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Abstract
Urbanization, changes in land use and land cover (LULC), and an increase in population collectively have significant 
impacts on urban catchments. However, a vast majority of LULC studies have been conducted using readily available satel-
lite imagery, which often presents limitations due to its coarse spatial resolution. Such imagery fails to accurately depict the 
surface characteristics and diverse spectrum of LULC classifications contained within a single pixel. This study focused on 
the highly urbanized Dry Creek catchment in Adelaide, South Australia and aimed to determine the impact of urbanization 
on spatiotemporal changes in LULC and its implications for the land surface condition of the catchment. Very high spatial 
resolution imagery was utilized to examine changes in LULC over the past four decades. Support Vector Machine-learning-
based image classification was utilized to classify and identify the changes in LULC over the study area. The classification 
accuracy showed strong agreement, with a kappa value greater than 0.8. The findings of this analysis showed that extensive 
urban development, which expanded the built-up area by 34  km2, were responsible for the decline in grass cover by 43.1  km2 
over the last 40 years (1979–2019). Moreover, built-up areas, plantation, and water features, in contrast to grass cover, have 
demonstrated an increasing trend during the study period. The overall urban expansion over the study period was 136.6%. 
Urbanization intensified impervious area coverage, increasing the runoff coefficient, equivalent impervious area, and curve 
number by 60.6%, 60.6%, and 7.9%, respectively, while decreasing the retention capacity by 38.6%. These modifications 
suggest a potential variability in catchment surface runoff, prompting the need for further research to understand the surface 
runoff changes brought by the changes in LULC resulting from urbanization. The findings of this study can be used for land 
use planning and flood management.
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Introduction

Population growth and increased migration to urban areas 
have contributed to have increased urbanization affecting 
the LULC dynamics of an area (Aburas et al. 2019; Gashu 
and Gebre-Egziabher 2018; Shawul and Chakma 2019), 
consequently influencing the quantity of runoff and sedi-
ment transport (Bledsoe 2002). Urbanization is a worldwide 
phenomenon characterized by increasing built-up features 
and the conversion of natural landscapes for residential, 

commercial, and industrial land use activities (Li et al. 
2018; Pradhan 2017). Urban sprawl transforms non-urban 
land into built-up areas (roads, rooftops, parking lots, and 
other urban surfaces), which significantly increases the pro-
portion of impervious surfaces (Ding et al. 2022; Li et al. 
2018) causing considerable flooding and waterlogging in 
urban catchments (Moniruzzaman et al. 2020). This results 
in decreased infiltration, higher surface runoff, and flooding 
in downstream areas (Feng et al. 2021).

The analysis of LULC changes is necessary to determine 
the extent and magnitude of urban expansion (Grigorescu 
et al. 2021). Studying changes in LULC is essential for 
evaluating its environmental impact in terms of both spa-
tial and temporal dimensions (Gashu and Gebre-Egziabher 
2018; Shawul and Chakma 2019), including the influence 
on river discharge and sediment yield. Remote sensing plays 
an important role in detecting LULC changes (Jamali et al. 
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2022; Jat et al. 2008; Rojas et al. 2013; Sidhu et al. 2018) 
and their impact on runoff (Demeke and Andualem 2018), 
sediment yield, and channel morphology. IDRISI Selva 
(IDRISI), Sentinel Application Platform (SNAP), Earth 
Resources Data Analysis System (ERDAS Imagine), Envi-
ronment for Visualizing Images (ENVI), ArcGIS Pro and 
Google Earth Engine are the most common remote sensing 
tools used for LULC classification (Jamali et al. 2022; Jat 
et al. 2008; Sidhu et al. 2018).

Several image classification methods, including the ISO 
cluster unsupervised classification, Maximum Likelihood 
(ML), random tree, Support Vector Machine (SVM), and 
K-nearest neighbor, can be used to produce a LULC map 
and assess the impact of urbanization (Chandra and Bedi 
2021). Unlike unsupervised classification, supervised clas-
sification allows the user to select image pixel samples to 
classify data into groups, such as special subcategories, 
by providing training samples to cluster new inputs into 
predefined groups, map features according to their respec-
tive groups, and to provide high accuracy (Hu and Dong 
2018; Nguyen 2020). The most frequent approach in land 
use classification and change detection is supervised image 
classification, which is a user-guided classification utiliz-
ing training samples. The most successful technique for 
detecting changes in land use has been identified as SVM 
(Kesikoglu et al. 2019). In comparison with other classi-
fication techniques, recent studies have demonstrated that 
supervised image classification using an SVM classifier has 
the highest accuracy in LULC analysis (Basheer et al. 2022; 
Dabija et al. 2021; Thanh Noi and Kappas 2017; Xie and 
Niculescu 2021). The SVM classifier uses statistical learning 
theory and is an advanced and powerful machine learning 
classification technique (Chandra and Bedi 2021; Moham-
med and Sulaiman 2012). It can handle segmented raster 
data and common image inputs with less noise susceptibil-
ity (Ding et al. 2022; Lamine et al. 2018). In addition, this 
approach makes use of object-based classification, which 
involves image segmentation using spatial, spectral, and size 
information. This approach more closely mimics real-world 
features and yields more accurate categorization results for 
high-resolution imageries (Blaschke et al. 2014; Li and Shao 
2014; Peña et al. 2014).

The accuracy of LULC change detection studies are 
dependent on spatial scale or map resolution (Manandhar 
et al. 2010). LULC change analysis has been conducted in 
several studies by employing different satellite imagery 
resolutions. Some studies have utilized a coarse spatial 
resolution of 250-m from a Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor (Yin et al. 2014), and 
60 m (Ding et al. 2022); while, others have worked with 
moderate resolutions of 15 m (Mansour et al. 2020), and 
30 m (Hu and Dong 2018; Hussien et al. 2022; Malede 
et al. 2022; Silva et al. 2018). The spatial resolution of 

imagery affects the accuracy of classification and repre-
sentativeness of the resulting LULC map for the intended 
purposes (Chen et al. 2004; Fisher et al. 2018). The pro-
vision of high-resolution spatial imagery of urban areas 
(Chen et al. 2004; Zhen et al. 2013) provides an oppor-
tunity to clearly identify the pervious and impervious 
surface conditions of the study area. Unlike coarse reso-
lution pixels (such as 30 × 30 m), finer resolution pixels 
(2.5 m and finer) can be utilized to distinguish road, roof, 
grass, and tree characteristics that can be present within a 
30 × 30 m ground spatial position. Satellite sensors such 
as Landsat, Sentinel, and/or ASTER have high spectral 
resolution and multispectral bands such as Red Edge 
(RE), Near Infrared (NIR), Shortwave Infrared (SWIR), 
and Thermal Infrared (TIR), which are effective for mois-
ture/water extraction and vegetation health (Amani et al. 
2018). Compared to high spectral resolution, their spatial 
resolution is inadequate for distinguishing various land 
use aspects that depict surface imperviousness. Therefore, 
this study employed high-resolution SPOT5 pan-sharp-
ened satellite and aerial imagery to quantify the spatial 
and temporal extent of LULC change and its implications 
on the surface imperviousness of a catchment.

It is crucial to manage and mitigate the ecological and 
geomorphological effects of urban development by com-
prehending the effects of urbanization on fluvial systems 
and sedimentation through the analysis of spatiotemporal 
changes in urbanization (Chin et al. 2013; Ciupa & Suli-
gowski 2020; O’Driscoll et al. 2010). Surface impervious-
ness is comparatively high in established urban catchments 
and has been associated with higher runoff and lower levels 
of total suspended sediment discharge (Myers et al. 2021). 
Therefore, in recent years, determining how urbanization 
the affects hydrology of the catchment and channel stability 
has gained significant importance (O’Driscoll et al. 2010).

The Dry creek catchment is an urbanized catchment in 
the metropolitan area of Adelaide, South Australia, with 
significant land use changes due to urban sprawl since the 
1970s (Wilkinson 2005). These changes have resulted in 
alterations to the surface imperviousness and hydrological 
system of the catchment. A recent modeling study focused 
on the Parafield stormwater harvesting scheme, a part of 
the Dry Creek catchment, has revealed that urban develop-
ment within the catchment could potentially result in a 20% 
increase in impervious area (Clark et al. 2015). However, to 
date, no research has been undertaken within the catchment 
to explore the implications of urban-induced LULC changes 
and their influence on the surface imperviousness of the 
area. Therefore, this study aimed to examine the long-term 
spatiotemporal trends of urban-induced LULC change and 
its implication on surface imperviousness over the urbanized 
Dry Creek catchment between 1979 and 2019 using very 
high-resolution multispectral imagery.
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Materials and methods

Study area description

This study focused on the Dry Creek catchment, which 
is located in the Northern part of Adelaide, South Aus-
tralia. The catchment is located between 138°35′0″ and 
138°46′0″ E longitude and 34°51′18″ and 34°45′28″ S lati-
tude (Fig. 1). The study area covers about 115.4  km2. The 
inner norther suburbs of Adelaide, which encompass the 
Dry Creek catchment, were projected to reach a population 
of 315,367 by 2021 (Department of Planning Transport 
and Infrastructure 2019a). The topography of the catch-
ment ranges between 0 and 424.81 m AHD (Australian 
Height Datum). The annual rainfall of the catchment 
ranges between 450 and 700 mm (The Goyder Institute 
for Water Research 2016).

In contrast to the upper watershed, which is primarily 
rural, the lower catchment is primarily dense residential, 
commercial, and industrial, and contains some salt fields 
scheduled for development and various constructed wet-
lands. According to the Department of Planning, Trans-
port and Infrastructure (DPTI) (Department of Planning 
Transport and Infrastructure 2017), the 30-year plan for 
Greater Adelaide showed that the Dry Creek catchment 
area has been marked as a potential urban growth area. 

The increase in urban growth rises the impervious sur-
face area with a potential of flooding to the downstream 
environment.

Data source

Very high-resolution aerial imagery (1979 and 2019) and 
SPOT imagery (2006) were obtained from the South Aus-
tralian Department for Environment and Water (DEW) and 
used to identify the various LULC types found through-
out the catchment (Table 1). The study period was chosen 
based on the availability of very high-resolution imagery 
encompassing the entire catchment, as well as the period 
when the population began to grow, potentially resulting 
in urban expansion. The higher resolution (0.075 m and 
0.25 m) imagery was resampled using the nearest neighbor 
resampling technique to a lower resolution (2.5 m) prior 
to undertaking the classification to make change detection 
simple. The data were pre-processed (resampling and seg-
mentation) and used in the ArcGIS Pro 3.0 environment to 
create LULC maps.

Although raster imagery with smaller cell sizes results 
in a larger file size and takes longer to process, its impor-
tance in LULC classification cannot be overstated. This is 
due to its higher spatial resolution, which provides finer 
details of land surface features. The hydrologic soil group 
of the area was retrieved from the global hydrologic soil 
group and resampled to 2.5 m resolution using the nearest 
neighbor resampling technique to estimate the curve number 

Fig. 1  Location map of dry creek catchment
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for the respective LULC class and corresponding soil (Ross 
et al. 2018). The nearest neighbor resampling technique was 
selected since it is appropriate for categorical data and does 
not alter the value of the input cells.

Image classification

The number of LULC classes was determined by the cur-
rent condition of the catchment by visual inspection of the 
ground information and the imagery, the spatial and spectral 
resolution of the imagery, the availability of various land 
use practices, and the intended purpose of the classifica-
tion output or the fineness of the classification. Preliminary 
investigations were conducted by visiting the catchment and 
viewing high-resolution images on Google Earth Pro. Typi-
cal land use classes in urban settings include built-up areas, 
vegetation, water bodies and/or wetlands, green spaces, 
open land, and cropland (Gashu and Gebre-Egziabher 
2018; Moniruzzaman et al. 2020). By visual inspection of 
high-resolution imagery, four land use land cover classes 
(built-up, grass, water, and plantation/trees) were identified 
as present within the Dry Creek catchment and were thus 
chosen for the classification (Table 2).

The image segmentation procedure, which combines 
neighboring pixels that are similar in color and have geo-
metric properties, is commonly utilized during image clas-
sification using SVM. Three criteria (spectral detail, spatial 
detail, and minimum segment size in pixels) govern the 
separation of images into objects in image segmentation. A 
classification schema is necessary to establish the number 

and type of classes to be utilized for supervised classifica-
tion. In the ArcGIS Pro 3.0 environment, a schema with four 
LULC classes was created and saved in an Esri classification 
schema file (.ecs), which employs JSON syntax (https:// pro. 
arcgis. com/ en/ pro- app/ latest/ help/ analy sis/ image- analy st/ 
the- image- class ifica tion- wizard. htm accessed on December 
15, 2022). User-defined training samples were prepared at 
randomly distributed locations (Fig. 2 and Table 3) for each 
LULC class. Object-based SVM image classification was 
carried out by generating 500 randomly stratified training 
samples per class.

Classification accuracy

The assessment of image classification accuracy helps to 
evaluate the precision of classification results, ensuring the 
reliability of subsequent analysis and applications (Foody 
2008; Zhang et al. 2020). To verify the accuracy of clas-
sification, validation polygons were selected through a 
stratified random sampling approach, based on clearly dis-
tinguishable features observed in both aerial imagery and 
SPOT imagery. Five hundred randomly generated points 
were derived from the sampled polygon (Table  3 and 
Fig. 3). These points were then compared with the clas-
sified image to assess the accuracy of the classification. 
After evaluating the classification accuracy performance 
indicators, a post-classification carried out, resulting an 
improved classification accuracy. To assess the accuracy of 
classifications, a confusion matrix was generated and used 
to calculate the key parameters such as overall accuracy 

Table 1  Details of the data used 
for this study

* DEW = Department of Environment and Water, R = Red, G = Green, B = Blue, CIR = Color infrared, 
ORNL DAAC = OAK RIDGE National laboratory distributed active archive center for biogeochemical 
dynamics, Australian bureau of statistics

Data type Date captured Spatial reso-
lution (m)

Spectral resolution Source

Aerial imagery 19–27 March 1979 0.25 R, G, B DEW
SPOT imagery 9 January 2005–16 

October 2006
2.5 R, G, B, CIR DEW

Aerial imagery 12–14 January 2019 0.075 R, G, B DEW
Hydrologic soil group 250 ORNL DAAC 
Population ABS

Table 2  Description of land use 
land cover classes

LULC class Description

Built-up Residential, commercial and services, industrial, socio-economic 
infrastructure and mixed urban and other urban, transportation, 
roads and airport, and bare ground

Grass Parks, sport fields, and backyards
Water Rivers, ponds, and reservoirs
Plantation/trees Trees, shrubs, and mixed forest

https://pro.arcgis.com/en/pro-app/latest/help/analysis/image-analyst/the-image-classification-wizard.htm
https://pro.arcgis.com/en/pro-app/latest/help/analysis/image-analyst/the-image-classification-wizard.htm
https://pro.arcgis.com/en/pro-app/latest/help/analysis/image-analyst/the-image-classification-wizard.htm
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(OA), kappa coefficient (k), users’ accuracy (UA), and 
producers’ accuracy (PA) parameters (Adelisardou et al. 
2022; Shawul and Chakma 2019; Zhang et al. 2020).

The individual class accuracy was assessed using the 
two indices PA and UA, which were computed using 
Eqs. 1 and 2, respectively (Congalton and Green 2019). 
The former index, PA reflects the likelihood of a refer-
ence pixel being correctly classified, while the later index, 
UA indicates the likelihood that a pixel classified on the 
map depicts that category on the ground (Congalton 1991). 
The OA that provides a comprehensive measure of how 
accurately the model predicts the correct class across all 
classes, is computed using Eq. 3 (Liu et al. 2007). The 
kappa coefficient evaluates how accurately the classifica-
tion performed as compared to just randomly assigning 
values. The kappa coefficient measures the agreement 
between classification and truth values (Table 4) and has 
a value between 0 and 1, with 1 being perfect agreement 
and 0 representing no agreement. The kappa analysis is 
a discrete multivariate approach for testing classification 
accuracy or agreement between classified and reference 
data points (Rwanga and Ndambuki 2017).

Change detection

Post-classification comparison was used to detect changes 
in LULC at three different time periods. Change detection 
can be either a categorical change, pixel value change, or 
time series change. Categorical change computes the change 
between two thematic rasters and quantifies and explores 
the pixels that are changed or remained unchanged. The 
pixel value change computes the absolute or relative change 
between the two continuous raster images. Time series 
change uses LandTrendr to analyze changes in a multidi-
mensional raster and compute the date on which each pixel 
changed. LandTrendr uses regression—and vertex-to-ver-
tex-based trajectory fitting to detect abrupt events, such as 
disturbances, as well as longer duration processes, such as 
regrowth (Kennedy et al. 2010). Change detection was per-
formed using a comparative analysis of spectral classifica-
tions produced independently at times t1 and t2 (Hussien 
et al. 2022). The percentages of LULC change detection 
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i
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n
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n
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n−1
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Fig. 2  Overall research framework

Table 3  Training and validation samples used for classification and 
accuracy assessment

LULC class Training samples Validation samples

Number of 
samples

Pixels (%) Number of 
samples

Pixels (%)

Built-up 98 35.9 96 44.6
Grass 16 44.2 16 33.4
Plantation/trees 24 10.4 7 18.6
Water 5 9.5 3 3.3
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and the rate of change were estimated using Eqs. 5 and 6, 
respectively.

where Δ is percent change, Rc is rate of change, Rue is rate 
of urban expansion, N is the number of years between the 

(5)Δ =
CA

n
− CA

n−1

CA
n−1

∗ 100

(6)R
C
=
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n
− CA

n−1

N

(7)R
ue
=

BA
n
− BA

n−1

BA
n−1 ∗ N

∗ 100

two LULC maps, CAn–1 and CAn are the initial and final 
LULC class area coverage (in  km2), BAn–1 and BAn, are the 
built-up area at time tn–1 and tn (in  km2). The rate of urban 
sprawl/expansion between the three study periods was also 
determined using Eq. 7.

Impact of urbanization on surface imperviousness

Surface imperviousness is altered by urbanization; impervi-
ousness can be evaluated in hydrological studies using the 
runoff coefficient, curve number, and retention capacity. In 
this study, built-up areas, such as buildings, parking lots, 
and roadways, were considered as impervious surfaces. The 
curve number represents the stormwater runoff capacity of a 
drainage basin. It is an empirical measure used in hydrology 
to anticipate direct runoff or infiltration from excess rainfall 
(Cronshey et al. 1985), and is estimated as a function of land 
use, soil type, and antecedent catchment moisture using the 
Soil Conservation Service (SCS) Technical Release 55 (TR-
55) tables (SCS 1986). The ArcGIS Pro 3.0 environment was 
used to combine the LULC and hydrologic soil groups and 
apply the corresponding curve number value using the SCS 
TR-55 table. Equation 8 was used to calculate the composite 
curve number value for each year. The potential maximum 
retention is a measure of a watershed’s ability to extract and 
absorb storm precipitation and is calculated using Eq. 9 from 
the curve number. The runoff coefficient, which quantifies the 
percentage of rainwater flowing out of a certain surface during 

Fig. 3  Spatial distribution of training samples (left) and validation samples (right)

Table 4  Error matrix with nij representing the pixel count in the 
mapped land cover category i and the reference land cover category j 
adapted from Congalton and Green (2019)

n is the total pixel count

Classified Reference

1 2 3 4 Total

1 n11 n12 n13 n14 n1 +
2 n21 n22 n23 n24 n2 +
3 n31 n32 n33 n34 n3 +
4 n41 n42 n43 n44 n4 +
Total n + 1 n + 2 n + 3 n + 4 n
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a storm event, was assigned for each year and LULC class. 
Equation 10 was used to generate the weighted runoff coeffi-
cient and Eq. 11 for estimating the equivalent impervious area 
that are used to compute runoff utilizing the rational technique 
for individual LULC class.

(8)CNcomposite =

∑

Ai ∗ CNi
∑

Ai

(9)S =
25400

CN
− 254

(10)Cw =

∑

Ai ∗ Ci
∑

Ai

where CNcomposite is the composite curve number used for 
runoff volume computations; Cw is the weighted runoff 
coefficient; i is an index for the catchment subdivisions of 
uniform land use and soil type; CNi is the curve number for 
subdivision i; Ci is runoff coefficient value for each subdivi-
sion; EIA is the equivalent impervious area  (km2), and Ai is 
the drainage area of subdivision i  (km2).

Results and discussion

Accuracy of LULC classification

The overall accuracy and kappa coefficient obtained from the 
confusion matrix agreed consistently demonstrated strong 

(11)EIA = C
i
× A

i

Table 5  Classification accuracy 
of 1979 aerial imagery

* Overall accuracy

Class name Built-up Grass Plantation/trees Water Total UA kappa

Built-up 148 2 0 0 150 0.99
Grass 14 196 6 0 216 0.91
Plantation/trees 14 18 69 0 101 0.68
Water 0 0 2 31 33 0.94
Total 176 216 77 31 500
PA 0.84 0.91 0.90 1.00 0.89*
kappa 0.83

Table 6  Classification accuracy 
of 2006 SPOT imagery

* Overall accuracy

Class name Built-up Grass Plantation/trees Water Total UA kappa

Built-up 144 0 0 0 144 1.00
Grass 30 215 2 0 247 0.87
Plantation/trees 2 1 75 0 78 0.96
Water 0 0 0 31 31 1.00
Total 176 216 77 31 500
PA 0.82 1.00 0.97 1.00 0.93*
kappa 0.89

Table 7  Classification accuracy 
of 2019 aerial imagery

* Overall accuracy

Class name Built-up Grass Plantation/trees Water Total UA kappa

Built-up 186 0 0 0 186 1.00
Grass 15 146 1 0 162 0.90
Plantation/trees 22 21 92 0 135 0.68
Water 0 0 0 17 17 1.00
Total 223 167 93 17 500
PA 0.83 0.87 0.98 1.00 0.88*
kappa 0.83
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agreement, with values exceeding 0.83 for all three periods 
(Tables 5, 6, 7). According to McHugh (2012), classifica-
tion accuracy is considered strong when the kappa values 
range between 0.80 and 0.90. SPOT imagery outperformed 
others in classification accuracy, with an overall accuracy 
and kappa coefficient values of 0.93 and 0.89, respectively 
(Table 6). This is attributed to SPOT’s four spectral bands 
(red, green, blue, and color infrared) spectral resolution, 
which facilitate clear differentiation between various LULC 
classes. A similar study conducted in Melbourne by Jamei 
et al. (2022) obtained comparable kappa coefficient values of 
82.3% using the random forest tree classification algorithm. 
Rwanga and Ndambuki (2017) also stated that the classifi-
cation is regarded as almost perfect when the kappa value 
falls between 0.81 and 1. Similarly, Hussien et al. (2022) 
also found a comparable kappa value of 0.93 for the Abbay 
River Basin.

Spatiotemporal land use and land cover maps

The classification results revealed that in 1979, the catch-
ment was dominated by grass cover occupying an area of 
67.65  km2 followed by built-up and plantation with 24.9  km2 
and 22.52  km2 areal coverage, respectively (Table 8). By 
2006, the catchment’s LULC distribution shifted with 

built-up and grass areas covering 45.58  km2 and 41.27  km2, 
respectively. Furthermore, in 2019, the built-up area within 
the catchment significantly expanded to 58.88  km2 while 
grass cover reduced to 35.76  km2. On the other hand, planta-
tion and water features showed negligible changes over the 
40-year period. Statistica (2023) also reported that Austral-
ia’s urbanization rate has consistently been over 80% since 
the 1960s, reaching the highest rate of 86.36% in 2021 that 
increases the built-up area.

From the spatial map of the LULC maps, it was observed 
that grass was dominantly found in the eastern and central 
parts of the catchment in 1979. Most plantation/tree LULC 
classes have been found in the eastern (upper) parts of the 
catchment over the last four decades (Fig. 4).

Spatiotemporal changes in LULC classes

The LULC maps for 1979, 2006, and 2019 indicated a 
substantial trend of LULC change over the last four dec-
ades. Notably, the built-up areas expanded by 33.98  km2 
(29.46%) while the grass cover diminished by 43.09  km2 
(33.73%) between 1979 and 2019. During this period, the 
rate of change of grass cover changes closely corresponded 
to the rate of the built-up area change, with a decrement of 

Table 8  LULC classification 
results of dry creek catchment

Land use name 1979 2006 2019

Area  (km2) Percentage Area  (km2) Percentage Area  (km2) Percentage

Built-up 24.90 21.57 45.58 39.49 58.90 51.03
Grass 67.65 58.61 41.27 35.76 24.56 21.28
Plantation/trees 22.52 19.51 27.97 24.23 31.22 27.05
Water 0.35 0.30 0.60 0.52 0.75 0.65
Total 115.42 100 115.42 100 115.42 100

Fig. 4  Spatiotemporal distribution of LULC classes in Dry Creek catchment
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−1.08  km2/yr for grass cover and increment of 0.85  km2/yr 
for built-up areas (Table 9 and Fig. 5).

In comparison with the plantation and water classes, the 
built-up area increased extensively. Regardless, grass cover 
has consistently declined over all time periods. The water 
class increased due to the construction of Mawson Lakes 
and other reservoirs in some parts of the catchment and pond 
water in the upstream parts of the catchment in mining holes. 
Between 2006 and 2019, the rate of change in built-up area 
was 1.03  km2/yr; whereas, the rate of change in grass cover 
was −1.29  km2/yr.

Plantation coverage increased due to the implementa-
tion of Urban Forest Biodiversity Program (UFBP, 2002) 
and urban greening, which includes private greening, 
streetscapes and transportation corridors, riparian vegeta-
tion or green and blue corridors, and urban parks. Riparian 
landscapes (lands near rivers and streams) help to stabilize 
stream channel morphology, protect streams from upland 
pollution sources, and divert sediment-producing activities 
away from the stream (McKergow et al. 2003).

Post-classification categorical LULC change detection 
was carried out in ArcGIS Pro 3.0. A significant transition 
from grass to built-up areas was noted due to increased pop-
ulation and urbanization, with strong demand for residen-
tial, commercial, and industrial buildings with car parks and 
roadways. There was also a visible transition from built-up 
area to grass cover. This was because places under devel-
opment were entirely regarded as built-up areas and later 

developed with backyards and some trees, particularly in 
residential districts.

The spatial changes in LULC and urbanization showed 
that the central, northeastern, and southern parts of the 
catchment significantly changed from grass cover to built-
up areas in the three consecutive study periods (Fig. 6). This 
resulted in an overall increase in impervious area throughout 
the catchment. The plantation/trees showed a slight increase 
due to the conservation practices of river buffers and parks 
as well as an overall urban greening. The development of 
Mawson Lakes Pond in downstream areas and other ponds 
in upstream mining areas resulted in a minor increase in the 
spatial distribution of water features within the catchment. 
During the period between 1979 and 2006, approximately 
55.7% of the catchment experienced distinct categorical 
changes in LULC distribution (Table 10). Furthermore, 
between 2006 and 2019, approximately 44.08% of the catch-
ment experienced categorical shift in LULC (Table 11). 
Notably, over the entire study period (1979–2019), approx-
imately 62.98% of the catchments showed categorical 
changes between the LULC classes (Table 12). A research 
conducted by Manandhar et al. (2010) in the Lower Hunter 
district of New South Wales also reported that approxi-
mately 28% of the study area underwent changes in land 
use and land cover classes.

Approximately 72.68  km2 of the catchment area expe-
rienced categorical LULC changes between 1979 and 
2019, with a maximum extent of 32.26  km2 of grass cover 

Table 9  Rate of LULC change over the study period

LULC class Change between 1979 and 2006 Change between 2006 and 2019 Change between 1979 and 2019

Area  (km2) % change Rate of 
change  (km2/
yr)

Area  (km2) % Change Rate of 
change  (km2/
yr)

Area  (km2) % Change Rate of 
change  (km2/
yr)

Built-up 20.68 83.05 0.77 13.32 29.22 1.02 34.00 136.55 0.85
Grass −26.38 −38.99 −0.98 −16.71 −40.49 −1.29 −43.09 −63.70 −1.08
Plantation/trees 5.45 24.20 0.20 3.25 11.62 0.25 8.70 38.63 0.22
Water 0.25 71.43 0.01 0.15 25.00 0.01 0.40 114.29 0.01

Fig. 5  Percentage change in 
each LULC class over the study 
period
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Fig. 6  Spatial categorical changes of LULC between the three study periods

Table 10  Categorical LULC changes between 1979 and 2006

Category 1979 2006 Area  (km2) % Change

Changed Built-up Grass 7.19 6.23
Built-up Plantation/

trees
3.71 3.21

Built-up Water 0.20 0.17
Grass Built-up 23.35 20.23
Grass Plantation/

trees
15.53 13.46

Grass Water 0.29 0.25
Plantation/

trees
Built-up 7.71 6.68

Plantation/
trees

Grass 5.87 5.09

Plantation/
trees

Water 0.09 0.08

Water Built-up 0.17 0.15
Water Grass 0.10 0.09
Water Plantation/

trees
0.08 0.07

Total 64.29 55.70
Unchanged Built-up Built-up 14.34 12.42

Grass Grass 28.10 24.35
Plantation/

trees
Plantation/

trees
8.66 7.50

Water Water 0.03 0.03
Total 54.13 44.30

Table 11  Categorical LULC change between 2006 and 2019

Category 2006 2019 Area  (km2) % Change

Changed Built-up Grass 5.34 4.63
Built-up Plantation/

trees
6.40 5.55

Built-up Water 0.28 0.24
Grass Built-up 18.38 15.93
Grass Plantation/

trees
8.40 7.28

Grass Water 0.10 0.09
Plantation/

trees
Built-up 6.67 5.78

Plantation/
trees

Grass 4.81 4.17

Plantation/
trees

Water 0.12 0.10

Water Built-up 0.29 0.25
Water Grass 0.02 0.02
Water Plantation/

trees
0.06 0.05

Total 50.87 44.08
Unchanged Built-up Built-up 33.54 29.06

Grass Grass 14.40 12.48
Plantation/

trees
Plantation/

trees
16.36 14.18

Water Water 0.24 0.21
Total 64.54 55.92
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converted to built-up. During the study period, only 37.02% 
of the catchment area remained unchanged (Table 12). In 
addition to categorical change identification, works such as 
Manandhar et al. (2010) employ post-classification change 
detection based on a transition matrix constructed with two-
dimensional tables, with the rows of the matrix illustrating 
the initial map class and the columns representing the sub-
sequent map categories. Jamei et al. (2022) reported similar 
findings in Melbourne, where population growth and urban 
expansion caused a notable change in LULC.

The study found that urban expansion across the entire 
study period was 34  km2, with an average annual change rate 
of 3.41% specifically within the built-up area. This observa-
tion indicated that urban development in the study area has 

been increasing (Table 13). In a similar study conducted by 
Ma and Xu (2010) in Guangzhou City, China, revealed a 
notably higher annual rate of change reaching 9.7% during 
the study period between 1995 and 2002.

Population growth and contributions to LULC

According to the Australian Bureau of Statistics (ABS), 
Australia’s population has increased by over 25% from 
2001 to 2016, reaching twenty-four million people. Cur-
rently, 90% of Australians live in cities, which was 60% in 
1911. Notably, overseas migration currently has accounted 
for slightly over 55% of Australia’s population growth since 
2001, making it as the predominant contributor to the coun-
try’s population growth (ABS 2019). The Australian Bureau 
Statistics data for South Australia showed that the state’s 
population increased by 251,420 residents between 1979 and 
2006, followed by an increase 226,284 individuals between 
2006 and 2021 (Table 14).

The population statistics of inner north suburbs of Ade-
laide, in which Dry Creek is located, has shown consist-
ent upward trajectory from the baseline census population 
in 2016 to the 2036 projection (Table 15). Between 2016 
and 2021, there was a noticeable increase of 11,882 people. 
This rate of growth is anticipated to be maintained, with the 
population expected to increase by 34,128 people between 
2021 and 2036 (Department of Planning Transport and 
Infrastructure 2019b). This projected increase in popula-
tion will increase demand for the number of new residential 
houses and other institutional, commercial, and recreational 
built-up areas. The increase in population, has directly con-
tributed to the increase in built-up area coverage in the Dry 
Creek catchment. This demonstrates how the need for resi-
dential buildings, parking lots, and other infrastructure has 
been raised by an expanding population. There was a strong 
correlation between the changes in LULC and population 

Table 12  Categorical LULC change between 1979 and 2019

Category 1979 2019 Area  (km2) % Change

Changed Built-up Grass 3.60 3.12
Built-up Plantation/

trees
4.66 4.04

Built-up Water 0.16 0.14
Grass Built-up 32.26 27.95
Grass Plantation/

trees
17.58 15.23

Grass Water 0.48 0.42
Plantation/

trees
Built-up 9.95 8.62

Plantation/
trees

Grass 3.61 3.13

Plantation/
trees

Water 0.07 0.06

Water Built-up 0.18 0.16
Water Grass 0.05 0.04
Water Plantation/

trees
0.08 0.07

Total 72.68 62.98
Unchanged Built-up Built-up 16.49 14.29

Grass Grass 17.32 15.01
Plantation/

trees
Plantation/

trees
8.89 7.70

Water Water 0.03 0.03
Total 42.73 37.02

Table 13  Urban expansion rate in dry creek catchment during the 
three study periods

Urban expansion 1979–2006 2006–2019 1979–2019

Expansion area  (km2) 20.6 13.32 34.00
Expansion percentage (%) 83.05 29.22 136.55
Expansion rate  (km2 a − 1) 0.77 1.02 0.85
Annual change rate (%) 3.08 2.25 3.41

Table 14  South Australia population growth statistics

Year 1979 2006 2016 2021

Total popula-
tion growth 
rate

0.38 0.89 0.72

Population 1,301,109 1,552,529 1,712,843 1,778,813

Table 15  Projected population for South Australia (SA) and inner 
north suburbs of Adelaide (AIN)

Year 2016 2021 2026 2031 2036

AIN 303,485 315,367 329,188 340,452 349,495
SA 865,966 898,985 935,976 971,602 1,004,613
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changes. While most LULC classes showed a strong posi-
tive correlation, grass cover demonstrated a strong negative 
correlation (Fig. 7). Although, the amount of data available 
is limited in performing an in-depth quantitative analysis 
of the historical trends and correlation between changes in 
LULC and population, the trends presented using the avail-
able data reveal that ongoing population changes will con-
tinue to influence the changes in LULC across the Dry Creek 
catchment.

Ding et al. (2022) confirmed a similar result, with a 
growth in population having a substantial positive associa-
tion with an increase in urban land. Similarly, Ouedraogo 
et al. (2010) investigated the significant relationship between 
the population and areas of cropland and open woodland 
in Burkina Faso. From the projected population, it was 
observed that the population will continue to increase 
impacting the current LULC, which further impacts the 
hydrology of the catchment.

Urbanization impact on catchment surface 
imperviousness

The surface imperviousness of a catchment is highly inter-
related to the runoff coefficient and runoff generation capac-
ity (Feng et al. 2021). In the Dry Creek catchment, signifi-
cant urbanization has increased the built-up areas. Surface 
imperviousness is significantly correlated with built-up 
areas in the catchment. Built-up areas were classified as 
impermeable surfaces; whereas, water, grass, and planta-
tion cover were classified as pervious. The analysis of the 
Dry Creek catchment revealed a marked 136.55% rise in 

imperviousness, with corresponding 37.56% decrease in per-
vious areas (Table 16). This suggests that the conversion of 
other LULC classes to built-up classes as a result of urbani-
zation contributes to surface imperviousness (Shuster et al. 
2005). An increasing trend of urbanization across the catch-
ment makes a direct influence on the runoff coefficient and 
equivalent impervious area (Fig. 8 and Table 16). A notice-
able spatial change in the runoff coefficient and equivalent 
impervious area are particularly significant in the central, 
northern, and western parts of the catchment. The increase 
in the runoff coefficient and equivalent impervious area 
increases the volume of runoff generated from the catch-
ment by reducing infiltration of water into the underlying 
soil layer thus impacting groundwater recharge. Runoff also 
occurs more rapidly from impervious areas than runoff from 
pervious areas–hence flooding downstream. The weighted 

Builtup = 7E-05P
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Fig. 7  Variation of LULC changes against population changes over the study period

Table 16  Surface imperviousness, runoff coefficient and retention 
capacity of dry creek catchment

* AMC II indicates the antecedent moisture condition II, (−) indicates 
a decrease in the parameter over the study period

Year 1979 2006 2019 % Change 
between 1979 
and 2019

Pervious area  (km2) 90.52 69.84 56.52 −37.56
Impervious area  (km2) 24.90 45.58 58.90 136.55
EIA  (km2) 38.34 52.44 61.58 60.63
Weighted runoff coefficient 0.33 0.46 0.53 60.63
Weighted curve number 80.94 84.87 87.37 7.95
Retention capacity at AMCII 59.83 45.26 36.76 −38.56
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runoff coefficient of the Dry Creek catchment increased from 
0.33 to 0.53 while EIA from 38.34 to 61.58  km2, increasing 
the volume of runoff estimated using the rational method. 
Greater runoff volume increases the risk of flooding in 
downstream sections of the catchment. A study conducted 
on the effects of urbanization on storm runoff in Kathmandu 
city by Bajracharya et al. (2015) also showed that urbaniza-
tion increases the surface imperviousness and runoff vol-
ume. Similarly, a study by Zhang et al. (2015) in Madagascar 
found an increase in urbanized area by 52%, runoff depth by 
58% and runoff coefficient by 5.8%. Further, the study by 
McMahon et al. (2003) emphasized that the assessment of 
extreme low and high-flow episodes’ frequency, magnitude, 
and duration should consider the impervious surface area’s 
contribution to streamflow generation processes.

Irrespective of the rainfall condition, the catchment’s 
weighted curve number exhibited an increase from 80.94 
to 87.37 (Table 16). Ansari et al. (2016) also observed the 
increase in built-up areas in Nagpur urban watershed in India 
raised the magnitude of curve number from 76 to 80 between 
2000 and 2012. The increase in the curve number resulted 
in a 38.56% decline in retention capacity and increasing the 
risk of flooding to the surrounding environment. The hydro-
logical cycle is fundamentally affected by the type of soil 
and land cover because it regulates infiltration and affects 
surface and groundwater fluxes (Jaafar et al. 2019; Malede 

et al. 2023). Overall, changes in LULC due to urbaniza-
tion in Dry Creek alter the surface imperviousness, runoff 
coefficient, equivalent impervious area, curve number, and 
retention capacity of the soil, which could potentially have 
an impact on the hydrological conditions of the catchment, 
including runoff and groundwater recharge.

Conclusion

The study of LULC change caused by urbanization is cru-
cial for analyzing the influence of urban sprawl on catch-
ment surface imperviousness and its consequences for the 
hydrological processes of urban catchments. High-quality 
data and a reliable classification method using remote 
sensing are helpful in the study of changes in land use land 
cover. LULC classification utilizing high-quality images 
provide more accurate classification results, which can 
subsequently be used for environmental and hydrological 
studies. In the present study, very high-resolution aerial 
imagery with a resolution of 0.075 m and SPOT satel-
lite imagery with a resolution of 2.5 m were utilized to 
assess the long-term spatiotemporal LULC changes 
caused by urban sprawl over the Dry Creek catchment. 
This study developed LULC maps of the area and assessed 
categorical changes in the catchment using an advanced 

Fig. 8  Spatiotemporal distribution of curve number and EIA within Dry Creek catchment
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and user-friendly ArcGIS Pro 3.0 environment employ-
ing the SVM method of image classification. Following 
an examination of the accuracy assessment performance 
indicators of automatic classification, image post-classi-
fication was demonstrated to improve the classification 
accuracy. The overall classification accuracy was found to 
be high, with kappa coefficient and overall accuracy results 
greater than 0.83 and 0.88, respectively. The SVM image 
classification approaches performed well in classifying 
high-resolution imageries, with good performance met-
rics. The built-up area, plantation and water expanded by 
34.0  km2, 8.7  km2 and 0.4  km2, respectively from 1979 to 
2019, whereas grass cover declined by 43.09  km2, reveal-
ing a significant transformation in the LULC. Between 
1979 and 2019, the study area has undergone substantial 
changes in land use and land cover. The LULC in the study 
area changed categorically by 62.98% during the study 
period. High rates of change were observed in the grass 
and built-up areas, with respective values of −1.08 and 
0.85  km2/yr. Urbanization raised the impervious surface 
from 24.90 to 58.90  km2 with 136.55% urban expansion. 
During the study period, an increase in surface impervi-
ousness increased the runoff coefficient and curve number 
by 60.63% and 7.95%, respectively, while decreasing soil 
retention capacity by 38.56%. This undoubtedly increases 
the quantity of catchment surface runoff by increasing 
the risk of flooding to the downstream environment. The 
findings of this study have significant implications for the 
development and implementation of flood and stormwater 
control strategies. Therefore, future research should focus 
on how LULC changes caused by urbanization affect run-
off and other hydrological and morphological catchment 
parameters.
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