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Abstract
Accurate and reliable streamflow prediction is critical for optimising water resource management, reservoir flood operations, 
watershed management, and urban water management. Many researchers have published on streamflow prediction using 
techniques like Rainfall-Runoff modelling, Time series Models, Data-driven models, Artificial intelligence, etc. Still, there 
needs to be generalised method practise in the real world. The resolution of this issue lies in selecting different methods for 
a particular study area. This paper uses the Support vector regression machine learning model to predict the streamflow for 
the Tehri Dam, Uttarakhand, India, at the Daily and Ten Daily time steps. Two cases are considered in predicting daily and 
ten daily time steps. The first case includes four input variables: Discharge, Rainfall, Temperature, and Snow cover area. 
The second case comprises only three input variables: Rainfall, Temperature, and Snow cover area. Radial Kernel is used 
to overcome the space complexity in the datasets. The K-fold cross-validation is suitable for prediction as it averages the 
prediction error rate after evaluating the SVR model’s performance on various subsets of the training data. The streamflow 
data for daily and ten daily time steps have been collected from 2006 to 2020. The calibration period is from 2006 to 2016, 
and the validation period is from 2017 to 2020. Nash Sutcliffe Efficiency (NSE) and Coefficient of determination (R2) are 
used as the accuracy indicator in this manuscript. The lag has been observed in the daily prediction time series when three 
input variables are considered. For other scenarios, the respective model shows excellent results at both the temporal scale 
and the parametres, which play a vital role in prediction. The study also enhances the effect on the potential use of input 
parametres in the machine learning model.
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Introduction

The streamflow process is considered a vital component of 
the complex hydrological cycle and is difficult to predict 
accurately (Zhang et al. 2016; Loaiciga et al. 2018; Ireson 
et al. 2015; Nourani et al. 2014). It is invariably affected 
by Precipitation, Temperature, evapotranspiration, snow 
cover area, land use pattern, and drainage basin (Adnan 
et al. 2019). The accurate and reliable forecast of stream-
flow processes is critical in the design, planning, optimisa-
tion, utilisation, and management of water resources (Adnan 

et al. 2018; Keshtegar et al. 2016; Riahi-Madvar et al. 2021; 
Khosravi et al. 2022; Senthil Kumar et al. 2017). Stream-
flow prediction models, also known as hydrological models 
or runoff models, are used to anticipate how much water 
will flow in rivers and streams over time. These models 
are critical tools in hydrology and water resource manage-
ment because they expect river discharge, which is essen-
tial for various applications such as flood forecasting, water 
resource planning, and environmental management. Stream-
flow prediction models are classified into two categories; 
each category has its unique technique and level of complex-
ity (Solomatine and Ostfeld 2008): (i) a Physically based 
model and (ii) a Data-driven model. A variety of data are 
needed for physically based models, including information 
on human activity, land use, physiographic features of the 
drainage basin, and the volume, intensity, and distribution of 
rainfall (Ochoa-Tocachi et al. 2022; Teutschbein et al. 2018). 
In contrast, a mathematical relationship (linear or nonlinear) 
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is established between streamflow and its constraints (Rain-
fall, Temperature, snow cover, etc.) [Zhang et al. (2021), 
Yaseen et al. (2015)]. Elshorbagy et al. (2010) studied the 
data-driven model in simulating hydrological components 
like evapotranspiration, soil moisture, and rainfall-runoff 
using neural networks, genetic programming, evolutionary 
polynomial regression, support vector machines, K-nearest 
neighbours, and multiple linear regression. They discov-
ered that data-driven models can be successfully used in 
hydrological applications. The traditional linear models do 
not capture the non-linearity and non-stationarity of hydro-
logical applications (Afan et al. 2016; Yaseen et al. 2015; 
Yadav et al. 2022; Imrie et al. 2000). In hydrological time-
series forecasting, the linear models like moving average 
(MA), autoregressive (AR), autoregressive moving average 
(ARMA), and autoregressive integrated moving average 
(ARIMA) have found widespread use (Wu et al. 2009; Wu 
and Chau 2010; Valipour et al. 2013, Valipour 2015). To 
overcome the shortcomings of traditional models, research-
ers have concentrated on building machine learning-based 
models (Yaseen et al. 2015; Adnan et al. 2019).

The modelling and prediction of streamflows have seen 
extensive use of machine learning techniques over the past 
20 years on a global scale (Granata et al. 2016; Elebeltagi 
et al. 2018; Hadi and Tombul 2018; Yaseen et al. 2015; 
Al-Sudani et al. 2019; Rasouli 2020; Malik et al. 2020). 
Huang et al. (2019) used the Bayesian model averaging 
(BMA), Artificial Neural Network (ANN), and Support 
Vector Machine (SVM) to predict the Monthly runoff for 
Huang Zhuang station in the Hanjiang River basin, China. 
The study suggested that ANN and SVM models performed 
best. Rahmani-Rezaeieh et al. (2019) predicted daily stream-
flow in the Shahrchay River Basin, Iran, using Ensemble 
Gene Expression Programming (EGEP). Rezaie-Balf et al. 
(2019) used Random Forest Regression (RFR) to model the 
daily streamflow at the Bilghan, Siira, and Gachsar stations 
in Iran. Hussain and Khan (2020) have used the Support 
vector regression (SVR), Multilayer Perceptron (MLP), and 
Random Forest (RF) models to predict the monthly flow 
of the Hunza River, Pakistan, and found that the RF model 
outperformed other models in the basin. Pandhiani et al. 
(2020) have used the Random Forest and Artificial Neural 
Network data-driven models for monthly streamflow predic-
tion in Malaysia’s Berman and Tualang rivers and concluded 
that both models work well for the study area.

The present research aims to predict the daily and ten 
daily time series of streamflow at Tehri Dam in Uttara-
khand, India. The novelty is considering using the Support 
Vector Regression (SVR) for streamflow prediction at the 
Daily and Ten Daily temporal scales. The input parametres 
(Discharge, Rainfall, Temperature, and Snow cover area) are 
used in the model to predict the streamflow at Tehri Dam. 
The SVR was trained for a period from 2006 to 2016 and 

was validated from 2017 to 2020. The calibrated parametres 
for SVM have been finalised using a K-fold cross-validation 
approach. The prediction accuracy is assessed over observed 
streamflow through NSE (Nash Sutcliffe Efficiency) and R2 
(Coefficient of Determination). It is worth mentioning that 
the performance of the proposed SVR model is examined for 
the first time in the Tehri Catchment at daily and ten daily 
streamflow series.

Study area

Tehri Dam is located at the confluence of the Bhagirathi 
and Bhilangana Rivers in the Uttarakhand state of India. It 
is an earthen rockfill dam with a height of 260.5 m (Eleva-
tion 839.50 m above MSL). It has an installed capacity of 
1000 MW. The Tehri project was commissioned in 2006 
and provides water for irrigation to Uttar Pradesh (UP) and 
Uttarakhand states. It also provides drinking water to nearly 
seven million people of UP and Uttarakhand. It has a gross 
and live storage of 3540 and 2615 MCM (Million Cubic 
Metres). The dam is designed to pass the Probable Maxi-
mum Flood (PMF) of 15,540 Cumecs. The PMF is catered 
by three Chute spillways (5500 Cumecs), two left bank shaft 
spillways (3650 Cumecs), and two ungated spillways (3850 
Cumecs). The Maximum Flood Level (MFL) and Full Res-
ervoir Level (FRL) are 839.50 m and 830 m, respectively 
(Figs. 1 and 2).

Methodology

The input variables of a machine learning model are the 
fragments of Information that the model utilises to produce 
predictions and decisions.

The selection of input variables is an essential phase 
in developing a machine learning model since the quality 
and relevance of these parametres significantly impact the 
model’s performance. The choice of input parametres should 
align with your problem statement, the nature of your data, 
and the machine learning algorithms you intend to use. It is 
often an iterative process that involves refining the feature 
set based on the model’s performance and domain knowl-
edge. The input variables for the Support Vector Regression 
model are as follows:

Discharge data

Observing discharge data from hydroelectric power plants 
is crucial to their operation and management. The infor-
mation of this data is essential for ensuring the efficient 
and safe operation of the power plants and managing 
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downstream water resources. The Daily and Ten daily 
discharge data have been observed by the THDC India 
Limited officials since 2006. The data from 2006 to 2020 
are used in the present manuscript. The Calibration and 
validation periods are taken from 2006 to 2016 and 2017 
to 2020, respectively (Fig. 3).

Rainfall data

The India Meteorological Department (IMD) provides grid-
ded rainfall data at a spatial resolution of 0.25° by 0.25° 
degrees (Pai et  al. 2014). This data is used for various 
meteorological and climatological applications, including 
weather forecasting, climate monitoring, and hydrologi-
cal studies. The data can be downloaded from IMD’s Pune 
website. The rainfall data for the Tehri catchment has been 
downloaded and divided into ten elevation zones. There is a 
significant variation in the Rainfall as the elevation increased 
in the Himalaya region (Singh and Bengtsson 2004; Sen 
Roy and Balling 2004; Goswami et  al. 2006; Rajeevan 
et al. 2008; Roy et al. 2009; Krishnamurthy et al. 2009; 
Guhathakurta et al. 2011). To account for the variation of 
Rainfall with elevation is introduced in the model as the 
input variable.

Temperature data

The India Meteorological Department (IMD) provides tem-
perature data for various purposes, including weather fore-
casting, climate monitoring, research, agriculture, health, 
and energy management applications. Temperature data 
from IMD is valuable for understanding climate patterns 
and trends in different regions of India. India Meteorological 
Department (IMD) Daily gridded temperature data (1° × 1°) 
(Srivastava et al. 2009) is used in the present manuscript. 
Temperature data from IMD is typically available in digital 

Fig. 1  Location map of Tehri 
catchment and major rivers

Fig. 2  Front View of Tehri Dam
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formats, such as text files (CSV or ASCII), NetCDF (Net-
work Common Data Form), or other standard formats com-
monly used in meteorological and climatological data. The 
Catchment is divided into five Elevation Zones, and Tem-
perature is calculated respectively.

The temperature and rainfall data from weather stations 
are point measurements; however, spatially distributed data-
sets are required for more systematic and detailed analysis 
(Kormos et al. 2018; Behnke et al. 2016). Therefore, high-
resolution gridded meteorological datasets are preferred in 
climate modelling and hydrological processes studies, and 
the same has been applied in the present study (Caldwell 
et al. 2009; Walton et al. 2015).

Snow cover data

At a temporal resolution of 8 days, the Snow Cover Area 
for Tehri Catchment was derived using MODIS/Terra Snow 
Cover 8-Day L3 Global 500 m SIN Grid, Version 5. This 
dataset monitors and maps snow cover on Earth’s surface. 
Researchers and government agencies use it to track changes 
in snow cover extent over time, which can provide insights 
into climate trends and seasonal variations (Coops et al. 
2006).

Two cases have been considered for predicting Discharge 
for the daily and ten daily temporal scales: (1) Discharge 
data and the three input variables (Rainfall, Temperature, 
and snow cover Data) are used (2) Discharge data is not 
considered. The K-fold cross-validation technique is used 
to compute the optimum paraMetres of the model. Accurate 
hydro-system modelling requires systematic integration of 
factors, time series decomposition, data regression, and error 
suppression.

The proposed streamflow forecasting framework con-
sists of Model selection, Time series decomposition, model 
training, model learning, optimum parameter estimation, 
error computation and error correction. Nash Sutcliffe 
Efficiency (NSE) and coefficient of determination (R2) are 

performance indicators. The calibration and validation peri-
ods are 2006–2016 and 2017–2020, respectively. These per-
formance indicators are used to assess the predictive skill of 
the machine learning model computed on each year’s time 
scales in the present study.

Support Vector Regression works in high or infinite-
dimensional space and generates a hyper-plane or collec-
tion of hyper-planes. According to intuition, the hyper-plane 
in each class farthest from the nearest training data points 
achieves a meaningful separation since, generally speaking, 
the wider the margin, the smaller the classifier’s generalisa-
tion error. It functions well in high-dimensional spaces and 
may behave differently based on the kernel, a collection of 
mathematical operations. Many different types of functions 
are referred to by terminology like linear, polynomial, radial 
basis function (RBF), sigmoid, and others. The SVR algo-
rithm can be summed up as follows: A suitable kernel func-
tion must be chosen, the regularisation parameter-C must be 
assigned a value, the quadratic programming (QP) problem 
must be resolved, and the discriminant process must be built 
using the support vectors (Fig. 4).

Support vector regression

SVR is a data training/fitting technique. The essence of SVR 
is to transfer the original problem into solving a quadratic 
programming problem, and it can theoretically obtain the 
global optimum result of the problem. The computing rate 
of SVM is significantly faster than that of other techniques.

Overview of basic SVM for regression Suppose the sam-
ple data for training is {Xi, yi}, where i = 1, 2,..., l, Xi is the 
input, and yi is the output. The aim of SVM for regression is 
to find a function of this form:

where W is a hyperplane, and b is the offset. The regression 
SVM will use a penalty function:

Boldyi = W.Xi + b

Fig. 3  Time series of observed 
discharge Data (2006–2020)
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Referring to Fig. 5, the region bound by yi ± e is called 
an e-insensitive tube. The goal of this problem can be writ-
ten according to:

{|||yi −
(
W.Xi + b

)||| ≤∈, not allocating a penalty

|||yi −
(
W.Xi + b

)||| >∈, allocating a penalty

 where the L∈(Xi, yi, f ) is defined as:

And as the existence of fitting errors, the slack variables �+ 
and �− are introduced, then the model form of SVM for regres-
sion will be as follows:

Subject to: 
(
W.Xi + b

)
− yi ≤∈ +�+

yi −
(
W.Xi + b

)
≤∈ +�−

𝜉+ > 0, 𝜉− > 0

i = 1,2,3….,l

The corresponding dual problem can be derived using the 
now standard techniques:
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Fig. 4  Framework for forecast 
using support Vector regression Daily/Ten Daily Flow generation using Support Vector Regression 

Model     

Daily = f (Daily Discharge data, 
Daily Rainfall, Daily Temperature, 

Daily Snow Cover area

Ten Daily Discharge = f (10 Daily
avg. Discharge data, 10 Daily Avg. 

Rainfall, 10 Daily Avg. 
Temperature, 10 Daily Snow Cover 

Calibration (Training) Period (Jan 2006 – Dec 2016)

Validation Period (Jan 2017 – Dec 2020)

Performance Indicator

Nash Sutcliffe 
Efficiency (NSE)

Coefficient of Determination 
(R

2
) 

Radial Kernel Function for SVR Model

K – Fold Cross
Validation

Fig. 5  SVM for regression with ε—insensitive tube
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Subject to: 0 ≤ �+

i
≤ C, 0 ≤ �−

i
≤ C

Solve this problem with a quadratic programming 
method, and then we can acquire the regression function 
of the system.

l∑

i=1

(�+

i
− �−

i
) = 0

Results and discussion

The present manuscript represents the streamflow prediction 
using the Support vector regression machine learning mod-
els. The first part of this section describes the results of the 
Support vector regression (SVR) model for the Daily stream-
flow prediction. The second part of this section explains the 
results of the Support vector regression (SVR) model for the 
Ten Daily streamflow prediction.

Daily streamflow prediction using support vector 
regression model

Support vector machine uses the maximum margin algo-
rithm, where, for a hyperplane, the algorithm searches for 
the most significant separating margin between the observed 
data for obtaining the optimal function that fits the obser-
vation. The algorithm uses a kernel to solve this nonlinear 
optimisation problem to get the most accurate hyperplane.

For this case, we use a radial kernel calibrated by adjust-
ing cost ‘c’ and gamma ‘g’. A grid search method is applied 
for Calibration, where a combination of values of the hyper-
paraMetres is checked.

Now, for each combination of the hyperparametres, a 
K-fold cross-validation was performed (Anguita et al. 2009). 
The data is divided into ‘k’ subsets (4). k-1 subsets are used 
for training the model, and the remaining one for validation, 
for which an average error for k-trails was computed. This 
method helps us identify the paraMetres suited for more than 
one subset.

Fig. 6  Graph between observed and predicted (simulated) discharge for the calibration period

Fig. 7  Scatter plot for calibration period (2006–2016)
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The two cases have considered: (i) Four Input Variables 
are considered (Discharge Rainfall, Temperature, Snow 
cover area), (ii) Three Input Variables are considered (Rain-
fall, Temperature, Snow cover area).

Streamflow prediction when four variables are considered 
(discharge, rainfall, temperature, snow cover area)

In this case, four input parametres [Discharge (Qt), Rain-
fall (Rt), Temperature (Tt), and Snow Cover Area  (SCAt)] 
have been considered. The model is trained using hyper-
parametres for the calibration and validation period. The 

Nash Sutcliffe efficiency (NSE) and Coefficient of Deter-
mination (R2) are performance indicators. The NSE is 
96.75 and 95.57 for the calibration and validation period. 
The coefficient of determination (R2) for observed and 
simulated discharge for the Calibration and validation 
period is 0.9416 and 0.9578, respectively. The scatter plots 
have been plotted for all the discharge data from 2006 to 
2020. The model fits the observed data well. The model 
shows high efficiency in the prediction of daily discharge. 
It has been observed in 2009, 2013, 2018, and 2019 that 
the model is unsuitable for predicting high discharges, but 
the overall efficiency of the model is excellent. The model 
efficiency (NSE & R2) is also calculated for each year’s 
data; NSE and R2 range from 80.45 to 97.18 and 0.8965 to 
0.9723, respectively. The model shows high performance 
in predicting discharge at a daily time scale (Figs. 6, 7, 8, 
9 and 10; Table 1 and 2).

Daily streamflow prediction when three input variables are 
considered (rainfall, temperature, snow cover area)

In this case, three input paraMetres [Rainfall (Rt), Tem-
perature (Tt), and Snow Cover Area  (SCAt)] have been 
considered. The model is trained using hyperparametres 
for the calibration and validation period. The NSE is 86.68 
and 75.85 for the calibration and validation period. The 
coefficient of determination (R2) for observed and simu-
lated discharge for the calibration and validation periods 
is 0.8617 and 0.7635, respectively. The scatter plot has 

Fig. 8  Graph between observed and simulated discharge for the validation period

Fig. 9  Scatter plot for validation period (2017–2020)
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Fig. 10  Scatter plot for the period 2006–2020
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been plotted for all the discharge data from 2006 to 2020 
(Annexure I). The model fits the observed data well. The 
model shows high efficiency in the prediction of daily 

discharge. It has been observed in 2008, 2009, 2011, 2012, 
2018, and 2019 (Annexure I) that the model is unsuitable 
for predicting high discharges, but the overall efficiency 
of the model is good. The model efficiency (NSE & R2) 
is also calculated for each year’s data; NSE and R2 range 
from 62.24 to 89.61 and 0.6834 to 0.9168, respectively 
(Annexure I). The model shows high performance in pre-
dicting discharge at a daily time scale (Figs. 11, 12, 13 
and 14; Table 3).

Ten daily streamflow prediction using support 
vector regression model

The two cases have been considered: (i) Four input Varia-
bles are considered (10 daily avg. discharge 10-daily average 
Rainfall, 10-daily average Temperature, 10-day Snow cover 
area) (ii) Three Variables are considered (10-daily average 
Rainfall, 10-daily average Temperature, 10-day Snow cover 
area).

Table 1  NSE and R2 for 
calibration and validation period

Case-1 (four input variables have been considered 
for daily streamflow prediction)

Time NSE R2

Calibration Jan-2006 to Dec-2016 96.75 0.9416
Validation Jan-2017 to Dec-2020 95.57 0.9578

Table 2  Year-wise NSE and R2 
for the period 2006–2020

Year NSE R2

2006 97.18 0.9723
2007 96.51 0.9658
2008 96.53 0.9657
2009 89.25 0.8965
2010 94.4 0.9464
2011 94.18 0.9461
2012 95.52 0.9553
2013 88.45 0.8998
2014 96.54 0.9679
2015 95.34 0.955
2016 94.6 0.9468
2017 95.11 0.9523
2018 93.94 0.9419
2019 91.81 0.9189
2020 95.4 0.9546

Fig. 11  Graph between observed and simulated discharge for the calibration period
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Ten daily streamflow predictions when four input variables 
are considered

In this case, four input variables [10 daily avg. Discharge 
(Qt), ten daily avg. Rainfall (Rt), ten daily average. Tem-
perature (Tt) and 10 daily Snow Cover Areas  (SCAt)] have 
been considered. The model is trained using hyperparame-
tres for the calibration and validation period. The NSE is 
96.77 and 95.60 for the calibration and validation period. 

The coefficient of determination (R2) for the observed and 
simulated discharge periods is 0.9679 and 0.9561, respec-
tively. The scatter plot has been plotted for all the discharge 
data from 2006 to 2020. The model fits the observed data 
well. The model shows high efficiency in the prediction of 
10 daily discharges. The model efficiency (NSE & R2) is 
also calculated for each year’s data; NSE and R2 range from 
90.45 to 98.76 and 0.9337 to 0.9892, respectively (Annexure 
I). The model shows high performance in predicting dis-
charge at ten daily temporal scales (Figs. 15, 16, 17 and 18; 
Table 4).

Streamflow prediction when three input variables are 
considered

In this case, three input variables [Rainfall (Rt), Temperature 
(Tt), and Snow Cover Area  (SCAt)] have been considered. 
The model is trained using hyperparaMetres for the cali-
bration and validation period. The NSE is 88.22 and 92.52 
for the calibration and validation period. The coefficient of 
determination (R2) for observed and simulated discharge for 
the calibration and validation periods is 0.8827 and 0.9454, 
respectively. The scatter plot has been plotted for all the dis-
charge data from 2006 to 2020 (Annexure I). The model fits 
the observed data well. The model shows high efficiency in 
the prediction of 10 daily discharges. The model efficiency 
(NSE & R2) is also calculated for each year’s data; NSE 
and R2 range from 61.15 to 95.25 and 0.7735 to 0.9692, 

Fig. 12  Scatter plot for calibration period (2006–2016)

Fig. 13  Graph between observed and simulated discharge for the validation period
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respectively (Annexure I). The model shows high per-
formance in predicting discharge at ten daily time scales 
(Figs. 19, 20, 21 and 22; Table 5).

A data fitting-based machine learning technique called 
a support vector regression (SVR) was first presented by 
Vapnik (1995). Numerous sectors, including streamflow 
prediction and water resources, have effectively used this 
approach. Dibike et al. (2001) described the first applica-
tion of the SVR model to water-related topics and rainfall-
runoff modelling. The support vector regression (SVR) is 
an effective learning system based on bounded optimisation 

theory that applies the structural minimisation principle. A 
nonlinear classifier or regression line can be found using 
the kernel function known as the radial basis kernel in the 
machine learning model. The model exhibits excellent effi-
ciency when applying the specific model to the Daily and 
Ten Daily time series whilst considering various input vari-
ables. The prediction effectiveness is evaluated using the two 
performance indicators, NSE and R2.

Cross-validation (CV) is sometimes referred to as a resa-
mpling method because it requires fitting the same statistical 
way several times using various subsets of the data. The 
data set will be divided into two parts for cross-validation: 
a first part for training the model and a second for evaluat-
ing it. The prediction error will be estimated to determine 
the model’s accuracy. The k-fold cross-validation calculates 
the average prediction error rate after evaluating the SVR 
model’s performance on various subsets of the training data. 
The data is divided into k folds randomly to begin the pro-
cedure (Fig. 5). The preferred type of SVR model is then 
provided in sequence to the k-onefold once k iterations of 
training and testing have been completed (Yoon et al. 2017). 
The first fold is utilised in the first iteration to test the model, 
whilst the remaining folds are used to train the model. The 
second fold is used as the testing set, and the remaining folds 
are the training set in the second iteration. This process is 
repeated until all of the k folds have been used as the test-
ing set. After the model has been developed in a training 
phase, it will be checked on the test dataset. The forecast 
error will be calculated after that. K-fold cross-validation 

Fig. 14  Scatter plot for validation period (2017–2020)

Table 3  NSE and R2 for 
calibration and validation period

Case-2 (three input variables have been consid-
ered for daily streamflow prediction)

Time NSE R2

Calibration Jan-2006 to Dec-2016 86.68 0.8617
Validation Jan-2017 to Dec-2020 75.85 0.7635

Fig. 15  Graph between 
observed and simulated ten 
daily discharges for the calibra-
tion period
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(CV) is reliable for assessing a model’s correctness. The 
benefit of k-fold CV is that it consistently provides estimates 
of the test error rate that are more accurate (Juahir et al. 
2011). A smaller value of K is inappropriate since it is more 
biassed. Larger K values, however, can lead to increased 
variance even though they are less biassed. These values 
have been shown empirically to yield test error rate estimates 
that suffer neither excessively high bias nor very high vari-
ance (Huang et al. 2015).

The SVR model for daily streamflow prediction consid-
ering four input variables (Qt–1, Rt–1, Tt–1,  SCAt–1) shows 
excellent efficiency. There is no lag between the observed 
and Predicted time series. The NSE and R2 are computed 
at a yearly time scale for observed and predicted discharge, 
which shows excellent efficiency. The model for daily 
streamflow prediction having three input variables does not 
work well because lag is present in the observed and pre-
dicted time series. However, the overall efficiency is good. 
The SVR model for ten daily streamflows considering four 

input variables shows good efficiency as the NSE and R2 are 
96.77 and 95.60 for the calibration and validation period. 
The NSE and R2 are computed at a yearly time scale for 
observed and simulated discharge series, which also shows 
excellent efficiency. The discharge data are a guiding vari-
able in prediction at daily and ten daily time scales. The 
ten daily streamflow predictions considering three variables 
(Rt–1, Tt–1,  SCAt–1) show good efficiency.

Conclusions

In this research work, Daily and Ten daily streamflows 
are predicted using the Support Vector Regression (SVR) 
Machine learning Model. Two combination of Input vari-
ables have been used in generation of daily and Ten daily 
Streamflow (i) Prediction (Qt) considering four input Fig. 16  Scatter plot for calibration period (2006–2016)

Fig. 17  Graph between 
observed and predicted dis-
charge for the validation period

Fig. 18  Scatter plot for validation period (2017–2020)
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variables {Discharge (Qt–1), Rainfall (Rt–1), Temperature 
(Tt–1), Snow Cover Area  (SCAt–1)} (ii) Prediction (Qt) con-
sidering three input variables {Rainfall (Rt–1), Temperature 
(Tt–1), Snow Cover Area  (SCAt–1)}. It is very tedious and 
time-consuming to select the input variables in modelling 
complex hydrological processes (Moghaddamnia et al. 
2009; Kakaei Lafdani et al. 2013; Mahmoodzadeh et al. 
2016; Malik et al. 2019b). The output (Qt) is evaluated 
considering different sets of input parametres using K-fold 
cross-validation. 75% of the data is used for Calibration 

and 25% for validation. The results revealed that the SVR 
approach is reliable and efficient for streamflow predic-
tion. Using the Radial kernel function helped obtain the 
high dimensionality, resulting in the expected outcomes 
from the study. The choice of kernel defines the promis-
ing results for the Support vector Regression model. The 
parameter cost ‘c’ and gamma ‘g’ are adjusted to optimise 
the hyperparametres, and the approach was presented by 
Cherkassky and Ma (2004). The quality of SVR models 
depends on the proper setting of SVR hyper-parametres. 
The two performance indicators, Nash Sutcliffe efficiency 
(NSE) and Coefficient of Determination (R2) were used 
in the study to evaluate the efficiency of the prediction. 
The two-performance indicator shows excellent prediction 
quality and states that the SVR technique can be success-
fully used for nonlinear applications in Hydrology. After 
fuzzy and artificial neural networks, the SVR is the most 
promising development in the hydrological field. SVR is 
suitable for other purposes such as rainfall runoff, stream-
flow prediction and sediment yield forecasting, evapora-
tion and evapotranspiration forecasting, Lake and reser-
voir water level prediction, Flood forecasting, Drought 
forecasting, Groundwater level prediction, Soil moisture 
estimation, Groundwater quality assessment Cherkassky 
and Ma (2004). The SVR touches on the many facets of 
computational hydrology. The framework can be a foun-
dation for future researchers to build more exact hybrid 
mechanisms and expand the use of support vector regres-
sion approaches in complex hydrological prediction.

Table 4  NSE and R2 for 
calibration and validation period

Case-1 (four input variables have been considered 
for daily streamflow prediction)

Time NSE R2

Calibration Jan-2006 to Dec-2016 96.77 0.9679
Validation Jan-2017 to Dec-2020 95.60 0.9561

Fig. 20  Scatter plot for validation period (2017–2020)

Fig. 19  Graph between 
observed and simulated dis-
charge for the calibration period
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Fig. 21  Graph between 
observed and predicted dis-
charge for the calibration period

Fig. 22  Scatter plot for validation period (2017–2020)

Table 5  NSE and R2 for 
calibration and validation period

Case-2 (three input variables have been consid-
ered for daily streamflow prediction)

Time NSE R2

Calibration Jan-2006 to Dec-2016 88.22 0.8827
Validation Jan-2017 to Dec-2020 92.52 0.9454

Table 6  Year-wise NSE and R2 
for the period 2006–2020

Year NSE R-squared  (R2)

2006 81.67 0.8518
2007 88.73 0.8939
2008 62.24 0.8563
2009 83.57 0.7364
2010 82.57 0.8579
2011 87.43 0.8693
2012 89.32 0.8748
2013 88.52 0.9168
2014 86.76 0.8704
2015 82.68 0.8834
2016  189.61 0.8984
2017 67.54 0.6834
2018 79.66 0.8124
2019 72.07 0.7277
2020 86.74 0.8733
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Annexure I

1. Daily streamflow prediction considering three input variables (rainfall, temperature, snow cover area)

See Table 6.
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2. 10 daily streamflow prediction considering four input variables (10 daily avg. discharge, 10 daily average rainfall, 
10 daily average temperature, 10-day snow cover area)

See Table 7.
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Table 7  Year-wise NSE and R2 
for the period 2006–2020

Year NSE R-squared  (R2)

2006 96.08 0.9702
2007 94.62 0.954
2008 93.78 0.945
2009 91.72 0.9521
2010 90.45 0.9459
2011 94.23 0.9887
2012 93.46 0.9853
2013 98.32 0.9853
2014 97.66 0.9781
2015 97.26 0.977
2016 98.76 0.9892
2017 96.41 0.9892
2018 96.5 0.9712
2019 93.67 0.9377
2020 95.02 0.9527

Table 8   Year-wise NSE and R2 
for the period 2006–2020

Year NSE R-squared  (R2)

2006 90.93 0.9435
2007 89.57 0.9622
2008 94.12 0.7735
2009 88.75 0.90.96
2010 92.25 0.9094
2011 91.97 0.9246
2012 91.35 0.9526
2013 77.07 0.9497
2014 61.15 0.9291
2015 90.57 0.9692
2016 85.09 0.9303
2017 95.25 0.9121
2018 93.33 0.9387
2019 91.89 0.8807
2020 93.23 0.9385
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3. 10 daily streamflow prediction considering three input variables (10 daily average rainfall, 10 daily average 
temperature, 10-day snow cover area).

See Table 8.
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