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Abstract
This paper presents some new analytical solutions to an accurate prediction of the behavior of the groundwater flow in 
aquifers in response to changes in surface water. The new analytical solutions are obtained using integral transforms. An 
anisotropic rectangular confined aquifer bounded with four time-varying streams is undertaken. The effects of anisotropy on 
groundwater head and flow rate near time-varying streams are investigated. Depending on the change rates of the streams 
level, an anisotropic aquifer may render either lower or higher hydraulic head than an isotropic aquifer. In addition, an ani-
sotropic aquifer has provided less water exchange at the interfaces than an isotropic one. The sensitivity of the hydraulic 
head to change rate of the streams level in both isotropic and anisotropic aquifers is evaluated. It is shown that the aqui-
fer response is more sensitive to change rate of the streams parallel to y-direction and less sensitive to change rate of the 
streams parallel to x-direction in an anisotropic aquifer and vice versa in an isotropic aquifer. The results of the present new 
analytical solutions are compared with numerical model of MODFLOW. The results obtained from the presented solutions 
showed good agreement with the results of MODFLOW. The results show that the presented new analytical solutions are 
accurate, robust and efficient. Therefore, the results indicate that the presented new analytical solutions are very effective in 
the simulation of the groundwater flow in river–aquifer systems. Furthermore, one of the advantages of the new analytical 
solutions is to investigate the sensitivity analysis of aquifer parameters, which has been carried out in this paper. Also, some 
other new analytical solutions for steady-state conditions and sudden fall in streams level are provided as well. Feasibility 
of the proposed new analytical solutions is presented via calculating and simulating the hydraulics of groundwater flow in 
river–aquifer systems by means of integral transforms.

Keywords  Anisotropic aquifer · New analytical solutions · Bounded aquifer · Hydraulic conductivity · Stream level change 
rate · Integral transforms

Introduction

Numerical and analytical models play an important role in 
scientific research in engineering. Therefore, researchers 
have been doing research on new techniques to solve dif-
ferential equations. In the recent years, many computational 
methods have been proposed and developed for analyses of 
engineering problems (Avazzadeh et al. 2020; Nikan and 
Avazzadeh 2021; Nikan et al. 2022; Rasoulizadeh et al. 
2021).

Analytical models have proposed in fluid mechanics sub-
jects for analyses of engineering problems. For example, an 
accurate prediction of the behavior of the groundwater flow 
in aquifers in response to changes in surface water is of con-
siderable importance in obtaining solutions for groundwater 
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flow problems. Therefore, prediction of groundwater head 
in porous media is among the most important topics in the 
study of groundwater–surface water systems. Groundwater 
and surface water should be treated as an integrated sys-
tem. Numerical and analytical models play an important 
role in assessing the future behavior of water table fluctua-
tions in the groundwater-surface water systems. Although 
the numerical methods can easily deal with complex geom-
etries as well as heterogeneity and anisotropy, the analytical 
methods are preferred because they consume rather less time 
to compute the problem than numerical methods. Moreover, 
analytical solutions are useful tools for analyzing the sensi-
tivity of aquifer parameters.

Many analytical models have been developed to esti-
mate groundwater head variations in response to recharge 
or pumping from wells (Zlotnik and Tartakovsky 2008; Lu 
et al. 2015), surface recharge (Rai and Manglik 1999; Telo-
glou et al. 2008), tidal fluctuations (Sun 1997; Tang and Jiao 
2001; Huang et al. 2015) and stage changes in adjacent water 
bodies (Singh 2004a, b; Jiang and Tang 2015). The afore-
mentioned studies assumed that the aquifer was isotropic. 
In fact, many soils exhibit a certain degree of anisotropy 
due to stratification associated with soil forming processes 
such as sedimentation, illuviation, compaction and particle 
orientation (Assouline and Or 2006). There are also several 
analytical attempts that take into account the anisotropy of 
the aquifer (Park and Zhan 2002; Intaraprasong and Zhan 
2009; Fen and Yeh 2012; Wang et al. 2015).

The effects of anisotropy on the nature of groundwater 
variation have been investigated by several researchers. 
For example, Chang and Yeh (2007) presented an analyti-
cal solution to describe the hydraulic head distribution and 
flow system in an anisotropic unconfined aquifer with a slop-
ing bed and arbitrarily located multiwells under transient 
recharge. They demonstrated that the water table is steeper 
in y-direction than in x-direction as the ratio of hydraulic 
conductivity in x-direction to y-direction increases. Manglik 
et al. (2013) presented an analytical solution of groundwater 
flow equation for unconfined, anisotropic, two-dimensional 
rectangular aquifer to predict water table variations in the 
aquifer in response to general time-varying intermittent 
recharge from multiple basins. They assumed that the aquifer 
is bounded with four constant head boundaries. The solu-
tion is obtained by using extended finite Fourier sine trans-
form. The results showed a significant effect of anisotropy 
in hydraulic conductivity on the pattern and magnitude of 
the water table variations. It was found that the growth of 
the water table for isotropic aquifer always maintains higher 
elevation than the level of water table for anisotropic aqui-
fer. Singh (2010) presented some generalized analytical 

solutions for groundwater head in a horizontal aquifer in 
the presence of subsurface drains. The aquifer is homoge-
neous and anisotropic and interacts with four surrounding 
streams of constant head. It was found that the isotropic case 
is overall characterized with higher water levels as compared 
to the anisotropic one. Manglik and Rai (2015) developed 
an analytical model to predict water table variations in an 
anisotropic aquifer in response to intermittently applied 
time-varying recharge from multiple heterogeneous basins 
and pumping from multiple wells. They considered no-flow 
boundary conditions and solved the equations by using the 
finite Fourier transform. In the process of investigation of 
the effects of anisotropy on water table, it was found that 
the growth of water table below the recharge basin and its 
surrounding region is more for the isotropic aquifer than 
that for the anisotropic aquifer. However, in the region away 
from the boundaries of the recharge basin, growth of the 
water table for anisotropic aquifer is more than that for the 
isotropic aquifer.

Huang et al. (2011) presented an analytical solution for 
describing the head distribution in an anisotropic unconfined 
aquifer with a single pumping horizontal well parallel to a 
fully penetrating stream. They assumed the anisotropic aqui-
fer has smaller vertical hydraulic conductivity than horizon-
tal one. Given that the stream has a constant stage during the 
pumping period, they indicated that the anisotropic aquifer 
has larger stream depletion rate than the isotropic one.

In the present work, an effort is being made to investigate 
the effects of anisotropy on hydraulic head and flow rate in 
a rectangular confined aquifer adjoining to time-varying 
streams. In this paper, an anisotropic aquifer generally refers 
to an aquifer in which the hydraulic conductivity of the aquifer 
along x-direction is more than that along y-direction. Hence, 
the novelty of this paper is evaluating the anisotropy effects on 
groundwater hydraulic head as well as flow rate in a confined 
aquifer in contact with varying level boundaries. Therefore, a 
set of new analytical expressions are obtained by means of the 
Laplace and Fourier transforms and the solutions applicabil-
ity is shown by the help of hypothetical examples. The results 
show that the presented new analytical solutions are accurate, 
robust and efficient. Therefore, the results indicate that the 
presented new analytical solutions are very effective in the 
simulation of the groundwater flow in river-aquifer systems. 
Furthermore, one of the advantages of the new analytical solu-
tions is to investigate the sensitivity analysis of aquifer parame-
ters, which has been carried out in this paper. Also, some other 
new analytical solutions for steady-state conditions and sudden 
fall in streams level are provided as well. The main applicabil-
ity of the new analytical solutions is to investigate interactions 
between stream and aquifer. These new analytical solutions 
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can also be used to evaluate aquifer response to gradual and 
sudden drop in stream stage. Also, the derived new analytical 
solutions could be used inversely to find the aquifer param-
eters. It can be mentioned that the presented new analytical 
solutions could further be used in many practical problems in 
stream-aquifer systems. Furthermore, it could be utilized for 
the validation of experimental and numerical models. Also, 
the results of the present new analytical solutions obtained 
will enable a better understanding regarding the modeling of 
the interaction between the river and the aquifer. Therefore, 
this research is a contribution to a better understanding of the 
fluxes between the river and the aquifer. Finally, the current 
study contributes to overcome common weaknesses of model 
applications, fulfills gaps in the existing literature and high-
lights the importance of the modeling process in planning 
sustainable management of groundwater resources.

The remainder of this paper is structured as follows: At 
first, new analytical solutions based on integral transforms to 
calculate and simulate the hydraulics of groundwater flow in 
river–aquifer systems are presented. Then, results and discus-
sion are provided. Finally, in the last section conclusions are 
drawn.

Methodology

The geometry of the stream–aquifer system considered 
for study is shown in Fig. 1. A finite confined, anisotropic, 
incompressible and homogeneous aquifer is assumed to be sur-
rounded with four streams of varying levels. The partial differ-
ential equation governing hydraulic head in a two-dimensional 
confined aquifer is taken to be:

The initial and boundary conditions of the problem are:

where h is the hydraulic head,Ss is the specific storage and 
Kx and Ky are the hydraulic conductivity of the aquifer along 
x-axis and y-axis, respectively.xL and yL are the length and 
width of the aquifer, respectively.�1, �2, �3 and �4 are the 
positive constants signifying change rate of the streams at 
the north, east, south and west of the aquifer, respectively 
(thereafter called the rates of streams), hL + h0 is the initial 
head of the system and hL is the final level of the streams.

Defining h� = h − hL − h0 , Eqs. (2)–(6) may be rewritten 
as follows:

Dimensionless variables can be introduced as follows:

where � is the anisotropy ratio. Using Eq. (12), the govern-
ing equation with boundary conditions can be rewritten as 
follows:

(1)Kx

�2h

�x2
+ Ky

�2h

�y2
= Ss

�h

�t
.

(2)h(x, y, 0) = hL + h0,

(3)h(x, yL, t) = hL + h0 e
−�1 t,

(4)h(xL, y, t) = hL + h0 e
−�2 t,

(5)h(x, 0, t) = hL + h0 e
−�3 t,

(6)h(0, y, t) = hL + h0 e
−�4 t,

(7)h�(x, y, 0) = 0,

(8)h�(x, yL, t) = h0 e
−�1 t − h0,

(9)h�(xL, y, t) = h0 e
−�2 t − h0,

(10)h�(x, 0, t) = h0 e
−�3 t − h0,

(11)h�(0, y, t) = h0 e
−�4 t − h0.

(12)

X =
x

b
, Y =

y

b

√
�, � =

Kx

SSb
2
t, H =

h�

h0
, �1 =

SSb
2

Kx

�1,

�2 =
SSb

2

Kx

�2, �3 =
SSb

2

Kx

�3, �4 =
SSb

2

Kx

�4 ,

XL =
xL

b
, YL =

yL

b

√
�, � =

Kx

Ky

,

Fig. 1   A confined aquifer bounded with four streams
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The problem is decomposed into four parts, each of which 
has a three constant level boundaries and one varying level 
boundary, as shown in Fig. 2. Accordingly, the function 
H (X, Y , �) can be divided into four parts:

Details of derivations of the solution for H1(X, Y , �) are 
as follows:

Part 1

The governing equation with boundary conditions for 
H1(X, Y , �) is:

(13)
�2H

�X2
+

�2H

�Y2
=

�H

��
,

(14)H(X, Y , 0) = 0,

(15)H(X, YL, �) = e−�1 � − 1,

(16)H(XL, Y , �) = e−�2 � − 1,

(17)H(X, 0, �) = e−�3 � − 1,

(18)H(0, Y , �) = e−�4 � − 1.

(19)
H (X, Y , �) = H1 (X, Y , �) + H2 (X, Y , �)

+ H3 (X, Y , �) + H4 (X, Y , �).

(20)
�2H1

�X2
+

�2H1

�Y2
=

�H1

��
,

(21)H1(X, Y , �) = 0,

(22)H1(X, YL, �) = e−�1 � − 1,

(23)H1(XL, Y , �) = 0,

The Laplace transform can be defined as:

where Λ denotes the Laplace transform of H and p is the 
Laplace variable. Taking the Laplace transform of Eq. (20) 
results in:

and the associated Laplace-transformed initial and boundary 
conditions are as follows:

The finite Fourier sine transform with respect to X can 
be defined as:

where � is the finite Fourier sine transform of Λ and n is the 
transform parameter. Applying the finite Fourier sine trans-
form with respect to X in Eqs. (27)–(32) results in:

(24)H1(X, 0, �) = 0,

(25)H1(0, Y , �) = 0.

(26)Λ(X, Y , p) =

∞

∫
0

e−p�H(X, Y , �)d�,

(27)
�2

�X2
Λ1(X, Y , p) +

�2

�Y2
Λ1(X, Y , p)

= pΛ1(X, Y , p) − H1(X, Y , � = 0),

(28)Λ1(X, Y , 0) = 0,

(29)Λ1(X, YL, p) =
1

�1 + p
−

1

p
,

(30)Λ1(XL, Y , p) = 0,

(31)Λ1(X, 0, p) = 0,

(32)Λ1(0, Y , p) = 0.

(33)

Fs{Λ(X, Y , p)} =
�

XL

XL

∫
0

Λ(X, Y , p) sin(
n�X

XL

) dX = �(n, Y , p),

Fig. 2   Decomposition of the problem into four parts
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where �2 = p + n2�2
/
X2
L
,and the associated Fourier-trans-

formed initial and boundary conditions are as follows:

Equation (34) is an ordinary differential equation. The 
solution of this equation with boundary conditions is:

where C and D are constants that can be determined by sub-
stituting Eqs. (36) and (38) in Eq. (40):

Therefore, transient hydraulic head in the Laplace–Fou-
rier domain is:

(34)d2

dY2
�1(n, Y , p) − �2�1(n, Y , p) = 0,

(35)�1(n, Y , 0) = 0,

(36)�1(n, YL, p) =
�1

p(�1 + p)

[
cos(n�) − 1

n

]
,

(37)�1(XL, Y , p) = 0,

(38)�1(n, 0, p) = 0,

(39)�1(0, Y , p) = 0.

(40)�(n, Y , p) = C cosh(�Y) + D sinh(�Y),

(41)C = 0, D =
�1

p(�1 + p) sinh(�YL)

[
cos(n�) − 1

n

]
.

Taking inverse finite Fourier sine transform of Eq. (42) 
results in:

The following equation can be used to invert the Laplace-
domain solutions into time-domain solutions:

Finally, the time-domain solution is obtained after the 
application of Laplace inversion procedures:

Equation (45) provides the transient hydraulic head of a 
confined aquifer with a varying level boundary at the north 
end and three constant level boundaries at the other ends.

Dimensionless flow rate through the two-dimensional 
aquifer with a unit cross-sectional area can be stated as:

in which

(42)

�1(n, Y , p) =
�

p(� + p) sinh(�YL)

[
cos(n�) − 1

n

]
sinh(�Y).

(43)Λ1(X, Y , p) =
2

�

∞∑
n=1

�1

p(�1 + p) sinh(�YL)

[
cos(n�) − 1

n

]
sinh(�Y) sin(

n�X

XL

).

(44)H(X, Y , �) =

∞∑
n=1

Res
p=pn

[
eptΛ(X, Y , p)

]
.

(45)

H1 (X, Y , �) =

∞�
n=1

⎡
⎢⎢⎢⎢⎣

2(cos(n�) − 1)

n�
sin(

n�X

XL

) ×

⎛
⎜⎜⎜⎜⎝

sinh(
n�Y

XL

)

sinh(
n�YL

XL

)
− e−�1�

sinh(

�
n2�2

X2
L

− �1 Y)

sinh(

�
n2�2

X2
L

− �1 YL)

⎞
⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎦

+

∞�
m=1

∞�
n=1

⎡⎢⎢⎢⎣
4e

−

�
n2

X2
L

+
m2

Y2
L

�
�2�

m�1(cos(n�) − 1) sin(
m�Y

YL
) sin(

n�X

XL

)(−1)m

Y2
L
n
�

n2

X2
L

+
m2

Y2
L

�
�2

�
�1 −

�
n2

X2
L

+
m2

Y2
L

�
�2

�
⎤⎥⎥⎥⎦
.

(46)Q = Qxi + Qyj,

(47)QX =
�H

�X
= −

b

Kxh0
qx & qx = −Kx

�h�

�x
= −Kx

�h

�x
,

(48)

QY =
�H

�Y
= −

b√
KxKyh0

qy & qy = −Ky

�h�

�y
= −Ky

�h

�y
,
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Hence, the dimensionless flow rate along x-axis and 
y-axis for part 1 can be stated as follows:

Similarly, the procedures to get the solutions of transient 
hydraulic head and flow rate for parts 2–4 can be summa-
rized as follows:

Part 2

The governing equation with boundary conditions for 
H2(X, Y , �) is:

(49)

QX1 (X, Y , �) =

∞�
n=1

⎡
⎢⎢⎢⎢⎣

2(cos(n�) − 1)

XL

cos(
n�X

XL

) ×

⎛
⎜⎜⎜⎜⎝

sinh(
n�Y

XL

)

sinh(
n�YL

XL

)
− e−�1�

sinh(

�
n2�2

X2
L

− �1 Y)

sinh(

�
n2�2

X2
L

− �1 YL)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

+

∞�
m=1

∞�
n=1

⎡
⎢⎢⎢⎣
4e

−

�
n2

X2
L

+
m2

Y2
L

�
�2�

m�1(cos(n�) − 1) sin(
m�Y

YL
) cos(

n�X

XL

)(−1)m

XLY
2
L

�
n2

X2
L

+
m2

Y2
L

�
�

�
�1 −

�
n2

X2
L

+
m2

Y2
L

�
�2

�
⎤
⎥⎥⎥⎦
.

(50)

QY1 (X, Y , �) =

∞�
n=1

⎡
⎢⎢⎢⎢⎣

2(cos(n�) − 1)

n�
sin(

n�X

XL

) ×

⎛
⎜⎜⎜⎜⎝

n�

XL

cosh(
n�Y

XL

)

sinh(
n�YL

XL

)
− e−�1�

�
n2�2

X2
L

− �1 cosh(

�
n2�2

X2
L

− �1 Y)

sinh(

�
n2�2

X2
L

− �1 YL)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

+

∞�
m=1

∞�
n=1

⎡⎢⎢⎢⎣
4e

−

�
n2

X2
L

+
m2

Y2
L

�
�2�

m2�1(cos(n�) − 1) cos(
m�Y

YL
) sin(

n�X

XL

)(−1)m

Y3
L
n
�

n2

X2
L

+
m2

Y2
L

�
�

�
�1 −

�
n2

X2
L

+
m2

Y2
L

�
�2

�
⎤⎥⎥⎥⎦
.

(51)
�2H2

�X2
+

�2H2

�Y2
=

�H2

��
,

In this part, the Laplace transform is applied with respect 
to � and the finite Fourier sine transform is applied with 
respect to Y. Finally, the solution for H2 (X, Y , �) is obtained 
as follows:

(52)H2(X, Y , 0) = 0,

(53)H2(X, YL, �) = 0,

(54)H2(XL, Y , �) = e−�2 � − 1,

(55)H2(X, 0, �) = 0,

(56)H2(0, Y , �) = 0.

(57)

H2 (X, Y , �) =

∞�
k=1

⎡
⎢⎢⎢⎢⎣

2(cos(k�) − 1)

k�
sin(

k�Y

YL
) ×

⎛
⎜⎜⎜⎜⎝

sinh(
k�X

YL
)

sinh(
k�XL

YL
)
− e−�2�

sinh(

�
k2�2

Y2
L

− �2 X)

sinh(

�
k2�2

Y2
L

− �2 XL)

⎞
⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎦

+

∞�
u=1

∞�
k=1

⎡⎢⎢⎢⎣
4e

−

�
k2

Y2
L

+
u2

X2
L

�
�2�

u�2(cos(k�) − 1) sin(
u�X

XL

) sin(
k�Y

YL
)(−1)u

X2
L
k
�

k2

Y2
L

+
u2

X2
L

�
�2

�
�2 −

�
k2

Y2
L

+
u2

X2
L

�
�2

�
⎤⎥⎥⎥⎦
.
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And the components of dimensionless flow rate are as 
follows:

Equations (57), (58) and (59) provide the transient hydrau-
lic head, flow rate along x-axis and flow rate along y-axis, 
respectively, for a confined aquifer with a varying level bound-
ary at the east end and three constant level boundaries at the 
other ends.

Part 3

The governing equation with boundary conditions for 
H3(X, Y , �) is:

(58)

QX2 (X, Y , �) =

∞�
k=1

⎡
⎢⎢⎢⎢⎣

2(cos(k�) − 1)

k�
sin(

k�Y

YL
) ×

⎛
⎜⎜⎜⎜⎝

k�

YL
cosh(

k�X

YL
)

sinh(
k�XL

YL
)

− e−�2�

�
k2�2

Y2
L

− �2 cosh(

�
k2�2

Y2
L

− �2 X)

sinh(

�
k2�2

Y2
L

− �2 XL)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

+

∞�
u=1

∞�
k=1

⎡
⎢⎢⎢⎣
4e

−

�
k2

Y2
L

+
u2

X2
L

�
�2�

u2�2(cos(k�) − 1) cos(
u�X

XL

) sin(
k�Y

YL
)(−1)u

X3
L
k
�

k2

Y2
L

+
u2

X2
L

�
�

�
�2 −

�
k2

Y2
L

+
u2

X2
L

�
�2

�
⎤
⎥⎥⎥⎦
.

(59)

QY2 (X, Y , �) =

∞�
k=1

⎡
⎢⎢⎢⎢⎣

2(cos(k�) − 1)

YL
cos(

k�Y

YL
) ×

⎛
⎜⎜⎜⎜⎝

sinh(
k�X

YL
)

sinh(
k�XL

YL
)
− e−�2�

sinh(

�
k2�2

Y2
L

− �2 X)

sinh(

�
k2�2

Y2
L

− �2 XL)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

+

∞�
u=1

∞�
k=1

⎡⎢⎢⎢⎣
4e

−

�
k2

Y2
L

+
u2

X2
L

�
�2�

u�2(cos(k�) − 1) sin(
u�X

XL

) cos(
k�Y

YL
)(−1)u

X2
L
YL

�
k2

Y2
L

+
u2

X2
L

�
�

�
�2 −

�
k2

Y2
L

+
u2

X2
L

�
�2

�
⎤⎥⎥⎥⎦
.

(60)
�2H3

�X2
+

�2H3

�Y2
=

�H3

��
,

In this part, the Laplace transform is applied with respect 
to � and the finite Fourier sine transform is applied with 
respect X. Finally, the solution for H3(X, Y , �) is obtained 
as follows:

(61)H3(X, Y , 0) = 0,

(62)H3(X, YL, �) = 0,

(63)H3(XL, Y , �) = 0,

(64)H3(X, 0, �) = e−�3 � − 1,

(65)H3(0, Y , �) = 0.

(66)

H3 (X, Y , �) =

∞�
a=1

⎡
⎢⎢⎢⎢⎣

2(cos(a�) − 1)

a�
sin(

a�X

XL

) ×

⎛
⎜⎜⎜⎜⎝

sinh(
a�(YL−Y)

XL

)

sinh(
a�YL

XL

)
− e−�3�

sinh(

�
a2�2

X2
L

− �3 (YL − Y))

sinh(

�
a2�2

X2
L

− �3 YL)

⎞
⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎦

+

∞�
b=1

∞�
a=1

⎡⎢⎢⎢⎣
4e

−

�
a2

X2
L

+
b2

Y2
L

�
�2�

b�3(cos(a�) − 1) sin(
b�(YL−Y)

YL
) sin(

a�X

XL

)(−1)b

Y2
L
a
�

a2

X2
L

+
b2

Y2
L

�
�2

�
�3 −

�
a2

X2
L

+
b2

Y2
L

�
�2

�
⎤⎥⎥⎥⎦

.
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and the components of dimensionless flow rate are as 
follows:

Equations  (66), (67) and (68) provide the transient 
hydraulic head, flow rate along x-axis and flow rate along 
y-axis, respectively, for a confined aquifer with a varying 
level boundary at the south end and three constant level 
boundaries at the other ends.

Part 4

The governing equation with boundary conditions for 
H4 (X, Y , �) is:

(67)

QX3 (X, Y , �) =

∞�
a=1

⎡
⎢⎢⎢⎢⎣

2(cos(a�) − 1)

XL

cos(
a�X

XL

) ×

⎛
⎜⎜⎜⎜⎝

sinh(
a�(YL−Y)

XL

)

sinh(
a�YL

XL

)
− e−�3�

sinh(

�
a2�2

X2
L

− �3 (YL − Y))

sinh(

�
a2�2

X2
L

− �3 YL)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

+

∞�
b=1

∞�
a=1

⎡
⎢⎢⎢⎣
4e

−

�
a2

X2
L

+
b2

Y2
L

�
�2�

b�3(cos(a�) − 1) sin(
b�(YL−Y)

YL
)cos(

a�X

XL

)(−1)b

XLY
2
L

�
a2

X2
L

+
b2

Y2
L

�
�

�
�3 −

�
a2

X2
L

+
b2

Y2
L

�
�2

�
⎤
⎥⎥⎥⎦
.

(68)

QY3 (X, Y , �) =

∞�
a=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(cos(a�) − 1)

a�
sin(

a�X

XL

) ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a�

XL

cosh(
a�(YL−Y)

XL

)

sinh(
a�YL

XL

)

−e−�3�
−

�
a2�2

X2
L

− �3 sinh(

�
a2�2

X2
L

− �3 (YL − Y))

sinh(

�
a2�2

X2
L

− �3 YL)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

∞�
b=1

∞�
a=1

⎡⎢⎢⎢⎣
4e

−

�
a2

X2
L

+
b2

Y2
L

�
�2�

b2�3(cos(a�) − 1) sin(
b�(YL−Y)

YL
) sin(

a�X

XL

)(−1)b

Y3
L
a
�

a2

X2
L

+
b2

Y2
L

�
�

�
�3 −

�
a2

X2
L

+
b2

Y2
L

�
�2

�
⎤⎥⎥⎥⎦
.

(69)
�2H4

�X2
+

�2H4

�Y2
=

�H4

��
,

(70)H4(X, Y , 0) = 0,

(71)H4(X, YL, �) = 0,

In this part, the Laplace transform is applied with respect 
to � and the finite Fourier sine transform is applied with 

(72)H4(XL, Y , �) = 0,

(73)H4(X, 0, �) = 0,

(74)H4(0, Y , �) = e−�4 � − 1.

Table 1   The values of hypothetical aquifer parameters

Parameter Value Parameter Value

SS (1∕m) 0.00007 �1 (day
−1) 0.02

Kx (m∕day) 30 �2 (day
−1) 0.03

Ky (m∕day) 30 �3 (day
−1) 0

xL (m) 100 �4 (day
−1) 0

yL (m) 100 h0 (m) 4

b (m) 10 hL (m) 15
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respect Y. Finally, the solution for H4 (X, Y , �) is obtained 
as follows:

and the components of dimensionless flow rate are as 
follows:

Equations (75), (76) and (77) provide the transient 
hydraulic head, flow rate along x-axis and flow rate along 
y-axis, respectively, for a confined aquifer with a varying 
level boundary at the west end and three constant level 
boundaries at the other ends.

(75)

H4 (X, Y , �) =

∞�
f=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(cos(f�) − 1)

f�
sin(

f�Y

YL
) ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sinh(
f�(XL−X)

YL
)

sinh(
f�XL

YL
)

−e−�4�
sinh(

�
f 2�2

Y2
L

− �4
�
XL − X

�
)

sinh(

�
f 2�2

Y2
L

− �4 XL)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

∞�
d=1

∞�
f=1

⎡⎢⎢⎢⎣
4e

−

�
f2

Y2
L

+
d2

X2
L

�
�2�

d�4(cos(f�) − 1) sin(
d�(XL−X)

XL

) sin(
f�Y

YL
)(−1)d

X2
L
f
�

f 2

Y2
L

+
d2

X2
L

�
�2

�
�4 −

�
f 2

Y2
L

+
d2

X2
L

�
�2

�
⎤⎥⎥⎥⎦
,

(76)

QX4 (X, Y , �) =

∞�
f=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(cos(f�) − 1)

f�
sin(

f�Y

YL
) ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f�

YL
cosh(

f�(XL−X)
YL

)

sinh(
f�XL

YL
)

−e−�4�
−

�
f 2�2

Y2
L

− �4 cosh(

�
f 2�2

Y2
L

− �4
�
XL − X

�
)

sinh(

�
f 2�2

Y2
L

− �4 XL)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

∞�
d=1

∞�
f=1

⎡⎢⎢⎢⎣
4e

−

�
f2

Y2
L

+
d2

X2
L

�
�2�

d2�4(cos(f�) − 1) cos(
d�(XL−X)

XL

) sin(
f�Y

YL
)(−1)d

X3
L
f
�

f 2

Y2
L

+
d2

X2
L

�
�

�
�4 −

�
f 2

Y2
L

+
d2

X2
L

�
�2

�
⎤⎥⎥⎥⎦
.

(77)

QY4 (X, Y , �) =

∞�
f=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(cos(f�) − 1)

YL
cos(

f�Y

YL
) ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sinh(
f�(XL−X)

YL
)

sinh(
f�XL

YL
)

−e−�4�
sinh(

�
f 2�2

Y2
L

− �4
�
XL − X

�
)

sinh(

�
f 2�2

Y2
L

− �4 XL)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

∞�
d=1

∞�
f=1

⎡⎢⎢⎢⎣
4e

−

�
f2

Y2
L

+
d2

X2
L

�
�2�

d�4(cos(f�) − 1) sin(
d�(XL−X)

XL

)cos(
f�Y

YL
)(−1)d

YLX
2
L

�
f 2

Y2
L

+
d2

X2
L

�
�

�
�4 −

�
f 2

Y2
L

+
d2

X2
L

�
�2

�
⎤⎥⎥⎥⎦
.

Comparison of the new analytical solutions 
with numerical model of MODFLOW

In order to demonstrate the capability of the proposed 
new analytical solutions in the estimation of groundwater 
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hydraulic head in an anisotropic aquifer, another hypo-
thetical aquifer is simulated in numerical model of MOD-
FLOW. The rates of streams are: �1 = 0.05 day−1 , �2 = 0 , 
�3 = 0.1 day−1 and �4 = 0.2 day−1 . The anisotropy ratio 
is � = 3 ( Kx = 30 m∕day , Ky = 10 m∕day ). The length 
and width of the aquifer are selected as: xL = 100m and 
yL = 50m . The other parameters are given in Table 1. For 
the numerical model of MODFLOW, the domain is discre-
tized into 500 × 250 rectangular cells with Δx = Δy = 0.2m . 
The computational time interval for numerical model of 
MODFLOW is 12 h. The type of boundary conditions is 
considered as specified hydraulic head. The solver and flow 
packages are PCG2 and LPF, respectively. LPF has the 
ability to enter horizontal anisotropy values on a cell-by-
cell basis. The values of hydraulic head at t = 10 days and 

at y = 25m are shown in Fig. 3. Figure 3 shows that the 
results of the new analytical solutions are in good agree-
ment with those results obtained from numerical model of 
MODFLOW.

Results and discussion

The configuration of the personal computer used to per-
form the simulation results is that the CPU is Intel(R)/
Core(TM)4/i7-8550U, CPU@4.000 GHz. As mentioned 
earlier, Eq. (19) presents the new analytical solution of an 
aquifer bounded with four time-varying level boundaries, 
which is sum of Eqs. (45), (57), (66) and (75). Notice 
that setting �i = 0 (i = 1, 2, 3, 4) gives constant level 

Table 2   The new analytical expressions of 15 possible bounded aquifers formed by constant and varying level boundaries

No. Boundary configuration type Transient hydraulic head 
H (X,Y , �)

No. Boundary configuration type Transient 
hydraulic head 
H (X,Y , �)

1

 

H1 2

 

H2

3

 

H3 4

 

H4

5

 

H1 + H2 6

 

H1 + H3

7

 

H1 + H4 8

 

H2 + H3

9

 

H2 + H4 10

 

H3 + H4

11

 

H1 + H2 + H3 12

 

H1 + H2 + H4

13

 

H1 + H3 + H4 14

 

H2 + H3 + H4

15

 

H1 + H2 + H3 + H4
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boundaries. Therefore, the new analytical expressions for 
other types of boundary configurations with both constant 
and time-varying levels can readily be obtained. Table 2 
presents the new analytical expressions for 15 different 
boundary configurations.

Thereafter, BC stands for boundary configuration and 
the following number indicates the type of boundary con-
figuration given in Table 2. For example, BC5 refers to the 
boundary configuration number 5 in Table 2.

Steady state condition

Setting � → ∞ in Eqs. (45), (57), (66) and (75) provides 
the steady-state condition of these solutions.

Steady state of Eq. (45) is:

And the associated flow rates can be expressed as 
follows:

Steady state of Eq. (57) is:

(78)

Hs t1 (X, Y , � → ∞) =

∞�
n=1

2(cos(n�) − 1)

n�
sin(

n�X

XL

) ×

⎛⎜⎜⎝

sinh(
n�Y

XL

)

sinh(
n�YL

XL

)

⎞
⎟⎟⎠
.

(79)

Qst1X (X, Y , � → ∞) =

∞�
n=1

2(cos(n�) − 1)

XL

cos(
n�X

XL

) ×

⎛⎜⎜⎝

sinh(
n�Y

XL

)

sinh(
n�YL

XL

)

⎞⎟⎟⎠
.

(80)

Qst1Y (X, Y , � → ∞) =

∞�
n=1

2(cos(n�) − 1)

XL

sin(
n�X

XL

) ×

⎛⎜⎜⎝

cosh(
n�Y

XL

)

sinh(
n�YL

XL

)

⎞⎟⎟⎠
.

And the associated flow rates can be expressed as 
follows:

Steady state of Eq. (66) is:

And the associated flow rates can be expressed as follows:

Steady state of Eq. (75) is:

And the associated flow rates can be expressed as 
follows:

(81)

Hst2 (X, Y , � → ∞) =

∞�
k=1

2(cos(k�) − 1)

k�
sin(

k�Y

YL
) ×

⎛
⎜⎜⎝

sinh(
k�X

YL
)

sinh(
k�XL

YL
)

⎞
⎟⎟⎠
.

(82)

Qst2X (X, Y , � → ∞) =

∞�
k=1

2(cos(k�) − 1)

YL
sin(

k�Y

YL
) ×

⎛
⎜⎜⎝

cosh(
k�X

YL
)

sinh(
k�XL

YL
)

⎞⎟⎟⎠
.

(83)

Qst2Y (X, Y , � → ∞)

=

∞�
k=1

2(cos(k�) − 1)

YL
cos(

k�Y

YL
) ×

⎛⎜⎜⎝

sinh(
k�X

YL
)

sinh(
k�XL

YL
)

⎞⎟⎟⎠
.

(84)

Hst3 (X, Y , � → ∞)

=

∞�
a=1

2(cos(a�) − 1)

a�
sin(

a�X

XL

) ×

⎛⎜⎜⎝

sinh(
a�(YL−Y)

XL

)

sinh(
a�YL

XL

)

⎞⎟⎟⎠
.

(85)

Qst3X (X, Y , � → ∞)

=

∞�
a=1

2(cos(a�) − 1)

XL

cos(
a�X

XL

) ×

⎛⎜⎜⎝

sinh(
a�(YL−Y)

XL

)

sinh(
a�YL

XL

)

⎞⎟⎟⎠
.

(86)

Qst3Y (X, Y , � → ∞)

= −

∞�
a=1

2(cos(a�) − 1)

XL

sin(
a�X

XL

) ×

⎛⎜⎜⎝

cosh(
a�(YL−Y)

XL

)

sinh(
a�YL

XL

)

⎞⎟⎟⎠
.

(87)

Hst4 (X, Y , � → ∞)

=

∞�
f=1

2(cos(f�) − 1)

f�
sin(

f�Y

YL
) ×

⎛⎜⎜⎜⎝

sinh(
f�(XL−X)

YL
)

sinh(
f�XL

YL
)

⎞⎟⎟⎟⎠
.

(88)

Qst4X (X, Y , � → ∞)

= −

∞�
f=1

2(cos(f�) − 1)

YL
sin(

f�Y

YL
) ×

⎛⎜⎜⎜⎝

cosh(
f�(XL−X)

YL
)

sinh(
f�XL

YL
)

⎞⎟⎟⎟⎠
.

Fig. 3   Comparison of the new analytical solutions with numerical 
model of MODFLOW
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Equations (78), (81), (84) and (87) are very useful new 
exact expressions describing the groundwater hydraulic 
head distribution in an anisotropic 2D aquifer in steady-
state conditions. In a one-dimensional aquifer connected to 
two streams with different stages, the initial groundwater 

(89)

Qst4Y (X, Y , � → ∞)

=

∞�
f=1

2(cos(f�) − 1)

YL
cos(

f�Y

YL
) ×

⎛⎜⎜⎜⎝

sinh(
f�(XL−X)

YL
)

sinh(
f�XL

YL
)

⎞⎟⎟⎟⎠
.

head can be assumed to vary linearly between the streams.  
However, estimation of the initial groundwater hydraulic 
head in a two-dimensional aquifer connected to four streams 
with different stages is more complicated. Equations (78), 
(81), (84) and (87) can be used for such these conditions.

Sudden fall in streams level

For the case of sudden fall in streams level �i (i = 1, 2, 3, 4) 
goes to infinity in Eqs. (45), (57), (66) and (75).

Sudden fall in level of the north stream is:

Sudden fall in level of the east stream is:

Sudden fall in level of the south stream is:

Sudden fall in level of the west stream is:

(90)

HSu1 (X, Y , �) =

∞�
n=1

⎡
⎢⎢⎣
2(cos(n�) − 1)

n�
sin(

n�X

XL

) ×

⎛
⎜⎜⎝

sinh(
n�Y

XL

)

sinh(
n�YL

XL

)

⎞
⎟⎟⎠

⎤
⎥⎥⎦

+

∞�
m=1

∞�
n=1

⎡⎢⎢⎢⎣
4e

−

�
n2

X2
L

+
m2

Y2
L

�
�2�

m(cos(n�) − 1) sin(
m�Y

YL
) sin(

n�X

XL

)(−1)m

Y2
L
n
�

n2

X2
L

+
m2

Y2
L

�
�2

⎤⎥⎥⎥⎦
.

(91)

HSu2 (X, Y , �) =

∞�
k=1

⎡
⎢⎢⎣
2(cos(k�) − 1)

k�
sin(

k�Y

YL
) ×

⎛
⎜⎜⎝

sinh(
k�X

YL
)

sinh(
k�XL

YL
)

⎞
⎟⎟⎠

⎤
⎥⎥⎦

+

∞�
u=1

∞�
k=1

⎡⎢⎢⎢⎣
4e

−

�
k2

Y2
L

+
u2

X2
L

�
�2�

u(cos(k�) − 1) sin(
u�X

XL

) sin(
k�Y

YL
)(−1)u

X2
L
k
�

k2

Y2
L

+
u2

X2
L

�
�2

⎤⎥⎥⎥⎦
.

(92)

HSu3 (X, Y , �) =

∞�
a=1

⎡
⎢⎢⎣
2(cos(a�) − 1)

a�
sin(

a�X

XL

) ×

⎛
⎜⎜⎝

sinh(
a�(YL−Y)

XL

)

sinh(
a�YL

XL

)

⎞
⎟⎟⎠

⎤
⎥⎥⎦

+

∞�
b=1

∞�
a=1

⎡⎢⎢⎢⎣
4e

−

�
a2

X2
L

+
b2

Y2
L

�
�2�

b(cos(a�) − 1) sin(
b�(YL−Y)

YL
) sin(

a�X

XL

)(−1)b

Y2
L
a
�

a2

X2
L

+
b2

Y2
L

�
�2

⎤⎥⎥⎥⎦
.

(93)

HSu4 (X, Y , �) =

∞�
f=1

⎡
⎢⎢⎢⎣

2(cos(f�) − 1)

f�
sin(

f�Y

YL
) ×

⎛
⎜⎜⎜⎝

sinh(
f�(XL−X)

YL
)

sinh(
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Groundwater hydraulic head distribution for three sce-
narios of sudden fall in streams level at t = 1 s is illus-
trated in Fig. 4. The figures are plotted for three different 
BCs. Scenario 1: Fig. 4a shows groundwater hydraulic 
head distribution for sudden changes in streams level of 
BC1. In this scenario, the water level falls suddenly at the 
north stream and is constant at the other streams. Thus, 
the results can be obtained by using Eq. (90). Figure 4b 
shows groundwater hydraulic head distribution for sud-
den changes in streams level of BC5. Scenario 2: In this 
scenario, the water level falls suddenly at the north and 
east streams and is constant at the other streams. Here, 
the results can be obtained by sum of Eqs. (90) and (91). 
Scenario 3: Fig. 4c shows groundwater hydraulic head 
distribution for sudden changes in streams level of BC14. 
In this scenario, the water level falls suddenly at the east, 
south and west streams and is constant at the north stream. 
Here, the results can be obtained by sum of Eqs. (91), (92) 
and (93). The anisotropy ratio is � = 3 ( Kx = 30 m∕day

,Ky = 10 m∕day ), and the other parameters are as before.
Figure 5a, b and c shows the groundwater hydraulic head 

variations with time at different points of the aquifer for sce-
narios 1, 2 and 3, respectively. Five different points are con-
sidered, namely P1:x = 20 , y = 30 m , P2:x = 80 , y = 20 m , 
P3:x = 50 , y = 50 m , P4:x = 30 , y = 80 m and P5:x = 70 , 
y = 60 m . It can be seen that the groundwater hydraulic head 
stabilizes about less than 0.01 s.

Effects of anisotropy on aquifer response

In this section, several examples are conducted to investigate 
the effects of anisotropy on hydraulic head and flow rate. 
Here, four cases are defined. The rates of streams for these 
cases are given in Table 3, the anisotropy ratio is � = 3 and 
the other parameters are kept as before.

Effects of anisotropy on hydraulic head

Figure 6 shows the values of hydraulic head over distance 
at 10th day for both isotropic and anisotropic aquifer and 
for cases 1–4. It can be observed from Fig. 6 that with 
increases in Ky the hydraulic head increases in cases 1 and 
3 but decreases in cases 2 and 4. This phenomenon is valid 
for any arbitrary time, which is also found in Fig. 7. Fig-
ure 7 shows the hydraulic head variations with time at a 
point located at x = 50m, y = 25m. This phenomenon is 
because that a higher hydraulic conductivity along y-direc-
tion deviates the groundwater flow direction along this direc-
tion. On the other hand, in cases 2 and 4 the streams level 
at the south and north boundaries are falling rather faster 
than the other streams. This causes the groundwater direc-
tion to also deviate along y-axis. Therefore, an isotropic 

Fig. 4   Groundwater hydraulic head distribution for sudden fall in 
streams level at t = 1 s a scenario 1, b scenario 2 and c scenario 3
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aquifer Ky = 30 (m∕day) allows the water to flow faster 
in y-direction, and as a result, the groundwater hydraulic 
head decreases. This is exactly vice versa in cases 1 and 3 
in which the groundwater hydraulic head is deviated along 
x-direction due to the available gradient as well as a smaller 
Ky . Therefore, in the presence of anisotropy the groundwater 
hydraulic head decreases in cases 1 and 3.

Figures 8, 9, 10 and 11 show the sensitivity of hydrau-
lic head to changes in rates of the streams in the iso-
tropic ( � = 1 ∶ Ky = Kx = 30 m∕day ) and anisotropic 
( � = 3 ∶ Ky = 10 m∕day, Kx = 30 m∕day ) aquifers for 
t = 10 days and at a point located at x = 70m, y = 40m . 
These figures are plotted for different rates �1 , �2 , �3 and 
�4 , keeping the other parameters as before.

Figure 7 shows that the magnitude of difference between 
corresponding hydraulic head for �1 = 0.01 and �1 = 1 day−1 
is about 0.52 m for the isotropic aquifer and it is about 0.14 m 
for the anisotropic aquifer. Also, Fig. 8 shows that the magni-
tude of difference between corresponding hydraulic head for 
�2 = 0.01 and �2 = 1 day−1 is about 1.64 m for the isotropic 
aquifer and it is about 2.24 m for the anisotropic aquifer. More-
over, Fig. 9 shows that the magnitude of difference between 
corresponding hydraulic head for �3 = 0.01 and �3 = 1 day−1 
is about 1.05 m for the isotropic aquifer and it is about 0.42 m 
for the anisotropic aquifer. In addition, Fig. 10 shows that the 
magnitude of difference between corresponding hydraulic head 
for �4 = 0.01 and �4 = 1 day−1 is about 0.41 m for the iso-
tropic aquifer and it is about 0.82 m for the anisotropic aquifer.

In summary, it can be concluded from Figs. 7, 8, 9 and 10 
that the hydraulic head in an anisotropic aquifer is more sen-
sitive to changes in �2 and �4 and less sensitive to changes in 
�1 and �3 than that in an isotropic aquifer. This is because a 
large value of hydraulic conductivity along y-direction raises 
the groundwater flow velocity along this direction. Hence, 
with increases in Ky the groundwater flow tends to move 
toward either the north or south streams and consequently 
the hydraulic head gets more sensitive to variations of �1 and 
�3 in isotropic aquifer.

Effects of anisotropy on flow rate

Table 4 gives the values of flow rate and the direction of 
the flow ( � ) at different points of the aquifer.� is the angle 

Fig. 5   Groundwater hydraulic head variations at different points of 
the aquifer for sudden fall in streams level a scenario 1, b scenario 2 
and c scenario 3

Table 3   Rates of streams for cases 1–4

Case �1 (day
−1) �2 (day

−1) �3 (day
−1) �4 (day

−1)

1 0.01 0.01 0.01 0.04

2 0.01 0.01 0.04 0.01

3 0.01 0.04 0.01 0.01

4 0.04 0.01 0.01 0.01



Applied Water Science (2023) 13:127	

1 3

Page 15 of 20  127

between vector q and positive axis. To investigate the effects 
of anisotropy on flow rate and its direction, two values of 
hydraulic conductivity are considered, namely Ky = 30 and 
Ky = 10 (m∕day) . Here, �1 = �2 = �3 = �4 = 0.02 (day−1) 
and the other parameters are given in Table 1. As expected, 
Table 4 shows that as Ky increases, the groundwater flow 
tends to deviate along y-axis and vice versa. This is because 
the higher hydraulic conductivity allows the water to flow 
easier in aquifer. Tables 5, 6, 7 and 8 provide the dimension-
less flow rate at the left, right, north and south interfaces for 
different values of Ky , respectively.

Table 5 shows that at the left interface, the average differ-
ence between corresponding dimensionless flow rate ( Q ) of 
Ky = 30 and Ky = 10 (m∕day) is 0.73, 0.1, 0.13 and 0.1 for 
cases 1 to 4, respectively.

Table 6 shows that at the right interface, the average dif-
ference between corresponding dimensionless flow rate ( Q ) 
of Ky = 30 and Ky = 10 (m∕day) is 0.13, 0.1, 0.73 and 0.1 
for cases 1–4, respectively.

Table 7 shows that at the north interface, the average dif-
ference between corresponding dimensionless flow rate ( Q ) 
of Ky = 30 and Ky = 10 (m∕day) is 0.42, 0.12, 0.42 and 0.04 
for cases 1 to 4, respectively.

Table 8 shows that at the south interface, the average dif-
ference between corresponding dimensionless flow rate ( Q ) 
of Ky = 30 and Ky = 10 (m∕day) is 0.42, 0.04, 0.42 and 0.12 
for cases 1–4, respectively.

Tables 5, 6, 7 and 8 show that with rises in Ky , values 
of flow rate at different points of interfaces may increase 
or decrease. However, it can be seen that the average 

Fig. 6   Effects of anisotropy on transient hydraulic head at t = 10 days and y = 25m for a case 1, b case 2, c case 3, d case 4
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Fig. 7   Variations of hydraulic head at x = 50m, y = 25m for a case 1, b case 2, c case 3, d case 4

Fig. 8   Sensitivity of hydraulic head to changes in �1 . Here, 
�2 = 0.06 , �3 = 0.09 and �4 = 0.12 Fig. 9   Sensitivity of hydraulic head to changes in �2 . Here, 

�1 = 0.03 , �3 = 0.09 and �4 = 0.12
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dimensionless flow rate at interfaces increases with increas-
ing Ky . The average of the dimensionless flow rate of inter-
faces in cases 1 to 4 is increased about 0.425 , 0.09 , 0.425 
and 0.09 , respectively, in the isotropic aquifer. It can be 
highlighted that in case 1 (when the rate of the left stream is 
more than that of the other streams), the dimensionless flow 
rate by a change in Ky is more influenced at the left bound-
ary than that at the other boundaries. Similarly, in case 3 
(when the rate of the right stream is more than that of the 
other streams) the dimensionless flow rate by a change in 
Ky is more influenced at the right boundary than that at the 
other boundaries. However, this phenomenon is vice versa in 
cases 2 and 4. In case 2 (when the rate of the south stream is 
more than that of the other streams), the dimensionless flow 
rate by a change in Ky is less influenced at the south bound-
ary than that at the other boundaries. Moreover, in case 4 
(when the rate of the north stream is more than that of the 
other streams) the dimensionless flow rate by a change in 
Ky is less influenced at the north boundary than that at the 
other boundaries.

Conclusions

A set of dimensionless new analytical solutions are pro-
posed to describe transient hydraulic head and flow rate in 
a finite confined, anisotropic, incompressible and homo-
geneous aquifer with four time-varying streams located 
at its ends. Using superposition principle, the problem is 
decomposed into four parts and the final solution is obtained 
by the sum of the solutions. In part one, a new analytical 
solution describing the hydraulic head for an aquifer with 
a time-varying stream at the north boundary and three con-
stant streams at the other boundaries is derived. The asso-
ciated new analytical expression for this case is Eq. (45). 
Part 2 deals with an aquifer with a time-varying stream at 
the east boundary and three constant streams at the other 

Fig. 10   Sensitivity of hydraulic head to changes in �3 . 
Here,�1 = 0.03 , �2 = 0.06 and �4 = 0.12

Fig. 11   Sensitivity of hydraulic head to changes in �4 . Here, 
�1 = 0.03 , �2 = 0.06 and �3 = 0.12

Table 4   Values of flow rate 
and the direction of the flow at 
different points of the aquifer at 
t = 10 days

Ky (m∕day) 10 30
x

(m)

y

(m)

qx

(m∕day)

qy

(m∕day)

�

degrees

qx

(m∕day)

qy

(m∕day)

�

degrees

20 20 − 8.55E−05 − 2.08E−05 193.66 − 5.03E−05 − 5.03E−05 225
20 50 − 1.18E−04 2.79E−17 180 − 7.78E−05 − 2.85E−17 180
20 80 − 8.55E−05 2.08E−05 166.34 − 5.03E−05 5.03E−05 135
50 20 0.00E+00 − 3.42E−05 270 − 2.08E−17 − 7.78E−05 270
50 50 0.00E+00 1.22E−17 90 0.00E+00 8.98E−18 90
50 80 0.00E+00 3.42E−05 90 − 2.08E−17 7.78E−05 90
80 20 8.55E−05 − 2.08E−05 346.34 5.03E−05 − 5.03E−05 315
80 50 1.18E−04 2.59E−17 0 7.78E−05 − 1.78E−17 0
80 80 8.55E−05 2.08E−05 13.66 5.03E−05 5.03E−05 45
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Table 5   Values of 
dimensionless flow rate at the 
left interface at t = 10 days

x = 0 Case 1 Case 2 Case 3 Case 4

Q

y (m)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

0 3.72 5.86 6.66 6.78 2.12 2.49 2.12 2.49
20 0.04 0.07 0.06 0.10 0.03 0.04 0.02 0.04
40 0.04 0.07 0.02 0.05 0.03 0.03 0.02 0.04
60 0.04 0.07 0.02 0.04 0.03 0.03 0.02 0.05
80 0.04 0.07 0.02 0.04 0.03 0.04 0.06 0.10
100 3.72 5.86 2.12 2.49 2.12 2.49 6.66 6.78
Mean 1.27 2.00 1.48 1.58 0.73 0.85 1.48 1.58

Table 6   Values of 
dimensionless flow rate at the 
right interface at t = 10 days

x = 100 (m) Case 1 Case 2 Case 3 Case 4

Q

y (m)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

0 2.12 2.49 6.66 6.78 3.72 5.86 2.12 2.49
20 0.03 0.04 0.06 0.10 0.04 0.07 0.02 0.04
40 0.03 0.03 0.02 0.05 0.04 0.07 0.02 0.04
60 0.03 0.03 0.02 0.04 0.04 0.07 0.02 0.05
80 0.03 0.04 0.02 0.04 0.04 0.07 0.06 0.10
100 2.12 2.49 2.12 2.49 3.72 5.86 6.66 6.78
Mean 0.73 0.85 1.48 1.58 1.27 2.00 1.48 1.58

Table 7   Values of 
dimensionless flow rate at the 
north interface at t = 10 days

y = 100 (m) Case 1 Case 2 Case 3 Case 4

Q

x (m)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

0 3.72 5.86 2.12 2.49 2.12 2.49 6.66 6.78
20 0.05 0.04 0.03 0.02 0.02 0.02 0.17 0.17
40 0.04 0.03 0.01 0.01 0.02 0.02 0.03 0.03
60 0.02 0.02 0.01 0.01 0.04 0.03 0.03 0.03
80 0.02 0.02 0.03 0.02 0.05 0.04 0.17 0.17
100 2.12 2.49 2.12 2.49 3.72 5.86 6.66 6.78
Mean 0.99 1.41 0.72 0.84 0.99 1.41 2.29 2.33

Table 8   Values of 
dimensionless flow rate at the 
south interface at t = 10 days

y = 0 Case 1 Case 2 Case 3 Case 4

Q

x (m)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

Ky = 10

(m∕day)

Ky = 30

(m∕day)

0 3.72 5.86 6.66 6.78 2.12 2.49 2.12 2.49
20 0.05 0.04 0.17 0.17 0.02 0.02 0.03 0.02
40 0.04 0.03 0.03 0.03 0.02 0.02 0.01 0.01
60 0.02 0.02 0.03 0.03 0.04 0.03 0.01 0.01
80 0.02 0.02 0.17 0.17 0.05 0.04 0.03 0.02
100 2.12 2.49 6.66 6.78 3.72 5.86 2.12 2.49
Mean 0.99 1.41 2.29 2.33 0.99 1.41 0.72 0.84
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boundaries. The associated new analytical expression for 
part 2 is given in Eq. (57). Part 3 provides a new analyti-
cal solution (Eq. (66)) of an aquifer with a time-varying 
stream at the south boundary and three constant streams at 
the other boundaries. Also, in part 4, Eq. (75) is the new ana-
lytical expression of an aquifer with a time-varying stream 
at the west boundary and three constant streams at the other 
boundaries. These equations can be summed with each other 
to calculate the hydraulic head of aquifers with different 
types of boundary configurations. Hence, the new analytical 
expressions of the some other boundary configurations are 
also given. The new analytical solutions are obtained with 
Laplace and Fourier transforms and a numerical comparison 
of the model is also carried out using numerical model of 
MODFLOW. The results of the presented new analytical 
solutions were in good agreement with the results of MOD-
FLOW. The results show that the presented new analytical 
solutions are accurate, robust and efficient. Therefore, the 
results indicate that the presented new analytical solutions 
are very effective in the simulation of the groundwater flow 
in river–aquifer systems. Furthermore, one of the advantages 
of the new analytical solutions is to investigate the sensitiv-
ity analysis of aquifer parameters, which has been carried 
out in this paper. Also, some other new analytical solutions 
for steady-state conditions and sudden fall in streams level 
are provided as well.

Some significant new analytical expressions describing 
the sudden fall in streams level as well as steady-state con-
ditions are derived. The associated new analytical expres-
sions of steady-state conditions for parts 1 to 4 are given in 
Eqs. (78)–(89). Equations (78), (81), (84) and (87) are very 
important new exact expressions and can be used to calcu-
late the initial groundwater hydraulic head in an anisotropic 
aquifer when the initial levels of the surrounding streams 
are different. Moreover, the new analytical expressions of 
sudden fall in streams level for parts 1 to 4 are given in Eqs. 
(90)–(93). Using these equations, the groundwater hydraulic 
head distribution for three scenarios of sudden fall in streams 
level is presented as well.

Several examples are provided to investigate the effects of 
anisotropy ( Ky < Kx ) on hydraulic head and flow rate. The 
following pertinent conclusions are drawn:

•	 It is shown when the rates of the north and south streams 
are more than those of the other streams, the hydraulic 
head for isotropic aquifer is less than that for anisotropic 
aquifer and when the rates of the west and east streams 
are more than that of the other streams, the hydraulic 
head for isotropic aquifer is more than that for anisotropic 
aquifer.

•	 The hydraulic head in an anisotropic aquifer is more sen-
sitive to changes in rates of the east and west streams and 

less sensitive to changes in rates of the north and south 
streams than that in an isotropic aquifer.

•	 Furthermore, it is demonstrated that an isotropic aquifer 
provides more water exchange at the interfaces than an 
anisotropic aquifer. An anisotropy ratio of � = 3 reduced 
the average of the dimensionless values of flow rate at 
boundaries about 0.425, 0.09, 0.425 and 0.09 for cases 1 
to 4, respectively. In other words, neglecting anisotropy 
of the aquifer leads to overestimate the flow rate at inter-
faces.

In this research, we showed the significance of considera-
tion of the rates of the streams when dealing with anisotropic 
aquifers. Actually, the hydraulic conductivity is a controlling 
parameter in determination of flow direction in the aquifer. 
This parameter shows that the aquifer is how and how much 
sensitive to each stream. Finally, it can be stated that neglect-
ing the effects of anisotropy causes to wrongly predict the 
flow path line, and as a result, the researchers will be misled 
in estimation of travel time and contaminant distribution in 
the aquifer.

The main applicability of the new analytical solutions 
is to investigate interactions between stream and aquifer. 
These new analytical solutions can also be used to evalu-
ate aquifer response to gradual and sudden drop in stream 
stage. Also, the derived new analytical solutions could be 
used inversely to find the aquifer parameters. It can be men-
tioned that the presented new analytical solutions could 
further be used in many practical problems in stream–aqui-
fer systems. Furthermore, it could be utilized for the vali-
dation of experimental and numerical models. Also, the 
results of the present new analytical solutions obtained will 
enable a better understanding regarding the modeling of 
the interaction between the river and the aquifer. Therefore, 
this research is a contribution to a better understanding 
of the fluxes between the river and the aquifer. Finally, 
the current study contributes to overcome common weak-
nesses of model applications, fulfills gaps in the existing 
literature and highlights the importance of the modeling 
process in planning sustainable management of ground-
water resources.

The novelty of this paper is evaluating the anisotropy 
effects on groundwater hydraulic head as well as flow rate in 
a confined aquifer in contact with varying level boundaries. 
Therefore, a set of new analytical expressions are obtained 
by means of the Laplace and Fourier transforms and the 
solutions applicability is shown by the help of hypothetical 
examples.
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