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Abstract
The variations in rainfall and its spatial and temporal distribution in wet and dry seasons have increased substantially glob-
ally owing to the effect of climate change. These disparities can lead to droughts and severe water shortages, as exemplified 
by the unprecedented drought in Taiwan in 2021, which is considered the worst in 50 years. From a broader perspective, the 
overall climate and water resources on Earth are influenced by factors, such as the El Niño phenomenon and solar activity. 
Accordingly, this study examines the relationship between rainfall and planetary- or large-scale influencing factors, such as 
sunspots and the El Niño-Southern Oscillation. Additionally, rainfall patterns under various conditions are predicted using 
machine learning models combined with wavelet analysis. These models use 60-years historical data to build models, and 
the Bayesian network model exhibited the best overall prediction accuracy (85.7%), with sunspots emerging as the most 
influential factor. The novel findings of this study strongly confirmed that the relationship between sunspot and local rainfall 
patterns can serve as a valuable reference for water resources management and planning by relevant organizations.
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Introduction

In recent years, the impact of climate change and the natural 
terrain characteristics of high mountains and rapid water 
in several areas globally have resulted in the uneven rain-
fall distribution (in time and space), and the agricultural, 
industrial, and economic developments with the growing 
population density globally have resulted in the unfavorable 
utilization of water resources and groundwater (Allan et al. 
2013; Misra 2014; Ritzema and Van Loon-Steensma 2018; 
Varis and Vakkilainen 2001). Moreover, changes in the spa-
tial and temporal characteristics of rainfall have resulted 
in several extreme hydrological events and environmental 
problems. Although the annual average rainfall of Taiwan is 

approximately 2500 mm, which is 2.6 times higher than the 
average annual rainfall of the world, Taiwan is still regarded 
as a water-poor region (Narvaez et al. 2022; Shiau and Hsiao 
2012). The main rainfall seasons in Taiwan are concentrated 
in the Meiyu season, from May to June, and the typhoon 
season, from July to September, (Chen and Chen 2003; Yim 
et al. 2015). Particularly, there is a significant difference in 
the rainfall behavior in the wet and dry seasons. Therefore, 
slight changes in the rainfall during the rainy season will 
directly or indirectly affect the risk of drought and flood 
disasters in Taiwan (Chen et al. 2009; De Silva and Kawa-
saki 2018).

In meteorology, the scale refers to the size and duration 
of the weather system. Generally, the more commonly used 
scale is the scale of the atmospheric weather system defined 
by Orlanski (1975), and it can be divided into small scales 
with a horizontal range of less than 2 km, mesoscale ranging 
from 2 to 2000 km, and large scale above 2000 km. The large 
scale can be further subdivided into the comprehensive scale 
of more than 2000 km with a life span of approximately 
2–10 days (e.g., frigid cyclones, extratropical cyclones, and 
jet streams) and planetary-scale weather systems with a hori-
zontal scale of more than 10,000 km and a life span of more 
than 10 days.
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It is essential to scale up the discussion of the changing 
characteristics of climate and water resources to a relatively 
macroscopic spatio–temporal scale, and the scale corre-
sponding to meteorological data can be at the mesoscopic 
scale or above the planetary scale (Barthel and Banzhaf 
2016). Existing studies have demonstrated that the climate 
phenomenon of earth may be affected by the outer space of 
the earth and solar activity (Marsh and Svensmark 2003).

Sunspots are temporary phenomena on the photosphere of 
the sun, typically representing the strength of the solar activ-
ity, and they appear darker than the surrounding areas under 
visible light. The strong magnetic field activity of the sun 
suppresses convection, resulting in a relatively low surface 
temperature (approximately 3000–4500 K), and the darker 
areas are important indicators of solar activity. When sun-
spots are active, they affect the magnetic field of the Earth, 
resulting in bad weather and may even damage electronic 
products and electrical appliances (Cowling 1933). Another 
important large-scale climate factor is the El Niño-Southern 
Oscillation (ENSO), and when it occurs, it causes climate 
anomalies globally, such as a sharp drop in rainfall, severe 
drought, and forest fires (e.g., the forest fires in Indonesia, 
India, and Australia during the El Niño year). In contrast, 
ENSO may also cause an increase in rainfall (e.g., the 
increase in rainfall in the eastern Pacific during the El Niño 
year) and mild winter conditions (e.g., Canada experienced 
mild winter conditions during the El Niño year) (Yeh et al. 
2009), and these factors may influence macroscopic spa-
tio–temporal scale hydrological characteristics.

Currently, it is well known that the spatial and temporal 
characteristics of rainfall varies significantly in many areas 
(Cristiano et al. 2017; Kao et al. 2013). In recent years, sev-
eral studies have analyzed factors that potentially affect rain-
fall to explore the relationship between long-term rainfall 
characteristics and potential macroscopic influencing fac-
tors, such as sunspots (Ananthakrishnan and Parthasarathy 
1984; Bhattacharyya and Narasimha 2005; Seleshi et al. 
1994). For example, by analyzing the time–frequency cor-
relation between sunspots and annual rainfall through cross 
wavelet transform (XWT), studies have reported a significant 
correlation between sunspots and regional rainfall phenom-
ena at a frequency cycle of 8–12 years (Nazari-Sharabian 
and Karakouzian 2020; Thomas and Abraham 2022). How-
ever, only few studies have attempted to construct prediction 
models to correlate this relationship. In addition, some stud-
ies have employed the commonly used indexes of ENSO, 
such as southern oscillation index (SOI) and Multivariate 
ENSO Index to determine the relationship between ENSO 
and the average rainfall of an area (Indeje et al. 2000; Kuo 
et  al. 2010; Vladimiro and Guido 2018). For example, 
studies have reported that the average annual rainfall in 
Australia increases with an increase in the intensity of the 
anti-El Nino phenomenon, and vice versa (García‐García 

and Ummenhofer 2015). In recent years, some large-scale 
studies have been conducted on the impact of the El Nino 
phenomenon on the climate and water resources of Taiwan 
(Jiang et al. 2003; Lee et al. 2020). For example, some stud-
ies have discussed the varying characteristics of different 
seasonal rainfall or spring rainfall, or the characteristics of 
typhoon intensity in the Northwest Pacific (Chu 2004; Wang 
et al. 2020), and some studies have explored the long-term 
changes in the rainfall characteristics of Taiwan through 
sediment core drilling (Chen et al. 2019). These studies 
demonstrated that factors on macroscopic space and time 
scales may affect the characteristics of large-scale or peri-
odic regional water resources and the overall medium-term 
and long-term trends, including possible seasonal or interan-
nual changes in abundance and drought and the impact on 
drought and flood disasters.

Therefore, using actual ground weather observation data 
in Taiwan combined with remote sensing data at planetary 
scales, this study extracted features and investigated the rela-
tionship between rainfall in Taiwan and the factors that may 
induce changes in hydrological and water resources (e.g., 
sunspot and ENSO) using wavelet signal analysis method. In 
addition, machine learning methods were employed to pre-
dict and classify rainfall amount, and a set of rainfall–water 
resources warning system was established. We believe that 
the findings of this study will provide a better understanding 
of the rainfall mechanism in Taiwan and provide relevant 
government agencies with a more accurate grasp of large-
scale rainfall fluctuation trends, and serve as a reference for 
water resources management policy in Taiwan.

Study area and data

The main study area of this study is the main island of Tai-
wan. Taiwan is located on the west side of the Pacific Ocean, 
and it is surrounded by the ocean. It is an island in the island 
arc of East Asia, and its longitude is from 120 to 122° East, 
and the latitude is from 22 to 25° North. The climate of 
Taiwan is between the tropical monsoon climate and the 
subtropical monsoon climate. The average annual rainfall is 
2515 mm, which is 2.6 times higher than the average rainfall 
of the world. The main rainfall seasons are concentrated in 
the rainy season, from May to June, and the typhoon season 
from, July to September.

To obtain data on the meteorological factors, this study 
selected 16 stations from the Central Weather Bureau 
(CWB) in Taiwan, and analyzed the data for 60 years, from 
1960 to 2020, using the monthly monitoring data of mete-
orological factors, such as rainfall and humidity. The spatial 
distribution of the measuring stations is shown in Fig. 1, and 
the detailed information is presented in Table 1. The obser-
vation data of the sunspot number (SSN) and El Niño-SOI 
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were obtained from the U.S. Space Weather Prediction 
Center (SWPC) of the U.S. National Oceanic and Atmos-
pheric Administration (NOAA) and the National Center for 
Environmental Information (NCEI), and data from January 
1, 1960 to December 31, 2020 (a total of 60 years) were 
collected and analyzed.

Methodology

Study framework

The detailed process of this research is mainly divided into 
three parts. The first part involves the data collection and 
arrangement, including meteorological data, SSN, and El 
Niño-SOI data for 60 years from 1960 to 2020. The sec-
ond part is the wavelet analysis and feature extraction. This 
part involves the disassembly of the collected data using the 
continuous wavelet transform (CWT) and inverse wavelet 

transform methods for the signal filtering of different fre-
quencies of the signal. Subsequently, the correlation between 
the meteorological factors of each station and the SSN and 
SOI was investigated using wavelet coherence analysis. The 
complete spatial distribution was estimated and mapped 
using the radial basis function network (RBFN), and the 
rainfall amount under different conditions were predicted 
and classified, and compared to each other using several 
machine learning models, including Naive Bayes, decision 
tree, and random forest models.

Wavelet signal analysis method

There are several types of signal analysis techniques, and 
among these techniques, wavelet analysis technology has 
emerged as one of the important tools for signal analysis 
and processing in recent years (Adamowski and Chan 2011; 
Boggess and Narcowich 2015; Kuo et al. 2010; Thomas 
and Abraham 2022; Yu and Lin 2015). When monitoring 
dynamic signals, the data of the signal in the frequency 
domain can be analyzed using Fourier-based analysis. How-
ever, the analyzed signal can only be disassembled and ana-
lyzed under the premise of linearity and stability, which is 
extremely unfavorable when observing abnormal signals. 
The wavelet method is a multi-resolution analysis that con-
verts the time domain and the frequency domain for continu-
ous signals. Compared to other signal processing techniques, 
it can better localize time features and can analyze non-sta-
tionary signals. The main purpose of the wavelet method is 
to decompose the time series through the signal and express 
it as a function of several frequency combinations (Boggess 

Fig. 1  Map showing the spatial distribution of the local weather sta-
tions (manual observation) of the Central Weather Bureau (CWB), 
Taiwan

Table 1  Basic information of the data from the local weather stations 
(manual observation) of CWB, Taiwan

Station name Start and end time Observation items used

Tamsui 1942/10/01 ~ RH01
PP01Anbu 1943/01/01 ~ 

Taipei 1896/08/11 ~ 
Jutzuhu 1943/01/01 ~ 
Jilung 1946/10/01 ~ 
Yilan 1935/12/06 ~ 
Tainan 1897/01/01 ~ 
Kaohsiung 2022/01/24 ~ 
Taichung 1897/01/01 ~ 
Alishan 1933/04/01 ~ 
Dawu 1940/01/01 ~ 
Yushan 1943/10/01 ~ 
Hengchun 1896/11/20 ~ 
Chenggung 1940/01/01 ~ 
Sunmoonlake 1941/11/01 ~ 
Taitung 1901/01/01 ~ 
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and Narcowich 2015); thus, both extreme and short-term 
events can be discussed.

The wavelet analysis techniques used in this study include 
the CWT, XWT, and wavelet coherence (WTC) analysis. 
Using the MATLAB toolbox developed by Grinsted et al. 
(2004), the main theories are described as follows:

CWT 

The CWT is a function used to decompose a continuous time 
function and transform it into several wavelets. Compared to 
the Fourier transform analysis, CWT can: construct a time 
domain with localized time–frequency signals in the fre-
quency domain; investigate the dynamic characteristics of 
the signal through the changes in the signal under different 
magnifications; understand the irregular periodic changes of 
the signal and analyze the nonlinear signal change period; 
and display the non-stationary signal using the character-
istics of the time–frequency structure. As expressed in Eq. 
(1), the wavelet sequence can be obtained after expansion 
and translation through the mother wavelet function (i.e., 
Morlet Wavelet; φ(t)), where s is the scale factor related to 
frequency and τ is the shift factor related to time.

XWT

For two time series xn and yn, its XWT is defined as WXY = 
WXWY*, where * represents a conjugate complex number. 
We can further define │WXY│ as the cross wavelet power, 
and its complex argument arg(Wxy) is the local relative phase 
of  xn and  yn in the time–frequency space. The theoretical 
distribution of the cross wavelet power of the background 
power spectrum of the two time series is (Torrence and 
Compo 1998):

Here, PX
k
 and PY

k
 are the theoretical distribution of the 

cross wavelet power of two time series with background 
power spectra, Z�(p) is the confidence level of the probability 
p of the square root of the probability density function mul-
tiplied by two �2 distributions. For more detailed theoretical 
derivation, please refer to the following reference (Grinsted 
et al. 2004; Torrence and Compo 1998).
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WTC 

The cross wavelet power obtained through XWT can show 
some areas with common higher power, and WTC is an 
analysis method to further understand the correlation of 
the two time series in the time–frequency domain. Accord-
ing to Torrence and Compo (1998), we defined the WTC 
of two time series as expressed in Eq. (3).

This definition is very close to the definition of the tra-
ditional correlation coefficient, which is well known, so 
WTC can be regarded as the correlation coefficient of two 
time series in the time–frequency domain, as this will be 
easier to understand in terms of interpretation. In Eq. (3), 
S is the smoothing operator when calculating the weighted 
moving average, and WX

n
(s) and WY

n
(s) are the wavelet coef-

ficients of X and Y, respectively. Owing to the wordcount 
limitations, please refer to the following reference for 
detailed definitions (Grinsted et al. 2004; Torrence and 
Compo 1998).

RBFN

In this study, the correlation coefficients of signals between 
the local meteorological data and SSN and El Nino-SOI 
were calculated using the WTC analysis, and through the 
spatial estimation, the coherence spatial distribution of cer-
tain frequency band with higher coherence was estimated for 
the whole Taiwan to better understand the changing trend 
in the WTC.

Compared to traditional methods, the training process 
of neural network models, which emerged in recent years, 
has the advantages of speed and simplicity, and can better 
handle nonlinear and complex systems. Accordingly, neural 
network models based on different architectures have been 
constructed. The RBFN (Chen et al. 2018; Chen et al. 1991; 
Ding et al. 2018; Orr 1996; Toit 2008) is a neural network 
for supervised learning, and it exhibits a three-layer feed-
forward network architecture, as shown in Figure 2. The 
construction process of this model is faster and simpler than 
those of other multi-layer deep learning models. The input 
layer is composed of perceptual units, which are mapped to 
the output layer in a nonlinear manner, and the hidden layer 
is subjected to linear and nonlinear transformations to accel-
erate network operations. The RBFN estimates nonlinear 
data into a high-dimensional space through the radial basis 
function of the hidden layer, making it linearly separable. 
Currently, RBFN is commonly used in operations, such as 
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nonlinear function approximation, time series analysis, spa-
tial estimation, and system modeling.

Machine learning models

With the rapid development of technology and the ease of 
obtaining data, the development of AI and big data analy-
sis technology can be considered to be relatively mature. In 
recent years, machine learning and deep learning methods 
have been applied in several studies for classification and 
prediction. Therefore, this study employed four machine 
learning classifiers to predict and classify rainfall amount 
under different conditions.

Naive Bayes classifier

The simple Bayesian classifier was developed based on the 
Bayes’ theorem (Lin et al. 2015; Rish 2001; Webb et al. 
2010), which is mathematically expressed in Eq. (4). The 
simple Bayesian classifier is based on the Bayesian classi-
fier with the assumption of conditional independence, and 
it exhibits a fast and simple operation.

It is difficult to consider the independence of conditions 
from reality, so in 1997, Domingos and Pazzani proposed 
that when the assumption of independence of conditions 
is not established, as the loss function in its classifier is a 
zero–one loss function, it impact on the accuracy of the 
model is slight (Domingos and Pazzani 1997).

(4)P(A|B) = P(A)P(A|B)
P(B)

As Bayes’ theorem derives event probability based on 
conditional probability, the simple Bayesian classifier is 
suitable for processing discrete attribute data, such as gen-
der. However, most observation data in real life are continu-
ous data, so the accuracy of the model can be improved by 
appropriately discretizing continuous data.

Decision tree classifier

Decision tree is often applied to data classification, and it is 
a nonlinear data classification method (Myles et al. 2004). 
The structure of this model is similar to that of a tree, start-
ing from the root and branching out from the children nodes 
under different conditions until the end. Each child node 
represents a specific category or object, and will eventually 
be classified into a certain category to complete the classi-
fication. The basic concept of classification and regression 
tree (CART) is to use a recursive method to binary cut a 
large amount of complex data, and divide the data into two 
sub-data sets at each node.

When the two sets of data are classified into the same 
category, or when the nodes can no longer be divided, the 
construction of the decision tree is completed. For the basis 
of decision tree classification nodes, the commonly used 
index is Gini , and it can be calculated as follows:

When all the data are classified consistently, the Gini 
Index is 0; when the Gini Index is larger, it indicates that 
the data categories of this node are scattered. Therefore, 
CART aims to reduce the Gini Index value to complete the 
classification of each node, and divide the nodes according 

(5)Gini(node) = 1 −
∑

p(i|t)2

Fig. 2  Schematic of the 
architecture of the radial basis 
function network (RBFN)
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to this principle, so that the data property category of each 
node is closer.

Random forest classifier

The machine learning model architecture of random forest 
was proposed by Leo Breiman (Fig. 3) (Belgiu and Drăguţ, 
2016; Breiman 2001). The random forest model creates mul-
tiple decision trees in a random manner, and each decision 
tree is independent of each other. All the decision trees vote 
to determine the output category. The random forest is more 
stable than a single decision tree under multiple variables or 
characteristics (Breiman 2001). To form multiple trees with 
differences, first, it is essential to randomly resample the 
training set into n groups of subsets with a Bootstrap, and 
randomly select m variables. This is to select the minimum 
Gini Index segmentation method to generate multiple CART 
trees with differences, and then select the best classification 
result by combining the classification results of n decision 
trees.

Through the random forest classifier, we can analyze the 
category data and achieve a high accuracy, while suppress-
ing the noise of the training samples. Therefore, this study 
utilized humidity, SSN, SOI, and the wavelet analysis results 
as the classification factors, and the local rainfall anomalies 
of each station are divided into five grades according to their 
size: extremely high, high, medium, low, and extremely low. 
The random forest was used to train the rainfall observation 
data over the years: 80% of the data is the training set, and 
20% is the testing set, which was used to predict and classify 
the rainfall amount under different large-scale factors.

Bayesian networks

Bayesian networks (BN) are probabilistic graphical models 
used to represent and analyze causal relationships among 

factors. This concept combines Bayesian theorem with 
graphical modeling, also known as probabilistic networks. 
This model not only intuitively represents complex relation-
ships among factors through graphs and network structures 
but also enables easy understanding and visualization. Fur-
thermore, it effectively handles uncertainty by conducting 
probability assessments. Additionally, one significant feature 
of the model is its flexibility in incorporating different con-
trol variables or datasets, and dynamically updating them to 
obtain conditional probabilities of target factors. Typically, 
BNs are highly accurate in simulating and predicting causal 
relationships between variables, making them widely appli-
cable in various fields, including medical diagnosis and risk 
assessment. Overall, BNs are efficient, reliable, and flexible 
data analysis tools that play a crucial role in solving com-
plex problems, making them suitable as decision support 
aids (Ben 2007). The BN model is a type of directed acyclic 
graph, where the causal relationships between variables are 
represented by directed edges and nodes. Conditional prob-
ability represents the probability of an event occurring given 
that another event has already occurred.

GeNIe is a graphical BN modeling and analysis tool 
developed by the Decision Systems Laboratory (DSLAB) 
at the University of California, Los Angeles (UCLA). It is 
used to establish models of uncertainty and causal relation-
ships between variables, and it provides a comprehensive 
interface for users to easily build and analyze BN models. 
With GeNIe, users can not only construct BN models among 
variables but can also calculate conditional probabilities, 
enabling their use in applications, such as probability pre-
diction and decision analysis for future events. This study 
aimed to construct a BN model using GeNIe to analyze the 
relationship between rainfall patterns in different regions of 
Taiwan and various variables. The graphical interface and 
features of GeNIe were utilized in this study to construct a 
comprehensive BN model that captures the uncertainty and 

Fig. 3  Schematic of the random 
forest process (Breiman 2001)
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causal dependencies among the variables. By incorporating 
data on rainfall patterns and other relevant factors, the BN 
model will provide insights into the probabilistic relation-
ships between these variables and enable predictions and 
analysis related to rainfall in different regions of Taiwan. 
This study leveraged on the of capabilities GeNIe to calcu-
late conditional probabilities and facilitate decision-making 
and analysis based on the constructed BN model.

Model evaluation index

Confusion Matrix is one of the methods commonly used to 
evaluate the quality of a model. Visual supervision is the 
classification result of learning. If the target is a binary clas-
sification item, the confusion matrix is a 2 × 2 square matrix:

In its two-dimensional square matrix, the category of 
behavior prediction classification is listed as the category 
of actual classification, and the elements in the matrix are 
True Positive (TP), False Positive (FP), True Negative (TN) 
and False Negative (FN). The Accuracy, Precision, Recall 
and F1-score can be calculated using the elements in the 
confusion matrix.

Accuracy:

Precision:

Recall:

F1-score:

In addition to the confusion matrix, cross-validation can 
also be applied to evaluate the pros and cons of machine 
learning models. In this study, we randomly cut the data 
into multiple small subsets, a part of which is the training 
set and the other part is the testing set. The main purpose of 
this was to prevent the training process from significantly 
relying on a specific training and test set data, resulting in 
deviation or overfitting. This study utilized the K-fold cross-
validation (K-fold CV) to randomly divide the data into k 
subsets, one of which is the test set and the rest is the train-
ing set. After running, a validation error is obtained. The 

[
TP FN

FP TN

]

(6)Accuracy =
TP + PN

P + N

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN
=

TP

P

(9)F1 score =
2TP

2TP + FP + FN

action was repeated until each sub-set data was used as the 
test set data, and the process was stopped. The action was 
executed for a total of k times, and k validation errors were 
generated. Lastly, the average value of the k validation errors 
was used as an indicator to determine whether the model is 
good or bad (Browne 2000).

Results

Analysis of the meteorological and large‑scale 
factors

SSN

Research on the variation in sunspot cycles contributes to 
a deeper understanding of solar activity and its impact on 
Earth. In this study, data on SSN were collected and com-
piled from SWPC and NCEI for 60 years (from January 1, 
1960 to December 31, 2020). Figure 4 illustrates the time 
series of the SSN at different time scales, reflecting the 
variation in the sunspot cycles and characteristics, such as 
maximum and minimum values. The image revealed that 
the SSNs followed an approximately 11-year solar cycle, 
where each cycle spans from the minimum value to the next 
minimum value.

Furthermore, the time series plot confirmed that the SSNs 
entered a period of low activity since 2014. The maximum 
values during this period are relatively lower compared to 
those of previous cycles, and this low-activity phase per-
sisted until the end of 2019. Additionally, the SSNs during 
this period remained consistently low, indicating weaker 
solar activity compared to that of the previous 50 years. 
However, from 2020, the SSNs gradually increased, indi-
cating a gradual resurgence of solar activity. Based on the 
observed variation in the cycle, it is expected that the SSNs 
will continue to increase in the coming years, leading to a 
stronger solar activity level.

SOI

It is essential to investigate the ENSO cycle to understand 
global weather patterns and climate change trends. A clearer 
understanding of the characteristics and underlying physical 
mechanisms of ENSO variability can be achieved by com-
bining various methods and techniques. In this study, the 
data for a period of 60 years from January 1, 1960 to Decem-
ber 31, 2020 were collected and compiled from SWPC and 
NCEI. Figure 5 reveals that El Niño and La Niña events 
exhibit a periodicity of approximately 2–7 years over the 
years. Several studies have reported a significant correla-
tion between the ENSO variability and the SOI as a meas-
ure of the ENSO state. Additionally, the figure reveals an 
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increasing amplitude of SOI fluctuations in recent years, 
reflecting increased uncertainty and variability in the global 
climate. In addition, a declining trend in the SOI since 1980 

was observed, with values falling below − 3 in 1983–1984 
and in 2007–2008. Furthermore, significant fluctuations 
in the SOI was observed from 2010 to 2018, with strong 

Fig. 4  Time series of the average sunspot numbers (SSN) at different time scales

Fig. 5  Time series of the southern oscillation index (SOI) from 1951 to 2020
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El Niño and La Niña events, which significantly impacted 
global climate and the environment.

Classification of rainfall levels

This study aimed to identify factors that may influence 
potential rainfall water resources and long-term rain-
fall trend changes using various research methods, and to 
achieve accurate predictions. However, the uneven spatial 
and temporal distribution of rainfall in Taiwan results in 
significant differences in the rainfall seasonality and amount 
in the northern and southern regions. Therefore, by calculat-
ing the anomaly values and appropriately classifying rainfall 
amounts in each region, the study not only eliminated sea-
sonal effects for an improved identification of rainfall anom-
alies but also enhanced the accuracy of the classification 

models. Additionally, models were employed to predict the 
monthly rainfall levels in Taiwan and provides specific rain-
fall warnings. This is expected to serve as a reference for 
future agricultural water use and water resource management 
policies in Taiwan.

Given the significant differences in the rainfall amounts 
across different regions in Taiwan, the probability distribu-
tion of rainfall in each location can be described using prob-
ability density functions. The area under the curve represents 
the probability of obtaining a certain value within a specific 
range of the random variable. Furthermore, the classifica-
tion of the rainfall amounts using cumulative probabilities 
enables the quantification of rainfall frequency and intensity 
in each region, providing a more accurate description of the 
distribution of the frequency and intensity of a particular 
phenomenon, without limitation to a single region. Conse-
quently, this enables comparisons among different regions. 
Therefore, in this study, the monthly average rainfall and 
humidity at each weather station were extracted from the 
historical data obtained from the Central Weather Bureau, 
and the anomalies of each weather station are calculated. 
Figure 6 shows the probability density function curve of 
the rainfall anomalies, and based on the curve and its cor-
responding cumulative probability, the rainfall anomalies 
were divided into five equal levels: very high, high, medium, 
low, and very low.

Wavelet signal analysis

CWT 

Figure 7 shows the continuous wavelet spectrum graphs 
of the SSN and SOI from 1960 to 2020, where the ver-
tical axis is the period, the horizontal axis is the time, 

Fig. 6  Probability density function of the rainfall anomalies at each 
station

Fig. 7  Continuous wavelet spectrogram of the a SSN and b El Nino-SOI from 1960 to 2020
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and the temporal scale is month. The yellow area in the 
figure indicates that the time period exhibits a relatively 
higher magnitude of variation degree (i.e., amplitude of 
the signal) in this time-period, and the blue area indicates 
a smaller magnitude of variation.

The continuous wavelet spectrogram indicated that sun-
spots have a significant cycle of 10–12 years, which is 
consistent with the actual observation data and the findings 
of previous studies (Nazari-Sharabian and Karakouzian 
2020; Thomas and Abraham 2022), which reported that 
the number of sunspots significantly changes according 
to a long-term periodic cycle of approximately 11 years. 
Furthermore, SOI exhibited a relatively higher amplitude 
between a periodic cycle of 2–8 years, which is closely 
related to the cycle of the ENSO phenomenon (An and 
Wang 2000; Jin and Liu 2021). In addition, two notable 
yellow blocks were observed in the wavelet transform 
spectrum of the SOI between 2000 and 2010 in the high-
frequency/low-period band, indicating the short-term 
occurrence of strong El Nino or La Nina events during 
this time period (Fig. 7b).

Figure 8 shows the continuous wavelet spectrum of the 
rainfall at Keelung, Taichung, and Kaohsiung stations from 
1960 to 2020. A significant strong amplitude was observed 
in the annual periodic cycle in the wavelet transform spec-
trum of rainfall. As there is rainfall in the Keelung area all 
year round, the influence of seasonal rainfall in this region 
is not as significant as the influence in other regions (i.e., the 
wet and dry seasons are not distinct). In addition, the ampli-
tude in the annual periodic cycle is smaller than those of the 
other two stations located in central and southern Taiwan.

WTC 

The correlation between two time series in the time–fre-
quency domain can be further understood using WTC analy-
sis, as it enables the assessment of the correlation between 
the two at different time–frequency scales. Figures 9 and 10 
show the WTC spectra of SSN vs rainfall and SOI vs rainfall 
at different demo stations, respectively.

In the WTC time–frequency spectrum, the horizontal axis 
is the time and the vertical axis is the frequency domain. The 

Fig. 8  Continuous wavelet spectrum map of rainfall from 1960 to 2020: a Keelung station, b Taichung station and c Kaohsiung station

Fig. 9  Time–frequency diagram of the wavelet correlation between SSNs and rainfall at different stations: a Keelung station, b Taichung station 
and c Kaohsiung station
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closer the color of the spectrum is to yellow, the higher the 
correlation between the two, whereas the closer the color is 
to blue, the lower the correlation between the two. The arrow 
in the image is the phase angle, and the direction of the 
arrow indicates positive or negative correlation. The arrow 
pointing to the right is the forward phase angle, and that 
pointing to the left is the reverse phase angle. The phase 
angle can reveal the temporal lags between each other under 
the identified periods.

The frequency spectrum of the three measuring stations 
not only exhibited a high negative correlation in the fre-
quency interval of 10–12 years but also exhibited a high 
correlation in the interval of 2–8 years. In addition, the 
degree of correlation has been increasing since 1990. The 

time–frequency WTC spectrum revealed that there was a 
significant correlation between rainfall and SSN and SOI in 
the frequency intervals of 10–12 years and 2–8 years, and 
this correlation increased over time. These wavelet results 
can then be used and applied as important features for future 
rainfall prediction models.

Spatial distribution map of the mean WTC 

To understand the changing trend and spatial distribution 
of the correlation between sunspots and rainfall, this study 
estimated the yearly mean WTC of the entire Taiwan in the 
frequency interval of 10–12 years using RBFN (Fig. 11). 
With 1990 as the boundary, the spatial estimation map 

Fig. 10  Time–frequency diagram of the wavelet correlation between SOI and rainfall at different stations: a Keelung station, b Taichung station 
and c Kaohsiung station

Fig. 11  Spatial estimation map 
of the mean WTC between SSN 
and rainfall in the frequency 
range of 10–12 years from a 
1960–1990 and b 1990–2020
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revealed that the correlation between sunspots and rainfall 
in Taiwan has increased significantly in the recent 30 years, 
and the areas where this phenomenon was most significant 
areas have moved northwards and eastwards from the origi-
nal Chiayi and Yunlin areas to the Taichung-Changhua and 
Yilan-Hualien areas.

Rainfall prediction machine learning models

The analysis results indicated that both sunspots and ENSO 
effect are potential factors influencing the spatio–temporal 
rainfall and hydrological characteristics. Therefore, models 
were constructed based on the information on the sunspots 
and ENSO to predict the monthly rainfall level for all the 
CWB rainfall stations across Taiwan. These models can 
not only accurately predict the rainfall level of the current 
month but can also provide a rainfall warning signal for the 
government.

In this study, humidity, the inverse wavelet transform of 
SSN (ssn_icwt10to12), SOI, and the WTC analysis results 
of the 10–12 years frequency range (wcoh10_12) were used 
as the model input factors, and the rainfall anomalies of each 
station were divided into five levels (extremely high, high, 
medium, low, and very low). Eighty percent of the data was 
used as the training set, and 20% was used as the testing set. 
For different factors, the models performed Monte-Carlo 
cross-validation for prediction and classification of the rain-
fall levels, and optimized the parameter selection. The accu-
racy of the testing set of the four prediction models is shown 
in Table 2, for all CWB stations, and the evaluation index 

for the classification prediction of the random forest model 
is shown in Table 3. Among the four prediction models, 
the BN model exhibited the overall highest accuracy with 
a mean value of 0.857, and this was followed by the simple 
Bayesian classifier model (mean value of 0.770), random 
forest model (mean value of 0.709), and decision tree model 
(mean value of 0.664). The confusion matrix of the classifi-
cation prediction of the random forest model for Hengchun 
station as example is shown in Fig. 12. Sunspots exhibited 
the highest feature importance, which was followed by the 
wavelet correlation coefficient between sunspots and rainfall 
(Fig. 13). Due to the unique confusion matrix and feature 
importance results for each station, we are limited by the 
article’s length and cannot present all the results. Therefore, 
we have chosen Taichung station as an example to show-
case in Fig. 13. Generally, the feature importance results 
for various stations are quite similar, with sunspots having 
the highest feature importance in the 10–12 year wavelet 
feature band. This result confirmed the strong correlation 
between sunspots and long-term rainfall properties. In addi-
tion, improved prediction results were observed in relatively 

Table 2  Accuracy of the testing set of the four prediction models

Naïve
Bayesian

Random
forest

Decision
tree

Bayesian network

Tamsui 0.833 0.841 0.818 0.877
Anbu 0.872 0.873 0.855 0.796
Taipei 0.811 0.805 0.773 0.825
Jutzuhu 0.899 0.886 0.873 0.817
Keelung 0.776 0.764 0.705 0.798
Yilan 0.888 0.895 0.882 0.832
Tainan 0.758 0.505 0.409 0.878
Kaohsiung 0.765 0.527 0.473 0.906
Taichung 0.656 0.541 0.482 0.818
Alishan 0.647 0.555 0.505 0.899
Dawu 0.609 0.677 0.595 0.873
Yushan 0.809 0.768 0.736 0.922
Hengchun 0.738 0.477 0.432 0.908
Chenggung 0.885 0.850 0.832 0.844
Sunmoonlake 0.711 0.700 0.682 0.872
Taitung 0.662 0.677 0.573 0.842
Average 0.770 0.709 0.664 0.857

Table 3  Evaluation index of the classification prediction of the ran-
dom forest model for Hengchun Station as example

Precision Recall F1-score

Training set 0.881 0.873 0.873
Testing set 0.846 0.856 0.862

Fig. 12  Confusion matrix of the classification prediction of the ran-
dom forest model for Hengchun Station as example
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rainy areas (Table 2), and most of these areas are areas with 
higher sunspot and rainfall WTC in Fig. 11. This may be 
attributed to the fact that the rainfall in other regions may be 
affected by extreme rainfall factors, such as typhoons, and 
the factors of rainfall caused by typhoons cannot be directly 
presented in this model and linked with sunspot and ENSO 
effect.

Discussion

In the past, traditional research on the relationship between 
sunspots and rainfall was mostly limited to determining cor-
relations. Only in recent years have studies begun to employ 
time-frequency analysis methods, such as wavelet analysis 
(Bhattacharyya and Narasimha 2005; Nazari-Sharabian and 
Karakouzian 2020; Thomas and Abraham 2022), to inves-
tigate their relationship in the time and frequency domains. 
However, most of these studies also stopped at correlation 
analysis. This study stands out as one of the few to combine 
innovative approaches by integrating wavelet time-frequency 
analysis and machine learning models while considering the 
sunspot and ENSO effect to establish a comprehensive water 
resource forecasting model. It has demonstrated fairly accu-
rate predictions in different regions, which is highly ben-
eficial for long-term water resource management. This is 
particularly valuable for Taiwan, where rainfall distribution 
is highly uneven due to topographical factors and is suscep-
tible to the impacts of climate change, resulting in droughts 
and floods.

Furthermore, this study analyzes and models data over 
a long time scale (60 years) and thoroughly explores the 
spatiotemporal distribution changes of SSN to rainfall in the 
region, rather than only one station. It includes the distribu-
tion of monitoring stations across various spatial locations 
in Taiwan and their changes over time. Additionally, this 

study differs from traditional black-box machine learning 
models. Instead, it utilizes Bayesian Networks and employs 
the Feature Importance method to analyze and confirm that 
sunspots make the most significant contribution to rainfall 
prediction in specific wavelet feature bands.

Owing to the effects of climate change and the primary 
rainfall periods of Taiwan (which occurs during the Meiyu 
season from May to June and the typhoon season from July 
to September), notable variations are observed in rainfall and 
its spatial and temporal distribution in the wet and dry sea-
sons (Chen and Chen 2003; Lee et al. 2020). If the precipita-
tion received during the rainy season and typhoon season of 
the previous year is insufficient, it can result in drought con-
ditions and potentially lead to a severe water shortage crisis 
(Lin et al. 2021). From a macroscopic time scale perspective, 
climate change or slight changes in the overall rainfall in 
the annual rainfall season may directly or indirectly affect 
Taiwan’s drought or flood disasters. In addition, from a mac-
roscopic spatial scale perspective, the El Niño phenomenon 
and solar activities may have a certain impact on the overall 
climate and water resources of the earth (García‐García and 
Ummenhofer 2015; Thomas and Abraham 2022; Vladimiro 
and Guido 2018). In the past, several studies have explored 
the spatio–temporal characteristics of water resources at the 
regional scale, such as the variation of catchment areas or 
alluvial fans at shorter time scales within a few years (Chen 
et al. 2013; Tsai et al. 2014); however, only few studies have 
explored the characteristics of water resource variability at 
the macroscopic spatio–temporal scales.

Compared to the spatial and temporal characteristics of 
water resources at the regional scale investigated in previ-
ous studies, this study considered a macroscopic spatio–tem-
poral scale using actual observation data and combining 
the data at macroscopic time and planetary scales. In this 
study, the variation characteristics of factors in different 
time–frequency domains were extracted using the wavelet 

Fig. 13  Feature importance for the Taichung station as example
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signal analysis method, after which the method was utilized 
to explore the relationship between rainfall in Taiwan and 
the factors that may affect the characteristics of hydrologi-
cal and water resource changes. The time–frequency WTC 
spectrum revealed a high degree of negative correlation 
between rainfall and sunspots in the frequency range of 
10–12 years, which is similar to the conclusion of previous 
studies (Nazari-Sharabian and Karakouzian 2020; Thomas 
and Abraham 2022). In contrast, there was a higher correla-
tion between rainfall and ENSO in the frequency range of 
2–8 years, which is also consistent with the conclusion of 
previous studies (An and Wang 2000; Jin and Liu 2021). In 
addition, the results revealed that the correlation has been 
increasing since 1990. Particularly, the correlation between 
sunspots and rainfall in Taiwan has increased significantly 
in the last 30 years, and the area's most significantly affected 
by this have moved northwards and eastwards from the origi-
nal Chiayi and Yunlin areas to the Taichung-Changhua and 
Yilan-Hualien areas. This suggests a greater relationship 
between sunspots and local regional rainfall characteristics 
in recent years, and also in more areas, which are yet to be 
discovered.

Among the four prediction models, the BN model exhib-
ited the highest accuracy (mean value of 0.857), which was 
followed by the simple Bayesian classifier (mean value of 
0.770), random forest (mean value of 0.709), and decision 
tree (mean value of 0.664) models. In addition, sunspots 
exhibited the highest feature importance, which was fol-
lowed by the wavelet correlation coefficient between sun-
spots and rainfall. These results indicated that the con-
structed models can not only accurately predict the rainfall 
level of the month and give a warning signal for rainfall but 
can also serve as a reference for the future agricultural water 
use and water resource management guidelines in Taiwan.

Conclusion

This study employed a novel data-driven approach to 
investigate the time–frequency relationships between sun-
spot and long-term local rainfall amount, and constructed 
machine learning prediction models to confirm the effect 
of solar activity on long-term local rainfall patterns. The 
results demonstrated that improved prediction results were 
achieved in relatively rainy areas. This could be attributed 
to the possible influence of extreme weather events, such 
as typhoons, on rainfall in other areas, and the inability to 
directly incorporate specific rainfall patterns associated with 
typhoons into this model to establish a connection with sun-
spot activity and the ENSO effect. In addition, the results 
revealed that the relationship between sunspots and local 
rainfall in Taiwan is increasing yearly, regardless of space 

or time; particularly, this was more notable in 1990, which 
was set as the boundary.

These results indicated that rainfall behavior (except 
extreme rainfall caused by typhoon) can be described using 
sunspots and ENSO effect, and this will be beneficial for 
providing water resource management. Although the impact 
of direct sunspots on rainfall may not be significant, the 
wavelet extraction indicated that it is one of the most influen-
tial features, and its impact exceeded that of humidity, which 
is typically believed to exert the greatest impact on rainfall. 
Therefore, we recommend that indicators of planetary-scale 
solar activity, such as sunspots, should be incorporated in 
future long-term water resource management or predictions, 
as it has been confirmed in this study as an important fac-
tor influencing regional rainfall on larger timescales, and 
is even more significant than the El Niño phenomenon and 
humidity.
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