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Abstract

Accurate and reliable streamflow prediction is critical for optimising water resource management, reservoir flood operations,
watershed management, and urban water management. Many researchers have published on streamflow prediction using
techniques like Rainfall-Runoff modelling, Time series Models, Data-driven models, Artificial intelligence, etc. Still, there
needs to be generalised method practise in the real world. The resolution of this issue lies in selecting different methods for
a particular study area. This paper uses the Support vector regression machine learning model to predict the streamflow for
the Tehri Dam, Uttarakhand, India, at the Daily and Ten Daily time steps. Two cases are considered in predicting daily and
ten daily time steps. The first case includes four input variables: Discharge, Rainfall, Temperature, and Snow cover area.
The second case comprises only three input variables: Rainfall, Temperature, and Snow cover area. Radial Kernel is used
to overcome the space complexity in the datasets. The K-fold cross-validation is suitable for prediction as it averages the
prediction error rate after evaluating the SVR model’s performance on various subsets of the training data. The streamflow
data for daily and ten daily time steps have been collected from 2006 to 2020. The calibration period is from 2006 to 2016,
and the validation period is from 2017 to 2020. Nash Sutcliffe Efficiency (NSE) and Coefficient of determination (R?) are
used as the accuracy indicator in this manuscript. The lag has been observed in the daily prediction time series when three
input variables are considered. For other scenarios, the respective model shows excellent results at both the temporal scale
and the parametres, which play a vital role in prediction. The study also enhances the effect on the potential use of input
parametres in the machine learning model.
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Introduction et al. 2018; Keshtegar et al. 2016; Riahi-Madvar et al. 2021;

Khosravi et al. 2022; Senthil Kumar et al. 2017). Stream-

The streamflow process is considered a vital component of
the complex hydrological cycle and is difficult to predict
accurately (Zhang et al. 2016; Loaiciga et al. 2018; Ireson
et al. 2015; Nourani et al. 2014). It is invariably affected
by Precipitation, Temperature, evapotranspiration, snow
cover area, land use pattern, and drainage basin (Adnan
et al. 2019). The accurate and reliable forecast of stream-
flow processes is critical in the design, planning, optimisa-
tion, utilisation, and management of water resources (Adnan
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flow prediction models, also known as hydrological models
or runoff models, are used to anticipate how much water
will flow in rivers and streams over time. These models
are critical tools in hydrology and water resource manage-
ment because they expect river discharge, which is essen-
tial for various applications such as flood forecasting, water
resource planning, and environmental management. Stream-
flow prediction models are classified into two categories;
each category has its unique technique and level of complex-
ity (Solomatine and Ostfeld 2008): (i) a Physically based
model and (ii) a Data-driven model. A variety of data are
needed for physically based models, including information
on human activity, land use, physiographic features of the
drainage basin, and the volume, intensity, and distribution of
rainfall (Ochoa-Tocachi et al. 2022; Teutschbein et al. 2018).
In contrast, a mathematical relationship (linear or nonlinear)
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is established between streamflow and its constraints (Rain-
fall, Temperature, snow cover, etc.) [Zhang et al. (2021),
Yaseen et al. (2015)]. Elshorbagy et al. (2010) studied the
data-driven model in simulating hydrological components
like evapotranspiration, soil moisture, and rainfall-runoff
using neural networks, genetic programming, evolutionary
polynomial regression, support vector machines, K-nearest
neighbours, and multiple linear regression. They discov-
ered that data-driven models can be successfully used in
hydrological applications. The traditional linear models do
not capture the non-linearity and non-stationarity of hydro-
logical applications (Afan et al. 2016; Yaseen et al. 2015;
Yadav et al. 2022; Imrie et al. 2000). In hydrological time-
series forecasting, the linear models like moving average
(MA), autoregressive (AR), autoregressive moving average
(ARMA), and autoregressive integrated moving average
(ARIMA) have found widespread use (Wu et al. 2009; Wu
and Chau 2010; Valipour et al. 2013, Valipour 2015). To
overcome the shortcomings of traditional models, research-
ers have concentrated on building machine learning-based
models (Yaseen et al. 2015; Adnan et al. 2019).

The modelling and prediction of streamflows have seen
extensive use of machine learning techniques over the past
20 years on a global scale (Granata et al. 2016; Elebeltagi
et al. 2018; Hadi and Tombul 2018; Yaseen et al. 2015;
Al-Sudani et al. 2019; Rasouli 2020; Malik et al. 2020).
Huang et al. (2019) used the Bayesian model averaging
(BMA), Artificial Neural Network (ANN), and Support
Vector Machine (SVM) to predict the Monthly runoff for
Huang Zhuang station in the Hanjiang River basin, China.
The study suggested that ANN and SVM models performed
best. Rahmani-Rezaeieh et al. (2019) predicted daily stream-
flow in the Shahrchay River Basin, Iran, using Ensemble
Gene Expression Programming (EGEP). Rezaie-Balf et al.
(2019) used Random Forest Regression (RFR) to model the
daily streamflow at the Bilghan, Siira, and Gachsar stations
in Iran. Hussain and Khan (2020) have used the Support
vector regression (SVR), Multilayer Perceptron (MLP), and
Random Forest (RF) models to predict the monthly flow
of the Hunza River, Pakistan, and found that the RF model
outperformed other models in the basin. Pandhiani et al.
(2020) have used the Random Forest and Artificial Neural
Network data-driven models for monthly streamflow predic-
tion in Malaysia’s Berman and Tualang rivers and concluded
that both models work well for the study area.

The present research aims to predict the daily and ten
daily time series of streamflow at Tehri Dam in Uttara-
khand, India. The novelty is considering using the Support
Vector Regression (SVR) for streamflow prediction at the
Daily and Ten Daily temporal scales. The input parametres
(Discharge, Rainfall, Temperature, and Snow cover area) are
used in the model to predict the streamflow at Tehri Dam.
The SVR was trained for a period from 2006 to 2016 and
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was validated from 2017 to 2020. The calibrated parametres
for SVM have been finalised using a K-fold cross-validation
approach. The prediction accuracy is assessed over observed
streamflow through NSE (Nash Sutcliffe Efficiency) and R*
(Coefficient of Determination). It is worth mentioning that
the performance of the proposed SVR model is examined for
the first time in the Tehri Catchment at daily and ten daily
streamflow series.

Study area

Tehri Dam is located at the confluence of the Bhagirathi
and Bhilangana Rivers in the Uttarakhand state of India. It
is an earthen rockfill dam with a height of 260.5 m (Eleva-
tion 839.50 m above MSL). It has an installed capacity of
1000 MW. The Tehri project was commissioned in 2006
and provides water for irrigation to Uttar Pradesh (UP) and
Uttarakhand states. It also provides drinking water to nearly
seven million people of UP and Uttarakhand. It has a gross
and live storage of 3540 and 2615 MCM (Million Cubic
Metres). The dam is designed to pass the Probable Maxi-
mum Flood (PMF) of 15,540 Cumecs. The PMF is catered
by three Chute spillways (5500 Cumecs), two left bank shaft
spillways (3650 Cumecs), and two ungated spillways (3850
Cumecs). The Maximum Flood Level (MFL) and Full Res-
ervoir Level (FRL) are 839.50 m and 830 m, respectively
(Figs. 1 and 2).

Methodology

The input variables of a machine learning model are the
fragments of Information that the model utilises to produce
predictions and decisions.

The selection of input variables is an essential phase
in developing a machine learning model since the quality
and relevance of these parametres significantly impact the
model’s performance. The choice of input parametres should
align with your problem statement, the nature of your data,
and the machine learning algorithms you intend to use. It is
often an iterative process that involves refining the feature
set based on the model’s performance and domain knowl-
edge. The input variables for the Support Vector Regression
model are as follows:

Discharge data

Observing discharge data from hydroelectric power plants
is crucial to their operation and management. The infor-
mation of this data is essential for ensuring the efficient
and safe operation of the power plants and managing
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Fig.2 Front View of Tehri Dam

downstream water resources. The Daily and Ten daily
discharge data have been observed by the THDC India
Limited officials since 2006. The data from 2006 to 2020
are used in the present manuscript. The Calibration and
validation periods are taken from 2006 to 2016 and 2017
to 2020, respectively (Fig. 3).

The India Meteorological Department (IMD) provides grid-
ded rainfall data at a spatial resolution of 0.25° by 0.25°
degrees (Pai et al. 2014). This data is used for various
meteorological and climatological applications, including
weather forecasting, climate monitoring, and hydrologi-
cal studies. The data can be downloaded from IMD’s Pune
website. The rainfall data for the Tehri catchment has been
downloaded and divided into ten elevation zones. There is a
significant variation in the Rainfall as the elevation increased
in the Himalaya region (Singh and Bengtsson 2004; Sen
Roy and Balling 2004; Goswami et al. 2006; Rajeevan
et al. 2008; Roy et al. 2009; Krishnamurthy et al. 2009;
Guhathakurta et al. 2011). To account for the variation of
Rainfall with elevation is introduced in the model as the
input variable.

Temperature data

The India Meteorological Department (IMD) provides tem-
perature data for various purposes, including weather fore-
casting, climate monitoring, research, agriculture, health,
and energy management applications. Temperature data
from IMD is valuable for understanding climate patterns
and trends in different regions of India. India Meteorological
Department (IMD) Daily gridded temperature data (1° X 1°)
(Srivastava et al. 2009) is used in the present manuscript.
Temperature data from IMD is typically available in digital
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formats, such as text files (CSV or ASCII), NetCDF (Net-
work Common Data Form), or other standard formats com-
monly used in meteorological and climatological data. The
Catchment is divided into five Elevation Zones, and Tem-
perature is calculated respectively.

The temperature and rainfall data from weather stations
are point measurements; however, spatially distributed data-
sets are required for more systematic and detailed analysis
(Kormos et al. 2018; Behnke et al. 2016). Therefore, high-
resolution gridded meteorological datasets are preferred in
climate modelling and hydrological processes studies, and
the same has been applied in the present study (Caldwell
et al. 2009; Walton et al. 2015).

Snow cover data

At a temporal resolution of 8 days, the Snow Cover Area
for Tehri Catchment was derived using MODIS/Terra Snow
Cover 8-Day L3 Global 500 m SIN Grid, Version 5. This
dataset monitors and maps snow cover on Earth’s surface.
Researchers and government agencies use it to track changes
in snow cover extent over time, which can provide insights
into climate trends and seasonal variations (Coops et al.
2006).

Two cases have been considered for predicting Discharge
for the daily and ten daily temporal scales: (1) Discharge
data and the three input variables (Rainfall, Temperature,
and snow cover Data) are used (2) Discharge data is not
considered. The K-fold cross-validation technique is used
to compute the optimum paraMetres of the model. Accurate
hydro-system modelling requires systematic integration of
factors, time series decomposition, data regression, and error
suppression.

The proposed streamflow forecasting framework con-
sists of Model selection, Time series decomposition, model
training, model learning, optimum parameter estimation,
error computation and error correction. Nash Sutcliffe
Efficiency (NSE) and coefficient of determination (R?) are
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performance indicators. The calibration and validation peri-
ods are 2006-2016 and 2017-2020, respectively. These per-
formance indicators are used to assess the predictive skill of
the machine learning model computed on each year’s time
scales in the present study.

Support Vector Regression works in high or infinite-
dimensional space and generates a hyper-plane or collec-
tion of hyper-planes. According to intuition, the hyper-plane
in each class farthest from the nearest training data points
achieves a meaningful separation since, generally speaking,
the wider the margin, the smaller the classifier’s generalisa-
tion error. It functions well in high-dimensional spaces and
may behave differently based on the kernel, a collection of
mathematical operations. Many different types of functions
are referred to by terminology like linear, polynomial, radial
basis function (RBF), sigmoid, and others. The SVR algo-
rithm can be summed up as follows: A suitable kernel func-
tion must be chosen, the regularisation parameter-C must be
assigned a value, the quadratic programming (QP) problem
must be resolved, and the discriminant process must be built
using the support vectors (Fig. 4).

Support vector regression

SVR is a data training/fitting technique. The essence of SVR
is to transfer the original problem into solving a quadratic
programming problem, and it can theoretically obtain the
global optimum result of the problem. The computing rate
of SVM is significantly faster than that of other techniques.

Overview of basic SVM for regression Suppose the sam-
ple data for training is {X,, y;}, where i=1, 2,..., I, X; is the
input, and y; is the output. The aim of SVM for regression is
to find a function of this form:

Boldy, = W.X; + b

where W is a hyperplane, and b is the offset. The regression
SVM will use a penalty function:
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Fig.4 Framework for forecast
using support Vector regression
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where the LS(X}, y;,f) is defined as:
LE (Xi,yi,f) = max(0, V(Xi) - yi|— €)

And as the existence of fitting errors, the slack variables &*
and &~ are introduced, then the model form of SVM for regres-

sion will be as follows:
> X
1 1
. 2 + —
Fig.5 SVM for regression with e—insensitive tube Min 5 Wl +C Zl(é + )
’yi - (W.X,- + b)' <€, not allocating a penalty Subject to: (W.Xl- + b) —y, <€ +&*
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EF>0,6>0
Referring to Fig. 5, the region bound by y; +e is called i=123....1
an e-insensitive tube. The goal of this problem can be writ-
ten according to: The corresponding dual problem can be derived using the

now standard techniques:

i

i

! I
Max l (af —a;)y— € 2 (af —a)) - % Z (af — al._).<aj+ - a;)XlXJ]
i=1 i=1
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Solve this problem with a quadratic programming
method, and then we can acquire the regression function
of the system.
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Results and discussion

The present manuscript represents the streamflow prediction
using the Support vector regression machine learning mod-
els. The first part of this section describes the results of the
Support vector regression (SVR) model for the Daily stream-
flow prediction. The second part of this section explains the
results of the Support vector regression (SVR) model for the
Ten Daily streamflow prediction.

Daily streamflow prediction using support vector
regression model

Support vector machine uses the maximum margin algo-
rithm, where, for a hyperplane, the algorithm searches for
the most significant separating margin between the observed
data for obtaining the optimal function that fits the obser-
vation. The algorithm uses a kernel to solve this nonlinear
optimisation problem to get the most accurate hyperplane.

For this case, we use a radial kernel calibrated by adjust-
ing cost ‘c’ and gamma ‘g’. A grid search method is applied
for Calibration, where a combination of values of the hyper-
paraMetres is checked.

Now, for each combination of the hyperparametres, a
K-fold cross-validation was performed (Anguita et al. 2009).
The data is divided into ‘k’ subsets (4). k-1 subsets are used
for training the model, and the remaining one for validation,
for which an average error for k-trails was computed. This
method helps us identify the paraMetres suited for more than
one subset.
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The two cases have considered: (i) Four Input Variables
are considered (Discharge Rainfall, Temperature, Snow
cover area), (ii) Three Input Variables are considered (Rain-
fall, Temperature, Snow cover area).

Streamflow prediction when four variables are considered
(discharge, rainfall, temperature, snow cover area)

In this case, four input parametres [Discharge (Q,), Rain-
fall (R,), Temperature (7,), and Snow Cover Area (SCA,)]
have been considered. The model is trained using hyper-
parametres for the calibration and validation period. The

Nash Sutcliffe efficiency (NSE) and Coefficient of Deter-
mination (R?) are performance indicators. The NSE is
96.75 and 95.57 for the calibration and validation period.
The coefficient of determination (R?) for observed and
simulated discharge for the Calibration and validation
period is 0.9416 and 0.9578, respectively. The scatter plots
have been plotted for all the discharge data from 2006 to
2020. The model fits the observed data well. The model
shows high efficiency in the prediction of daily discharge.
It has been observed in 2009, 2013, 2018, and 2019 that
the model is unsuitable for predicting high discharges, but
the overall efficiency of the model is excellent. The model
efficiency (NSE & R?) is also calculated for each year’s
data; NSE and R? range from 80.45 to 97.18 and 0.8965 to
0.9723, respectively. The model shows high performance
in predicting discharge at a daily time scale (Figs. 6, 7, 8,
9 and 10; Table 1 and 2).

Daily streamflow prediction when three input variables are
considered (rainfall, temperature, snow cover area)

In this case, three input paraMetres [Rainfall (R,), Tem-
perature (T,), and Snow Cover Area (SCA,)] have been
considered. The model is trained using hyperparametres
for the calibration and validation period. The NSE is 86.68
and 75.85 for the calibration and validation period. The
coefficient of determination (R?) for observed and simu-
lated discharge for the calibration and validation periods
is 0.8617 and 0.7635, respectively. The scatter plot has
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Table 1 NSE and R? for

calibration and validation period for daily streamflow prediction)

Case-1 (four input variables have been considered Time NSE R?

Jan-2006 to Dec-2016
Jan-2017 to Dec-2020

96.75
95.57

0.9416
0.9578

Calibration
Validation
: 2

fortheperod 20060020 Yo NSE R
2006 97.18 0.9723
2007 96.51 0.9658
2008 96.53 0.9657
2009 89.25 0.8965
2010 944 0.9464
2011 94.18 0.9461
2012 95.52 0.9553
2013 88.45 0.8998
2014 96.54 0.9679
2015 95.34 0.955
2016 94.6 0.9468
2017 95.11 0.9523
2018 93.94 0.9419
2019 91.81 0.9189
2020 95.4 0.9546

been plotted for all the discharge data from 2006 to 2020
(Annexure I). The model fits the observed data well. The
model shows high efficiency in the prediction of daily

discharge. It has been observed in 2008, 2009, 2011, 2012,
2018, and 2019 (Annexure I) that the model is unsuitable
for predicting high discharges, but the overall efficiency
of the model is good. The model efficiency (NSE & R?)
is also calculated for each year’s data; NSE and R? range
from 62.24 to 89.61 and 0.6834 to 0.9168, respectively
(Annexure I). The model shows high performance in pre-
dicting discharge at a daily time scale (Figs. 11, 12, 13
and 14; Table 3).

Ten daily streamflow prediction using support
vector regression model

The two cases have been considered: (i) Four input Varia-
bles are considered (10 daily avg. discharge 10-daily average
Rainfall, 10-daily average Temperature, 10-day Snow cover
area) (ii) Three Variables are considered (10-daily average
Rainfall, 10-daily average Temperature, 10-day Snow cover
area).

4500

4250 Observed and Simulated Discharge for Calibration Period

4000

3750 Observed
3500 = Simulated

01-01-2006

01-01-2008 01-01-2010

01-01-2012
Date
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Fig. 11 Graph between observed and simulated discharge for the calibration period
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Ten daily streamflow predictions when four input variables
are considered

In this case, four input variables [10 daily avg. Discharge
(Q,), ten daily avg. Rainfall (R,), ten daily average. Tem-
perature (7)) and 10 daily Snow Cover Areas (SCA,)] have
been considered. The model is trained using hyperparame-
tres for the calibration and validation period. The NSE is
96.77 and 95.60 for the calibration and validation period.

The coefficient of determination (R?) for the observed and
simulated discharge periods is 0.9679 and 0.9561, respec-
tively. The scatter plot has been plotted for all the discharge
data from 2006 to 2020. The model fits the observed data
well. The model shows high efficiency in the prediction of
10 daily discharges. The model efficiency (NSE & R?) is
also calculated for each year’s data; NSE and R? range from
90.45 to 98.76 and 0.9337 to 0.9892, respectively (Annexure
I). The model shows high performance in predicting dis-
charge at ten daily temporal scales (Figs. 15, 16, 17 and 18;
Table 4).

Streamflow prediction when three input variables are
considered

In this case, three input variables [Rainfall (R,), Temperature
(T,), and Snow Cover Area (SCA,)] have been considered.
The model is trained using hyperparaMetres for the cali-
bration and validation period. The NSE is 88.22 and 92.52
for the calibration and validation period. The coefficient of
determination (R?) for observed and simulated discharge for
the calibration and validation periods is 0.8827 and 0.9454,
respectively. The scatter plot has been plotted for all the dis-
charge data from 2006 to 2020 (Annexure I). The model fits
the observed data well. The model shows high efficiency in
the prediction of 10 daily discharges. The model efficiency
(NSE & R?) is also calculated for each year’s data; NSE
and R? range from 61.15 to 95.25 and 0.7735 to 0.9692,
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Fig. 13 Graph between observed and simulated discharge for the validation period
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Fig. 14 Scatter plot for validation period (2017-2020)

respectively (Annexure I). The model shows high per-
formance in predicting discharge at ten daily time scales
(Figs. 19, 20, 21 and 22; Table 5).

A data fitting-based machine learning technique called
a support vector regression (SVR) was first presented by
Vapnik (1995). Numerous sectors, including streamflow
prediction and water resources, have effectively used this
approach. Dibike et al. (2001) described the first applica-
tion of the SVR model to water-related topics and rainfall-
runoff modelling. The support vector regression (SVR) is
an effective learning system based on bounded optimisation

theory that applies the structural minimisation principle. A
nonlinear classifier or regression line can be found using
the kernel function known as the radial basis kernel in the
machine learning model. The model exhibits excellent effi-
ciency when applying the specific model to the Daily and
Ten Daily time series whilst considering various input vari-
ables. The prediction effectiveness is evaluated using the two
performance indicators, NSE and R2.

Cross-validation (CV) is sometimes referred to as a resa-
mpling method because it requires fitting the same statistical
way several times using various subsets of the data. The
data set will be divided into two parts for cross-validation:
a first part for training the model and a second for evaluat-
ing it. The prediction error will be estimated to determine
the model’s accuracy. The k-fold cross-validation calculates
the average prediction error rate after evaluating the SVR
model’s performance on various subsets of the training data.
The data is divided into k folds randomly to begin the pro-
cedure (Fig. 5). The preferred type of SVR model is then
provided in sequence to the k-onefold once k iterations of
training and testing have been completed (Yoon et al. 2017).
The first fold is utilised in the first iteration to test the model,
whilst the remaining folds are used to train the model. The
second fold is used as the testing set, and the remaining folds
are the training set in the second iteration. This process is
repeated until all of the k folds have been used as the test-
ing set. After the model has been developed in a training
phase, it will be checked on the test dataset. The forecast
error will be calculated after that. K-fold cross-validation

Table 3 NSE and R? for

calibration and validation period

Fig. 15 Graph between
observed and simulated ten
daily discharges for the calibra-
tion period

Case-2 (three input variables have been consid- Time NSE R?
ered for daily streamflow prediction)
Calibration Jan-2006 to Dec-2016 86.68 0.8617
Validation Jan-2017 to Dec-2020 75.85 0.7635
1400 - Observed vs Simulated Discharge for Calibration Period
1 —— Observed
1200 —— Simulated
21000 -
Q
£
>
© 800 -
el
e
& 600
8 4
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200
0 I 1 1 I 1
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Fig. 16 Scatter plot for calibration period (2006-2016)

(CV) is reliable for assessing a model’s correctness. The
benefit of k-fold CV is that it consistently provides estimates
of the test error rate that are more accurate (Juahir et al.
2011). A smaller value of K is inappropriate since it is more
biassed. Larger K values, however, can lead to increased
variance even though they are less biassed. These values
have been shown empirically to yield test error rate estimates
that suffer neither excessively high bias nor very high vari-
ance (Huang et al. 2015).

The SVR model for daily streamflow prediction consid-
ering four input variables (Q,_;, R,_;, T,_;, SCA,_;) shows
excellent efficiency. There is no lag between the observed
and Predicted time series. The NSE and R? are computed
at a yearly time scale for observed and predicted discharge,
which shows excellent efficiency. The model for daily
streamflow prediction having three input variables does not
work well because lag is present in the observed and pre-
dicted time series. However, the overall efficiency is good.
The SVR model for ten daily streamflows considering four

input variables shows good efficiency as the NSE and R? are
96.77 and 95.60 for the calibration and validation period.
The NSE and R? are computed at a yearly time scale for
observed and simulated discharge series, which also shows
excellent efficiency. The discharge data are a guiding vari-
able in prediction at daily and ten daily time scales. The
ten daily streamflow predictions considering three variables
(R, T,_;, SCA,_)) show good efficiency.

Conclusions

In this research work, Daily and Ten daily streamflows
are predicted using the Support Vector Regression (SVR)
Machine learning Model. Two combination of Input vari-
ables have been used in generation of daily and Ten daily
Streamflow (i) Prediction (Q,) considering four input
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Table4 NSE and R? for

calibration and validation period for daily streamflow prediction)

Case-1 (four input variables have been considered Time NSE R?

Calibration Jan-2006 to Dec-2016 96.77 0.9679
Validation Jan-2017 to Dec-2020 95.60 0.9561
Fig. 19 Graph between . A L .
olfserved anﬁ simulated dis- 1200 - Observed vs Simulated Discharge for Calibration Period
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Fig. 20 Scatter plot for validation period (2017-2020)

variables {Discharge (Q,_,), Rainfall (R,_;), Temperature
(T,_,), Snow Cover Area (SCA,_,)} (ii) Prediction (Q,) con-
sidering three input variables {Rainfall (R,_;), Temperature
(T,_;), Snow Cover Area (SCA,_))}. It is very tedious and
time-consuming to select the input variables in modelling
complex hydrological processes (Moghaddamnia et al.
2009; Kakaei Lafdani et al. 2013; Mahmoodzadeh et al.
2016; Malik et al. 2019b). The output (Q,) is evaluated
considering different sets of input parametres using K-fold
cross-validation. 75% of the data is used for Calibration

and 25% for validation. The results revealed that the SVR
approach is reliable and efficient for streamflow predic-
tion. Using the Radial kernel function helped obtain the
high dimensionality, resulting in the expected outcomes
from the study. The choice of kernel defines the promis-
ing results for the Support vector Regression model. The
parameter cost ‘c’ and gamma ‘g’ are adjusted to optimise
the hyperparametres, and the approach was presented by
Cherkassky and Ma (2004). The quality of SVR models
depends on the proper setting of SVR hyper-parametres.
The two performance indicators, Nash Sutcliffe efficiency
(NSE) and Coefficient of Determination (R?) were used
in the study to evaluate the efficiency of the prediction.
The two-performance indicator shows excellent prediction
quality and states that the SVR technique can be success-
fully used for nonlinear applications in Hydrology. After
fuzzy and artificial neural networks, the SVR is the most
promising development in the hydrological field. SVR is
suitable for other purposes such as rainfall runoff, stream-
flow prediction and sediment yield forecasting, evapora-
tion and evapotranspiration forecasting, Lake and reser-
voir water level prediction, Flood forecasting, Drought
forecasting, Groundwater level prediction, Soil moisture
estimation, Groundwater quality assessment Cherkassky
and Ma (2004). The SVR touches on the many facets of
computational hydrology. The framework can be a foun-
dation for future researchers to build more exact hybrid
mechanisms and expand the use of support vector regres-
sion approaches in complex hydrological prediction.
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Fig.21 Graph between 1400
observed and predicted dis- 1 Observed vs Simulated Discharge for Validation Period
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1400 Table 6 Yt?ar-w1se NSE and R Year NSE R-squared (R?)
for the period 2006-2020
1200 . 2006 81.67  0.8518
3 2007 88.73  0.8939
€ 1000 - .
£ * . 2008 62.24  0.8563
e 800 4 : . . 2009 83.57 0.7364
o . e,
% H 2010 82.57  0.8579
2 000 2011 8743  0.8693
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B B ——— 2015 82.68  0.8834
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Observed (Cumecs) 2017 67.54  0.6834
2018 79.66  0.8124
Fig. 22 Scatter plot for validation period (2017-2020) 2019 72.07 0.7277
2020 86.74  0.8733
2
Tab'le 5 . NSE and R fgr . Case-2 (three input variables have been consid- Time NSE R?
calibration and validation period ered for daily streamflow prediction)
Calibration Jan-2006 to Dec-2016 88.22 0.8827
Validation Jan-2017 to Dec-2020 92.52 0.9454
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Annexurel

1. Daily streamflow prediction considering three input variables (rainfall, temperature, snow cover area)
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2. 10 daily streamflow prediction considering four input variables (10 daily avg. discharge, 10 daily average rainfall,
10 daily average temperature, 10-day snow cover area)
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Table 7 Year-wise NSE and R?
for the period 2006-2020

Year

NSE

R-squared (R?)

2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

96.08
94.62
93.78
91.72
90.45
94.23
93.46
98.32
97.66
97.26
98.76
96.41
96.5

93.67
95.02

0.9702
0.954

0.945

0.9521
0.9459
0.9887
0.9853
0.9853
0.9781
0.977

0.9892
0.9892
0.9712
0.9377
0.9527

Table8 Year-wise NSE and R?

for the period 2006-2020

Year NSE  R-squared (R?
2006 90.93  0.9435
2007 89.57 0.9622
2008 94.12 0.7735
2009 88.75 0.90.96
2010 9225 0.9094
2011 9197 0.9246
2012 91.35 0.9526
2013 77.07 0.9497
2014 61.15 0.9291
2015 90.57 0.9692
2016  85.09 0.9303
2017 9525 09121
2018 9333 0.9387
2019 91.89 0.8807
2020 9323  0.9385

@ Springer



99 Page 18 of 20

Applied Water Science (2024) 14:99

3. 10 daily streamflow prediction considering three input variables (10 daily average rainfall, 10 daily average

temperature, 10-day snow cover area).
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Acknowledgements The authors acknowledge the Department of
Hydrology, IIT Roorkee to provide Article Processing Charges (APC).
The authors also acknowledge THDCIL, Rishikesh to provide the Data
for the study.

Declarations
Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes

@ Springer

were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adnan MSG, Dewan A, Zannat KE, Abdullah AYM (2019) The use of
watershed geomorphic data in flash flood susceptibility zoning: a


http://creativecommons.org/licenses/by/4.0/

Applied Water Science (2024) 14:99

Page190f20 99

case study of the Karnaphuli and Sangu River basins of Bangla-
desh. Nat Hazards 99:425-448

Afan HA, El-shafie A, Mohtar WHMW, Yaseen ZM (2016) Past, pre-
sent and prospect of an Artificial Intelligence (Al) based model for
sediment transport prediction. J Hydrol 541:902-913

Al-Sudani ZA, Salih SQ, Yaseen ZM (2019) Development of multivari-
ate adaptive regression spline integrated with differential evolu-
tion model for streamflow simulation. J Hydrol 573:1-12

Anguita D, Ghio A, Ridella S, Sterpi D (2009) K-fold cross validation
for error rate estimate in support vector machines. In: DMIN, pp.
291-297.

Behnke R, Vavrus S, Allstadt A, Albright T, Thogmartin WE, Radeloff
VC (2016) Evaluation of downscaled, gridded climate data for the
conterminous United States. Ecol Appl 26(5):1338-1351

Caldwell P (2010) California wintertime precipitation bias in
regional and global climate models. J Appl Meteorol Climatol
49(10):2147-2158

Cherkassky V, Ma Y (2004) Practical selection of SVM paraMetres and
noise estimation for SVM regression. Neural Netw 17(1):113-126

Chou HK, Ochoa-Tocachi BF, Moulds S, Buytaert W (2022) Param-
eterizing the JULES land surface model for different land covers
in the tropical Andes. Hydrol Sci J 67(10):1516-1526

Coops NC, Wulder MA, Iwanicka D (2009) Large area monitoring
with a MODIS-based Disturbance Index (DI) sensitive to annual
and seasonal variations. Remote Sens Environ 113(6):1250-1261

Cortes C, Vapnik V (1995) Support-Vector Networks Machine Learn-
ing 20:273-297

Dibike YB, Velickov S, Solomatine D, Abbott MB (2001) Model
induction with support vector machines: introduction and appli-
cations. J Comput Civ Eng 15(3):208-216

Elbeltagi A, Di Nunno F, Kushwaha NL, de Marinis G, Granata F
(2022) River flow rate prediction in the Des Moines watershed
(Iowa, USA): a machine learning approach. Stoch Env Res Risk
Assess 36(11):3835-3855

Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP (2010) Experi-
mental investigation of the predictive capabilities of data driven
modeling techniques in hydrology-Part 1: concepts and methodol-
ogy. Hydrol Earth Syst Sci 14(10):1931-1941

Ghaemi A, Rezaie-Balf M, Adamowski J, Kisi O, Quilty J (2019) On
the applicability of maximum overlap discrete wavelet transform
integrated with MARS and M5 model tree for monthly pan evapo-
ration prediction. Agric for Meteorol 278:107647

Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier
PK (2006) Increasing trend of extreme rain events over India in a
warming environment. Science 314(5804):1442-1445

Granata F, Gargano R, De Marinis G (2016) Support vector regression
for rainfall-runoff modeling in urban drainage: a comparison with
the EPA’s storm water management model. Water 8(3):69

Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate
change on extreme rainfall events and flood risk in India. J Earth
Syst Sci 120:359-373

Hadi SJ, Tombul M (2018) Monthly streamflow forecasting using con-
tinuous wavelet and multi-gene genetic programming combina-
tion. J Hydrol 561:674-687

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. IEEE, pp 770-778.

Huang H, Liang Z, Li B, Wang D, Hu Y, Li Y (2019) Combination of
multiple data-driven models for long-term monthly runoff predic-
tions based on Bayesian model averaging. Water Resour Manage
33:3321-3338

Hussain D, Khan AA (2020) Machine learning techniques for monthly
river flow forecasting of Hunza River, Pakistan. Earth Sci Inf
13:939-949

Imrie CE, Durucan S, Korre A (2000) River flow prediction using
artificial neural networks: generalisation beyond the calibration
range. ] Hydrol 233(1-4):138-153

Ireson AM, Barr AG, Johnstone JF, Mamet SD, Van der Kamp G,
Whitfield CJ, ... Sagin J (2015) The changing water cycle: the
Boreal Plains ecozone of Western Canada. Wiley Interdiscip Rev:
Water 2(5):505-521

Juahir H, Zain SM, Yusoff MK, Hanidza TT, Armi AM, Toriman ME,
Mokhtar M (2011) Spatial water quality assessment of Langat
River Basin (Malaysia) using environmetric techniques. Environ
Monit Assess 173:625-641

Keshtegar B, Allawi MF, Afan HA, El-Shafie A (2016) Optimized
river stream-flow forecasting model utilizing high-order response
surface method. Water Resour Manage 30:3899-3914

Khosravi K, Golkarian A, Tiefenbacher JP (2022) Using optimized deep
learning to predict daily streamflow: a comparison to common
machine learning algorithms. Water Resour Manage 36(2):699-716

Kormos PR, Marks DG, Seyfried MS, Havens SC, Hedrick A, Lohse
KA, ... Garen D (2018) 31 years of hourly spatially distributed
air temperature, humidity, and precipitation amount and phase
from Reynolds Critical Zone Observatory. Earth Syst Sci Data
10(2):1197-1205

Lafdani EK, Nia AM, Ahmadi A (2013) Daily suspended sediment
load prediction using artificial neural networks and support vector
machines. J Hydrol 478:50-62

Loaiciga HA, Valdes JB, Vogel R, Garvey J, Schwarz H (1996) Global
warming and the hydrologic cycle. ] Hydrol 174(1-2):83-127

Mahmoodzadeh A, Ghafourian H, Mohammed AH, Rezaei N, Ibra-
him HH, Rashidi S (2023) Predicting tunnel water inflow using a
machine learning-based solution to improve tunnel construction
safety. Transp Geotech 40:100978

Malik A, Kumar A, Ghorbani MA, Kashani MH, Kisi O, Kim S
(2019) The viability of co-active fuzzy inference system model
for monthly reference evapotranspiration estimation: case study
of Uttarakhand State. Hydrol Res 50(6):1623-1644

Malik A, Tikhamarine Y, Souag-Gamane D, Kisi O, Pham QB (2020) Sup-
port vector regression optimized by meta-heuristic algorithms for daily
streamflow prediction. Stoch Env Res Risk Assess 34:1755-1773

Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief
Bioinform 18(5):851-869

Moghaddamnia A, Gousheh MG, Piri J, Amin S, Han D (2009)
Evaporation estimation using artificial neural networks and
adaptive neuro-fuzzy inference system techniques. Adv Water
Resour 32(1):88-97

Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications
of hybrid wavelet—artificial intelligence models in hydrology: a
review. J] Hydrol 514:358-377

Pai DS, Rajeevan M, Sreejith OP, Mukhopadhyay B, Satbha NS
(2014) Development of a new high spatial resolution (0.25x
0.25) long period (1901-2010) daily gridded rainfall data set
over India and its comparison with existing data sets over the
region. Mausam 65(1):1-18

Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M
(2017) Impact of combined abiotic and biotic stresses on plant
growth and avenues for crop improvement by exploiting physio-
morphological traits. Front Plant Sci 8:537

Pandhiani SM, Sihag P, Shabri AB, Singh B, Pham QB (2020) Time-
series prediction of streamflows of Malaysian rivers using data-
driven techniques. J Irrig Drain Eng 146(7):04020013

Rahmani-Rezaeieh A, Mohammadi M, Danandeh Mehr A (2020)
Ensemble gene expression programming: a new approach for
evolution of parsimonious streamflow forecasting model. Theo-
ret Appl Climatol 139(1-2):549-564

Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and
trends of extreme rainfall events over India using 104 years of
gridded daily rainfall data. Geophys Res Lett 35(18):L18707

@ Springer



929 Page 20 of 20

Applied Water Science (2024) 14:99

Rasouli A (2020) Deep learning for vision-based prediction: a sur-
vey. arXiv preprint arXiv:2007.00095

Riahi-Madvar H, Dehghani M, Memarzadeh R, Gharabaghi B (2021)
Short to long-term forecasting of river flows by heuristic optimi-
zation algorithms hybridized with ANFIS. Water Resour Man-
age 35:1149-1166

Roy A, Chatterjee A, Tiwari S, Sarkar C, Das SK, Ghosh SK, Raha
S (2016) Precipitation chemistry over urban, rural and high-alti-
tude Himalayan stations in eastern India. Atmos Res 181:44-53

Sen Roy S, Balling RC Jr (2004) Trends in extreme daily precipitation
indices in India. Int J Climatol: A Journal of the Royal Meteoro-
logical Society 24(4):457-466

Singh P, Bengtsson L (2004) Hydrological sensitivity of a large Hima-
layan basin to climate change. Hydrol Process 18(13):2363-2385

Solomatine DP, Ostfeld A (2008) Data-driven modelling: some past
experiences and new approaches. J Hydroinf 10(1):3-22

Srivastava AK, Rajeevan M, Kshirsagar SR (2009) Development of a
high resolution daily gridded temperature data set (1969-2005)
for the Indian region. Atmospheric Sci Lett 10(4):249-254

Teutschbein C, Grabs T, Laudon H, Karlsen RH, Bishop K (2018) Simu-
lating streamflow in ungauged basins under a changing climate:
the importance of landscape characteristics. J Hydrol 561:160-178

Valipour M (2015) Long-term runoff study using SARIMA
and ARIMA models in the United States. Meteorol Appl
22(3):592-598

Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the
ARMA, ARIMA, and the autoregressive artificial neural network
models in forecasting the monthly inflow of Dez dam reservoir. J
Hydrol 476:433-441

@ Springer

Walton DB, Sun F, Hall A, Capps S (2015) A hybrid dynamical-sta-
tistical downscaling technique. Part I: development and validation
of the technique. J Clim 28(12):4597-4617

Wu Z, Huang NE (2009) Ensemble empirical mode decomposition:
a noise-assisted data analysis method. Adv Adapt Data Anal
1(01):1-41

Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using
modular artificial neural networks coupled with data-preprocess-
ing techniques. J Hydrol 389(1-2):146-167

Yadav A, Chithaluru P, Singh A, Albahar MA, Jurcut A, Alvarez RM,
... Joshi D (2022. Suspended sediment yield forecasting with sin-
gle and multi-objective optimization using hybrid artificial intel-
ligence models. Mathematics 10(22):4263

Yaseen ZM, El-Shafie A, Jaafar O, Afan HA, Sayl KN (2015) Arti-
ficial intelligence-based models for stream-flow forecasting:
2000-2015. J Hydrol 530:829-844

Zaz SN, Romshoo SA, Krishnamoorthy RT, Viswanadhapalli Y
(2019) Analyses of temperature and precipitation in the Indian
Jammu and Kashmir region for the 1980-2016 period: implica-
tions for remote influence and extreme events. Atmos Chem Phys
19(1):15-37

Zhang YG, Tang J, Liao RP, Zhang MF, Zhang Y, Wang XM, Su ZY
(2021) Application of an enhanced BP neural network model with
water cycle algorithm on landslide prediction. Stoch Env Res Risk
Assess 35:1273-1291

Publisher's note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.


http://arxiv.org/abs/2007.00095

	Streamflow prediction using support vector regression machine learning model for Tehri Dam
	Abstract
	Introduction
	Study area
	Methodology
	Discharge data
	Rainfall data
	Temperature data
	Snow cover data
	Support vector regression

	Results and discussion
	Daily streamflow prediction using support vector regression model
	Streamflow prediction when four variables are considered (discharge, rainfall, temperature, snow cover area)
	Daily streamflow prediction when three input variables are considered (rainfall, temperature, snow cover area)

	Ten daily streamflow prediction using support vector regression model
	Ten daily streamflow predictions when four input variables are considered
	Streamflow prediction when three input variables are considered


	Conclusions
	Annexure I
	Acknowledgements 
	References


