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Abstract
Organic effluent enrichment in water may selectively promote algal growth, resulting in water pollution and posing a threat 
to the aquatic ecosystem. Recent harmful algal blooms (HABs) incidents have highlighted information gaps that still exist, 
as well as the heightened need for early detection technology developments. Although previous research has demonstrated 
the importance of deep learning in the identification of algal genera, it is still a challenge to identify or to develop the best-
suited convolution neural network (CNN) model for effective monitoring of bloom-forming algae. In the present study, 
efficiency of deep learning models (MobileNet V-2, Visual Geometry Group-16 (VGG-16), AlexNet, and ResNeXt-50) have 
been evaluated for the classification of 15 bloom-forming algae. To obtain a high level of accuracy, different convolution 
layers with adaptive moment estimation (Adam), root-mean-square propagation (RMSprop) as optimizers with softmax and 
rectified linear unit (ReLU) as activation factors have been used. The classification accuracies of 40, 96, 98, and 99% have 
been achieved for MobileNet V-2, VGG-16, AlexNet, and ResNeXt-50 model, respectively. We believe that the ResNeXt-50 
has the potential to identify algae in a variety of situations with high accuracy and in real time, regardless of the underlying 
hardware. Such studies pave the path for future AI-based cleaner technologies associated with phycological studies for a 
sustainable future.

Keywords  Harmful algal blooms (HABs) · Convolution neural network (CNN) · Cleaner technologies · Convolution 
layers · Deep learning models

Introduction

Inland water bodies harbor several single and multicel-
lular organisms whose composition varies from changing 
climatic conditions (Olano et al. 2020). Phytoplankton or 

single-cell green growth forms the basis of an aquatic eco-
system that directly or indirectly alters the optimum living 
conditions for all biotic and abiotic components of its sur-
rounding (Abreu et al. 2020). During optimum conditions, 
frequent gatherings of freshwater algae like diatoms, green 
algae, and blue-green algae lead to the formation of “algal 
blooms” (Young et al. 2020). Huge quantities of “sprout-
ing” green growth have the potential to produce toxins 
and resulting in lower oxygen levels, subsequently making 
critical issues for shore-based organizations (e.g., hotels, 
cafés), and the fishery business (Klemas 2012; Anderson 
et al. 2015). Besides being awful, these HABs can also 
be harmful to human health and aquatic ecosystems, as 
swallowing or swimming in contaminated waters, eating 
poisoned fish or shellfish, or inhaling airborne droplets of 
contaminated water can all expose people to HAB toxins. 
While harmful algal blooms are not a new phenomenon 
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(Spanish explorers observed blooms along Florida's coast 
in the 1500s), freshwater harmful algal blooms have risen 
exponentially in past decades and are now a global envi-
ronmental problem (Hallegraeff et al. 2021). These abrupt 
invasion needs to be characterized and restrained in their 
primary phase for sustainability (Zhou et al. 2020). Algal 
tracking and classification are some of the central strides 
in algal bloom management (Le Bourg et al. 2014). Con-
ventional identification methods (like flow cam micro-
scopes and cytometers) are tedious and work-exhaustive; 
thus, improved strategies to achieve unswerving algal 
identification and classification are the need of the hour 
(Barteneva and Vorobjev 2016; Dashkova et al. 2017). To 
resolve this issue, deep learning, an artificial intelligence 
(AI)-based technique, can give potential and unique ways 
to deal with fast algal detection (Franco et al. 2019).

Recently, various studies have applied AI-based meth-
ods to characterize these bloom-forming algae by vari-
ous neural networks but their accuracy and reliability are 
uncertain. Promdaen et al. (2014) exhibit a computerized 
acknowledgment framework using texture and shape fea-
tures for the classification of 12 algal genera by sequential 
minimal optimization (SMO). The affirmation for the via-
bility of the technique regarding 97.22% characterization 
exactness has been done by them. Li et al. (2017) exhibit a 
promising and proficient arrangement through the Mueller 
matrix image analysis framework dependent on the deep 
neural network for the grouping of morphology, shape, and 
external features based on comparative algal studies. For 
the characterization of the algal images, only a few stud-
ies were taken into account when examining algal bloom 
using CNN.

Medina et al. (2018) applied CNN for the discovery of 
algae in submerged pipelines where algae and sand were 
deposited on their surface. With the use of a pre-trained 
deep residual convolution neural network, Deglint et al. 
(2019) proposed an innovative system for classifying six 
algal genera and achieved an accuracy of 96%, while Ruiz-
Santaquiteria et al. (2020) attained an average sensitivity of 
95%, with 57% precision and 60% specificity for a dataset 
of diatoms comprising of 126 images. The present research 
is an effort to formulate the best convolution neural net-
work model out of four frequently used models (MobileNet 
V-2, VGG-16, AlexNet, and ResNeXt-50) to accelerate the 
distinguishing proof and characterization (with high exact-
ness) for 15 phycotoxins-producing marine algal genera 
including Amphidinium, Chatonella, Cochlodinium, Gym-
nodinium, Karenia, Lyngbya, Ostreopsis, Prymnesium, 
Pseudo-Nitzschia, Tolypothrix, Gambierdiscus, Coolia, 
Protoceratium, Karlodinium, and Dinophysis.

Material and methods

For strong performance on image classification, CNNs 
have made great achievements. The current research 
applied the most acceptable deep CNNs, including 
MobileNet version 2, Vgg16, AlexNet, and ResNeXt 50, 
and also examined the potential capacity of these models 
when applied to the dataset comprising of algal pictures. 
A proportional analysis of the performance of models 
is given for 15 bloom-forming algal genera. Usually, a 
CNN structure consists of multiple convolutionary archi-
tecture blocks and a layer that is completely connected. A 
convolutionary layer conducts operations of convolution 
over the performance using a set of filters or kernels to 
extract the characteristics of the preceding layers that are 
important for classification.

Studied models

The research focuses on advanced CNNs such as MobileNet 
version 2, Vgg16, AlexNet, and ResNeXt 50, which have 
numerous hidden layers of components between the input 
and output layers, as shown in Fig. 1.

MobileNetV2

MobileNet is a simplified architecture that uses deep divis-
ible convolutions to render deep convolutionary neural 
organizations lightweight and offers an efficient model for 
flexible and implanted vision applications. MobileNet is 
based on profoundly separable convolutions, which consist 
of two inner core layers: convolutions in-depth and convolu-
tions in stage (Sae-Lim et al. 2019).

VGG 16

VGG 16 is a deep CNN built by researchers working on the 
relation between the depth and efficiency of a CNN at the 
University of Oxford Vision Geometry Group and Google's 
Deep Mind (Simonyan and Zisserman 2015; Zhang et al. 
2016). The architecture of a VGG-16 is identical to a regular 
ANN and involves an input layer, a sequence of convolution-
ary layers with an output layer.

AlexNet

AlexNet is one of the most powerful architectures among 
many CNN architectures that are commonly used to solve 
image classification problems (Krizhevsky et al. 2017). The 
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samples are reduced along with the spatial coordinates in 
the pooling sheet. This mechanism is known as decimation. 
For each picture, the fully connected (FC) layer calculates 

the class scores and provides the forecast. For each predic-
tion class, the probability score is calculated and the class 

Fig. 1   Architecture for classification of bloom-forming algal images. A AlexNet, B VGG16, C MobileNetV2, and D Modified ResNeXt-50
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that scores the highest probability score is chosen as the 
predicted class.

Modified ResNeXt

A classic neural network used as a foundation for many 
computer vision tasks is ResNet, (short for Residual Net-
works). Original ResNeXt CNN model was being developed 
by Xie et al. (2017) but in the present research, the model 
has been modified as per the modifications applied by Pant 
et al. (2020) in the case of Pediastrum classification while 
Yadav et al. (2020) for multiple algal classifications (Xie 
et al. 2017; Pant et al. 2020; Yadav et al. 2020).

Activation functions

The activation mechanism was the first development. In neu-
ral networks, activation features have been used to obtain 
nonlinearity. Therefore, typical choices of activation func-
tion include logistic function, tanh, Arctan feature, etc. But 
these functions tend to run into a gradient disappearing 
problem in deep models since the gradient is only a large 
value when the input is around a small range of 0.0.

A new activation function—rectified linear unit (ReLU)—
was used to resolve this problem. ReLU can be defined as

An element-wise activation feature is employed in the 
rectified linear unit (ReLU) layer. By adding nonlinearity 
to the system and applying the function-f(k) = max (0, k), 
this layer replaces all negative activations with 0. Another 
important activation function applied is Softmax, a sigmoid 
nonlinear function that is used to manage several groups. 
It requires a vector of real numbers to assign the input into 
the appropriate label as the input performs the probability 
distribution over it. The formula is as follows:

where Φ = softmax, X = input vector, eXi = standard exponen-
tial function for input vector, J = number of classes in the 
multi-class classifier, eXk = is standard exponential function.

Optimizers

Root-mean-square propagation (RMSprop) and adap-
tive moment estimation (Adam) have been applied as an 
optimizer for different models tested in this research as 
RMSprop for MobileNet version 2 and VGG16 while the 
Adam was being used in Alex Net and ResNeXt models. In 

(1)ReLU(z) =

{

z

0

if z > 0

if z ≤ 0

(2)Φ(X
→) =

eXi

∑J

k=1
eXk

RMSprop, gradients can be measured by taking the square 
average of each weight into account and then dividing it by 
the square the root of the mean square. In Eq. 3, π means 
parameter, β is the learning rate, δ means the term of decay 
and gt is the gradient at a time "t".

While Adam stands for adaptive moment estimation, it 
is by far the most common and commonly used optimizer 
in DI.

In the equation ω represents parameters, while the Ө is 
learning rate, v̂ signifies the gradient. It is possible to sim-
plify the math representation for Adam in the following way:

Results

Deep learning-based algorithms for microscopic image anal-
ysis of a wide range of microorganisms, including viruses, 
bacteria, fungus, microscopic algae, and parasites, have been 
developed to address the challenges faced by human-oper-
ated microscopy (Grimes et al. 2014). These algorithms lev-
erage pixel patterns as the primary feature for image analysis 
and may thus be simply applied in biological-image analysis 
with unprecedented potential (Reguant et al. 2021).

Dataset

Present research target 15 genera of bloom-forming algae 
with a dataset comprised of 450 algal images as input data. 
These images were gathered from various open access web 
depositories (CRIS database, galerie.sinicearasy.cz) and past 
phycological examinations by phycologists in previous stud-
ies as mentioned in Yadav et al. (2020).

Data augmentation

Data augmentation increased the quantity of these photo-
graphs to 90,000, as shown by Pant et al. (2020) and Yadav 
et al. (2020). This data augmentation was done in such a way 
that each class received an equal amount of photographs. 
Later, these equally fractionated data have been further sub-
divided into two groups for training and testing of the model, 
80% (72,000) and 20% (18,000) of images, respectively.

(3)�t+1 = �t −
�

√

(1 − �)g2
t−1

+ �gt+�
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(4)�t+1 = �t −
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Weights = Weights−(Momentum and Variance combined)



Applied Water Science (2023) 13:115	

1 3

Page 5 of 11  115

Training and validation

The morphological traits of these algae genera were used to 
classify them. The input size was deep enough to get pho-
tographs with a size of 200 by 200 pixels, a batch size of 
32, and an initial learning rate of 3e-3 before the training 

and testing functions were conducted. The marking of each 
class was acted for both training and testing pictures. Adam 
optimizer has been used for compiling the proposed model. 
For the calculation of training loss and the testing loss, cat-
egorical cross-entropy has been applied. The accuracies 
and the losses related to these training and validation have 

Fig. 2   Graphical representation for training and validation loss for studied CNN models. MobileNetV-2, VGG16, AlexNet, and modified 
ResNeXt—Validation accuracy (A, C, E, and G) and Validation loss (B, D, F, and H)
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been depicted with their respected models MobileNetV-2, 
VGG16, AlexNet, and modified ResNeXt in Fig. 2. To assess 
the efficiency of the models, parameters like accuracy (acc), 
precision (pre), recall (re), and F1-score confusion matrix 
has been calculated as described as follows:

The error matrix

The outputs of the proposed algorithms were determined 
by plotting the confusion matrices. The projected class 
instances are represented by distinct rows of the matrix, 
whereas the actual class instances are represented by sepa-
rate columns. With so many discrepancies in the confusion 
matrix for MobileNetV2, it is apparent that the transfer 
learning-based MobileNetV2 fails to discriminate between 
algae with similar morphologies (Fig. 3A). These errors of 
recognition have been minimized with 40% accuracy for 
MobileNetV2 to 96% accuracy for Vgg16 and 98% accuracy 
for AlexNet, respectively (Fig. 3B and C). While only 17 
images of Pseudo-nitzschia were incorrectly recognized as 
Lyngbya in the confusion matrix of the updated ResNeXt-50 
(99% accuracy) as illustrated in Fig. 3D, this could be owing 
to shape similarities (length, unbranching filaments) between 
Pseudo-nitzschia and Lyngbya.

F1‑score and receiver operating characteristic (ROC) 
curve

In the proposed work, the model performance is evalu-
ated using F1-score, precision, and recall. To assess the 
effectiveness of the predictions, precision-recall can be a 
useful indicator when classes are very unbalanced. Preci-
sion measures the value of true positive results while recall 
measures the truly relevant results that are being returned 
during the information retrieval. The F1-score reflects the 
equilibrium between accuracy and recall. The F1-score is 
2*(precision*recall)/(precision + recall)) and also known 
as “f measure”. As per the results, the values of measures 

(5)Accuracy (ACC) =
True positive (TP) + True negative (TN)

True positive (TP) + True negative (TN) + False positive (FP) + False negative (FN)

(6)Precision =
True positive

True positive + False positive

(7)Recall =
True positive

True positive + False negative

(8)F1 − score = 2 ∗
Pre ∗ Re

Pre + Re

like precision, recall, and F1-score are increasing for the 
CNN models from MobileNetV-2, to VGG16, and further to 
AlexNet, and modified ResNeXt, respectively (Fig. 4). The 
precision has been increased up to 0.99 for ResNeXt as the 
best value for the F1 score, which is 1 has been achieved (i.e. 

perfect precision and recall) for all the classes except Lyng-
bya and Pseudo-nitzschia which could also be as a result of 
somewhat morphological resemblances between these two.

Discussion

Toxins produced by HABs can be harmful to fish and other 
aquatic creatures. These toxins migrate up the food chain 
after being digested by small fish and shellfish, affecting 
larger animals such as sea lions, turtles, dolphins, birds, 
and manatees. However, the actual health risks presented 
by these toxins in water resources utilized for recreation 
and drinking water to the general public, pets, livestock, 
and wildlife are yet unknown but due to various natural and 
anthropogenic activities, global trends in the prevalence, tox-
icity, and risk posed by harmful algal blooms are commonly 
assumed to be on the rise. Rapid classification of HAB form-
ing algae is a need of time because the health effects, HAB 
toxins can range from minor to severe, and in some cases, 
lethal, depending on the quantity of exposure and the type 
of algal toxins involved.

Using electron microscopes, morphological studies 
revealed differences in traits such as the flagellar appara-
tus, cell division mechanism, and organelle structure and 
function, all of which are significant in algal categoriza-
tion. Standard microbiological techniques focused on iso-
lation and identification, as well as molecular techniques, 
are needed to characterize the microalgal community. 
Li et al. (2017) used the convolutional neural networks 
(CNNs) for the classification of algae (with morphologi-
cal resemblances) and achieve a 97% accuracy by Mueller 
matrix imaging system. With the advancement of artificial 
intelligence, a deep convolutional neural network (CNN) 
employing microscopic images of algae could substantially 
aid in detecting water quality and become a major solution 
for image categorization (Wang et al. 2020). The perfor-
mances of the automated models have been deeply impacted 
by the comparative morphological appearance of various 
bloom-forming algae (Zhang et al. 2021). The accuracies 
of the models have been compromised when the algae have 
similar morphological features and seek a detailed analysis 
to resolve this miscalculation.
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In this research, the performance of 4 deep learn-
ing algorithms (MobileNet V-2, VGG-16, AlexNet, and 
ResNeXt-50) with different geometric augmentations 
have been done. An exertion has been done to identify a 
technique with the potential to speed up the identification 

without compromising the accuracy for 15 phycotoxins-
producing algal genera including Amphidinium, Cha-
tonella, Cochlodinium, Gymnodinium, Karenia, Lyngbya, 
Ostreopsis, Prymnesium, Pseudo-Nitzschia, Tolypothrix, 
Gambierdiscus, Coolia, Protoceratium, Karlodinium, and 

Fig. 3   Confusion matrices for CNN models—A MobileNetV-2, B VGG-16, C AlexNet, and D Modified ResNeXt
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Dinophysis. For doing the same, a dataset of 450 algal 
images was taken as input data and these images were col-
lected from various open access web depositories (CRIS 
database, galerie.sinicearasy.cz) and other publicly avail-
able dataset as suggested by Yadav et al. (2020). The aug-
mentation of these images was being done and increased 

the number of these images up to 90,000 pictures (Han 
et al. 2021). In the later stage, these images have been 
divided into two groups 80% (72,000) and 20% (18,000) 
of images for training and validation purposes to various 
deep learning models, respectively (Elgendi et al. 2021).

Fig. 4   The ROC curves of the proposed models and class-wise ROC curve area for studied CNN models. MobileNetV-2 (A and B), VGG16 (C 
and D), AlexNet (E and F), and modified ResNeXt (G and H)
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It is feasible to develop convolutionary neural networks 
from scratch and be successively trained on different datasets 
to achieve optimum efficiency (von Chamier et al. 2021). 
This method takes a substantial amount of time and effort 
so the idea of transfer learning based on MobileNet ver-
sion-2 has been applied first in this research. However, the 
confusion matrix reveals that MobileNet version-2 is unable 
to distinguish between algae with similar morphology and 
appearance. The performance of a classification algorithm 
can be summarized using a confusion matrix, as confusion 
matrix makes it simple to envisage which categorization 
models are correct and where it shows error. Our findings 
support the use of confusion matrix analysis in validation 
because it is resistant to any data distribution or type of rela-
tionship, accomplishes a rigorous evaluation of validity, and 
provides additional data on the type and sources of errors.

In the confusion matrix for MobileNet version-2, lot of 
errors have been noticed when it differentiates the algae like 
Amphidinium, Coolia, Ostreopsis, Protoceratium, and Gym-
nodinium (Fig. 3A). These confusions may arise as a result 
of morphological similarities between Amphidinium and 
Ostreopsis, resulting in a significant inaccuracy in the inter-
pretation of 576 pictures. As Amphidinium cells are dorso-
ventrally flattened, athecate dinoflagellates with a minute 
epicone while oval to teardrop-shaped with thecal plates are 
present in Ostreopsis cells with scattered pores as an inter-
nal sieve-like structure. Coolia and Ostreopsis classifica-
tions, on the other hand, noticed 613 errors. Spherical cells 
and anteroposteriorly compressed cell shape with rounded 
hypotheca of Coolia could be the primary factors for the 

affinity. Apart from that, MobileNet version-2 has noted 
similar types of confusions in other algae as well, and the 
findings for MobileNet version-2 with a low F1-score and an 
accuracy of 40.68% were not satisfactory. These substandard 
results with transfer learning lead this research to apply other 
CNNs like VGG-16, AlexNet, modified ResNeXt50 and 
the values of measures like precision, recall, and F1-score 
have been achieved in the increasing order for these mod-
els, respectively (Table 1). Despite the fact that the majority 
of the errors reported in the case of MobileNet version-2 
were resolved with the use of VGG-16, the confusion matrix 
(Fig. 3B) suggests that 115 images of Chatonella were incor-
rectly read as Ostreopsis (due to their similar external mor-
phology), aside from some minor discrepancies by the model 
VGG-16. These errors drag VGG-16's accuracy to 96% and 
lowering the F1 score to 0.96 (Table 1). The error matrix for 
AlexNet and ResNext50 (Fig. 3C and D) have shown that 
the misperception has been reported only with the Tolypo-
thrix and Pseudo-nitzschia, respectively; it may be due to the 
morphological affinity to other algae.

AlexNet and ResNext50 reported 98 and 99% accuracy 
with high F1 scores of 0.97 and 1, respectively (Table 1). 
The results of this study were similar to those obtained 
by Pant et al. (2020) and Yadav et al. (2020) with classi-
fication accuracies of 98.45 and 99.97%, respectively, for 
the same modified ResNeXt50 deep learning model. As a 
result of implementing these well-proven models, modi-
fied ResNext50 (with 99% accuracy) surpassed existing 
algal classification models and paving the path for future 

Table 1   The F1-score, precision, and recall values for the studied models

S. no. Algae MobileNet V-2 VGG 16 AlexNet ResNeXt50

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

1 Amphidinium 0.04 0 0 0.98 0.95 0.96 0.99 0.93 0.96 1 1 1
2 Cochlodinium 1 0.34 0.5 0.99 0.99 0.99 0.99 1 1 1 1 1
3 Gymnodinium 0.36 0.74 0.48 0.99 0.93 0.96 1 0.99 1 1 1 1
4 Karenia 0.87 0.09 0.16 0.97 1 0.98 0.99 0.99 0.99 1 1 1
5 Lyngbya 0.92 0.59 0.72 0.98 0.96 0.97 0.99 0.99 0.99 0.99 1 0.99
6 Ostreopsis 0.18 0.88 0.3 0.87 0.96 0.91 0.99 0.98 0.99 1 1 1
7 Prymnesium 1 0.03 0.07 0.99 1 1 1 0.97 0.98 1 1 1
8 Pseudo-nitzschia 0.93 0.98 0.95 0.96 0.96 0.96 0.99 0.9 0.94 1 0.98 0.99
9 Tolypothrix 0.99 0.47 0.64 0.97 0.98 0.97 0.78 0.99 0.87 1 1 1
10 Chatonella 0.28 0.69 0.4 0.96 0.86 0.91 0.99 0.99 0.99 1 1 1
11 Gambierdiscus 0.44 0.71 0.54 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1
12 Coolia 0.41 0.42 0.41 1 1 1 1 1 1 1 1 1
13 Protoceratium 0.95 0.06 0.12 0.95 1 0.97 0.99 0.99 0.99 1 1 1
14 Karlodinium 0 0 0 0.98 0.98 0.98 0.99 0.96 0.97 1 1 1
15 Dinophysis 0.93 0.09 0.17 0.95 0.95 0.95 0.99 0.94 0.96 1 1 1
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research such as the development of artificial intelligence-
based detectors and other identification tools.

Deep learning models have significant implications in 
algal classification due to their ability to accurately clas-
sify different species of algae based on their morphological 
and genetic features, aid in their identification, and aid in 
conservation efforts (Li et al. 2017). These learning models 
are capable of analyzing large datasets of images faster than 
humans, automating the classification process, and allowing 
researchers to process more data in less time (Wang et al. 
2020). Furthermore, deep learning models are scalable, eas-
ily adjustable to the size of the dataset and the complexity of 
the classification task.

However, there are limitations to the use of deep learn-
ing in algal classification. These include datasets bias, the 
reliance on data quality, difficulties in interpretability, and 
the risk of overfitting to training data (Elgendi et al. 2021). 
These limitations should be taken into consideration when 
interpreting the results of deep learning models in algal clas-
sification (Zhang et al. 2021). Future research should focus 
on developing more transparent and interpretable models 
that can handle biases and low-quality data. In conclusion, 
deep learning models have significant implications in algal 
classification, but their limitations should be considered. 
Future research should focus on developing more transpar-
ent and interpretable models that can handle biases and low-
quality data.

Conclusion

The applications of deep learning in image recognition and 
classification of the bloom-forming algae, a major cause of 
water pollution, will be on the front line in the new innova-
tive products, technologies, and ideas that can improve our 
environment. For the categorization of 15 bloom-forming 
algae, the MobileNet V-2, Visual Geometry Group-16 
(VGG-16), AlexNet, and ResNeXt-50 models were tested 
with the goal of identifying or developing the best-suited 
convolution neural network (CNN) model for effective moni-
toring of bloom-forming algae. VGG-16 and Alex Net may 
appear to be good at first glance, with 96 and 98% accuracy, 
respectively, but another well-known algal-classifier model, 
ResNeXt-50, outperformed these two with 99% classifica-
tion accuracy. The results proved that ResNeXt-50 model 
architecture to algal image collections can reliably distin-
guish both large and small particles, and it is resilient against 
a range of imaging conditions and datasets. The current 
study is an attempt in HAB science with an eye headed for 
new ideas and approaches, in rapid identification and where 
possible, the unpredicted yet promising new horizons that 
will be taken by the research in the diverse field of environ-
mental studies.
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