration analysis. 
The calibration and validation durations of streamflow, 
sediment and nutrients are different. Firstly, streamflow 
calibration is done at 3 sites followed by sediment, and 
nutrients are done. The sensitivity analysis results show 
that hydrologic factors dominated the highest factors glob-
ally for streamflow, sediment, and nutrients. Furthermore, 

the identification of streamflow parameters in the SWAT 
model can be potentially made by the water quality fac-
tors (TN and TP), where a single factor is correlated to 
multiple factors.

Streamflow calibration outcomes illustrate good agree-
ment between simulated and observed flows (runoff, base 
flow, and total streamflow). The calibration and validation 
outcomes of TN and TSS are acceptable with minor exclu-
sions; however, TP outcomes are unsatisfactory. The MYDA 
water quality management system overestimates flow in 
dry years and underestimates flow in wet years. Moreover, 
the SWAT model underpredicts TN, TSS, and TP monthly 
peak loads in calibration and overpredicts in validation. It 
is noticed that the streamflow estimation produces a higher 
percentage of runoff from MYDA water quality management 
in monsoon periods. The outcome of the uncertainty analysis 
for the streamflow, nutrients, and sediment illustrates that 
the model’s estimation is reliable as the limit of uncertainty 
is narrow with very small values of d-factor and p-factor. 
The TSS and TP estimations illustrate more uncertainties. 
The SWAT model significantly aids in the management of 
the MYDA's water quality. The outcomes of the calibra-
tion and validation of the drainage area water quality show 
great performance not only on the catchment outlet but also 
through the entire MYDA, which simplifies the complex 
task and labor in the calibration method. This study shows 
the implication of SWAT by assessing calibration, valida-
tion, and uncertainty outcomes in the MYDA water quality 
management. The simulated results of SWAT in MYDA are 
within acceptable limits with minor exclusions, which imply 
it can efficiently predict the sediment, streamflow, and nutri-
ent loads.

Appendix

See Figs. 10, 11 and 12.

Table 4   MYDA’s water quality 
uncertainty results

Streamflow TSS TN TP

Site-1 Site-2 Site-3 Site-1 Site-2 Site-3 Site-1 Site-2 Site-3 Site-1 Site-2 Site-3

p-factor (%) 14 31 19 8 13 5 17 25 17 1 13 10
d-factor 0.16 0.12 0.10 0.12 0.09 0.02 0.19 0.14 0.09 0.04 0.15 0.12

Table 5   MYDA’s water quality 
uncertainty results (considering 
uncertainty in observed data)

Streamflow TSS TN TP

Site-1 Site-2 Site-3 Site-1 Site-2 Site-3 Site-1 Site-2 Site-3 Site-1 Site-2 Site-3

p-factor (%) 27 56 53 25 37 13 31 50 39 15 29 25
d-factor 0.16 0.12 0.10 0.12 0.09 0.02 0.19 0.14 0.09 0.04 0.15 0.12
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Fig. 10   Flowchart for calibra-
tion process of flow, sediment, 
and nutrients in the drainage 
area models (from Arnold et al. 
2012; modified from Santhi 
et al. 2001)

Fig. 11   Variation of average 
monthly rainfall and tem-
perature (min and max) in the 
MYDA (Ahsan et al. 2023)
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See Tables 6, 7, 8 and 9

Fig. 12   Variation of annual rainfall and temperature (min and max) in the MYDA (Ahsan et al. 2023)

Table 6   Streamflow Observing 
Stations in the MYDA

Sites Location Latitude (oS) Longitude (oE)

Site-1 Woori Yallock Creek at Woori Yallock − 37.765 145.512
Site-2 Yarra River at Yarra Grange − 37.667 145.476
Site-3 Yarra River at Warrandyte − 37.740 145.212

Table 7   Water Quality 
Observing Locations in the 
MYDA

Sites Location Latitude (oS) Longitude (oE)

Site-1 at Warburton Highway, Woori Yallock − 37.777 145.508
Site-2 at Maroondah Highway, Healesville − 37.678 145.491
Site-3 at Kangaroo Ground-Warrandyte Road, War-

randyte
− 37.738 145.219

Table 8   Streamflow statistics at the data sites

Data site Record period
 of data available

Mean daily streamflow (m3/s)

Total period
(1990–2008)

Calibration period
(1990–2002)

Validation period (2003–
2008)

Record period

Min Mean Max Min Mean Max Min Mean Max Mean

Site-1 1975–2008 0.09 2.37 82.3 0.31 2.79 63.7 0.09 1.47 82.3 2.53
Site-2 1980–2008 0.96 10.20 194.1 1.78 11.89 194.1 0.96 6.53 103.7 10.08
Site-3 1970–2008 1.55 13.77 209.7 2.16 16.21 209.7 1.55 8.46 102.6 13.70
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