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Abstract
Diazinon (DZN) has been reported as an important pesticide with wide application in agriculture. The entry of these com-
pounds into water resources has brought serious environmental problems due to their resistance to biodegradation; thus, this 
study was considered to be done to explore the process of DZN uptake and the influence of effective parameters. The study 
was performed experimentally and on a laboratory scale. Investigating the structure and morphology of the nanocomposite 
was done based on different analyses, i.e., FE-SEM, FTIR, and XRD. The experiments based on the Box–Behnken scheme 
were performed by surveying four important operating parameters (pH, contact time, nanocomposite dose, and DZN con-
centration). Optimization was performed by experiment design software and using the response surface method and analysis 
of the proposed model. The DZN removal efficiency was obtained 100% under optimal conditions including pH = 5, nano-
composite dose = 0.83 g/L, reaction time = 55 min, and DZN concentration = 5 mg/L. Considering the high correlation 
coefficient R2 = (0.9873) and R2

Adj
= (0.9725), the proposed model (quadratic) was approved. The results were indicative of 

conforming the reaction kinetic to the pseudo-second-order model and the correspondence of reaction isotherm to the Fre-
undlich model (R2 = 0.997). Based on the obtained results, the adsorption process with AC–ZnO nanocomposite could be 
introduced as an efficient and eco-friendly technique to remove DZN.
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Introduction

The increasing expansion of industries and the entrance of 
industrial and agricultural wastewaters into the environment 
have been resulted in many concerns about surface water and 
groundwater pollution and environmental degradation (Janati 
et al. 2017; Méndez-Paz et al. 2005; Zhang et al. 2005). Waste-
water released from pesticide production industries contains 
high concentrations of pollutants that generally have high tox-
icity and resistance (Xiong et al. 2011). Organic insecticides 
include various types such as organochlorines, organophos-
phates, carbamates, and pyrethroids; one of the most impor-
tant of them is organophosphate insecticides (Legrouri et al. 
2005; Zohair 2001). Diazinon (DZN) as an organophosphate 
compound has been considered as a promising toxin due to 
its extensive uses to control a variety of domestic insects, soil 
insects, pests of fruits and vegetables and agricultural prod-
ucts, home grasses, and the fish parasitic in aquariums as well 
(Moradiasl et al. 2019; Samadi et al. 2010). This toxin is in the 
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row of "relatively dangerous" of class 2 in the World Health 
Organization (WHO) classification. The toxicity concentra-
tion of this insecticide for marine organisms is 350 ng/L,  LC50 
for killing fishes (48 h) is 4.4 mg/L, and the lethal dose for a 
human is about 90–444 mg/kg (Videira et al. 2001). DZN, 
one of broadly used organophosphate insecticides in agricul-
ture uses in worldwide, is released into water sources through 
direct washing or irrigation. Since most pesticides are used 
during the spring, they are washed away by rain due to the 
high rainfall in this season. Moreover, it has been detected 
that through infiltration of water into soil layers, pesticides 
can enter groundwater aquifers. Thus, the contamination of 
water sources can happen through various pathways. Their 
entry into water supply sources can harmfully affect human 
health and the environment; the type of chemical, duration of 
use, time of exposure, the concentration of input toxin, and the 
degree of toxicity are the factors which control the incident 
of adverse effects associated with these chemicals (Bazraf-
shan et al. 2007; Samadi et al. 2010). The final location of 
most toxins usually leads to rivers, lakes, and lagoons. DZN 
is relatively soluble in water (40 mg/L at 25 °C), non-polar, 
sedentary, and resistant in soil. Therefore, it is worrying for 
ground waters and surface waters that supply drinking water 
(Liu et al. 2018). Abdominal pain, dizziness, headache, dou-
ble nose, nausea, and eye and skin problems have been listed 
as short-term adverse health effects associated with expo-
sure to pesticides by researchers. However, they reported the 
increase in probability incident of respiratory problems, noted 
memory disorders, depression, neurological deficits, cancer, 
and infertility as long-term effects (Samadi et al. 2010). In 
comparison between dark and light environments, it has been 
found that the half-life of DZN in the light environment was 
31.13 days, while the half-life of the samples kept in the dark 
was 37.19 days. It decomposes under the influence of UV 
rays, the amount of which depends on the wavelength used 
(Hameed et al. 2009). Various methods such as photocatalytic 
(Ghodsi et al. 2020), biological (Azizi et al. 2021), electro-
chemical (Heidari et al. 2021; Mahmoudpoor Moteshaker et al. 
2020), and ozonation (Arfaeinia et al. 2018) have been utilized 
for removing DZN from aqueous environments. Chemical 
oxidation is not dissociated all organic matter, and the bio-
logical treatment method is performed at low speed and its 
sludge disposal faces some problems (Oller et al. 2011). Due 
to the high-cost and operational problems, the application of 
mentioned techniques is not cost-effective in many countries. 
In the meantime, the adsorption method has received more 
attention since it exhibited characteristics, e.g., easy opera-
tion, low investment cost, insensitivity to toxic substances, the 
possibility of reusing the adsorbent through reduction, and the 
production of the by-products (Baghapour et al. 2013; Malako-
tian et al. 2016). Among the used adsorbents, activated carbon 
(AC), as an extensively used materials in removing organic 
pollutants from wastewater, has found to be effective since 

it has acceptable porosity, specific area and high adsorption 
capacity, and appropriate efficiency (Pouretedal and Sadegh 
2014). Nevertheless, commercial AC has high cost, and due to 
this problem, studies on low-cost materials for replacing com-
mercial activated carbon are continued by researchers. AC can 
extensively be obtained from materials, e.g., algae, coconut 
shell, corn, lignin, etc. Worn tire is widely available in most 
areas (Mohan and Pittman 2006). Producing activated carbon 
from worn tire diminishes the risks associated with their dis-
posal and leads to obtain a valuable product (Hoseinzadeh and 
Rahmani 2012).

A numerous methods have been developed for synthesizing 
nanoparticles. Because of application of a chemical reducing 
agent in most chemical methods for controlling the growth of 
particles and prevention of accumulation, recently incremental 
attention has been paid to the synthesis of eco-friendly 
nanoparticles. Biological methods have been introduced 
as an alternative method for the synthesis of nanoparticles. 
Conducting biological methods is done using extracts 
of various plants and their products as an alternative for 
synthesizing nanoparticles (Fazlzadeh et al. 2017; Ramezani 
et al. 2013). The critical drawback detected for the employment 
of nanomaterials in treatment technology is the separation of 
the dispersed nanocomposites from the aqueous environments 
at the end of the process. Accelerating the separation of the 
nanomaterials from the aqueous environments can be done by 
the stabilization of nanoparticles on materials such as oxides, 
polymers, fibers, and activated carbon. Among the mentioned 
cases, the use of activated carbon has shown the economic 
benefits and environmental considerations (Fazlzadeh et al. 
2017; Ghaedi et al. 2013; Samarghandi et al. 2018).

One of the models employed in designing experiments 
is response surface methodology (RSM); this is a simple, 
effective, and low-cost method for optimizing various 
processes (Amouei et al. 2016; Pourali et al. 2022). The 
Box–Behnken method is a quadratic design based on three-
level factorial designs, which is capable of estimating the 
amount of parameters in a quadratic model and calculating 
the amount of incompatible parameters by performing the 
required designs (Ghorbani and Bagherian 2016). In our 
study, the RSM was applied by applying Box–Benkhen 
model design for optimizing and also evaluating the effect 
related to independent variables on response performance 
(DZN removal) and on the other hand predicting the best 
response value.

Material and methods

Chemicals

Diazinon (DZN, a purity of 0.99) was prepared by Sigma-
Aldrich Company, and sodium hydroxide, sulfuric acid 
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and zinc chloride used were supplied by Merck Company. 
The physicochemical characteristics of DZN are brought in 
Table 1. Sulfuric acid and 0.1 M sodium hydroxide were 
employed for adjusting the solution pH. Maternal solution 
was used to prepare different concentrations of DZN accord-
ing to mg/L.

Experiment method

In this experimental research, the efficiency of adsorption 
process in DZN removal was investigated on a laboratory 
scale and in a batch system on synthetic wastewater. The 
sample size used in each step of test is 100 cc. In this 
design, four parameters of time, nanocomposite content, 
DZN concentration and solution pH were inspected at 
three levels, i.e., high (+ 1), medium (0), and low (−1). 
The number of required experiments was determined 
using BBD by formula of N = 2 K (K−1) + C (N indicates 
the number of test samples, K is indicative of the number 
of variables, and C is representative of the number of 
center points) (Samarghandi et al. 2021). The number of 
experiments was 46, which with 13 repetitions of each 
sample for certifying the accuracy and precision of the 
results, the number of experiments is 138. Eventually, 
the samples were withdrawn from solution, and 
centrifugation was considered for them at 5000 rpm. They 
were then filtered by applying a filter of 0.22 micron to 
ensure separation of the nanocomposite. Equation 1 was 
employed for estimating DZN removal efficiency (%) 
(Aynaz et al. 2022).

C0 and Ce represent the initial and final DZN 
concentrations (mg/L). For measuring the concentration of 
DZN, a spectrophotometer (DR-5000 made by the American 
company  HACH®) was utilized at 247 nm (Dargahi et al. 
2021, 2019). After optimizing the operating parameters, the 
isotherm and kinetics of the process were investigated.

(1)Removal efficiency (%) =
c0−ce

c0

× 100

Preparation of powdered activated carbon (AC)

In this study, worn rubber was employed for preparing 
powdered AC. The first stage of this procedure was 
impregnation of tire parts (0.5 cm) with phosphoric acid 
and placing inside a batch reactor. Then, it was placed at 
800 °C for 2 h. After washing the prepared AC with distilled 
water and drying in an oven at 110 °C for 2 h, its separation 
was done using a sieve [mesh of 20–30 (0.59–0.84 mm)] and 
considered to be used in our study (Fazlzadeh et al. 2017).

Extraction of plant extract and synthesis of zinc 
oxide nanoparticles (ZnO)

The obtained Oregano extract was filtered by boiling 
for 60 min with a vacuum pump. In order to synthesize 
nanoparticles,  ZnCL2 solution was added to the extract in a 
certain ratio. The appearance of white precipitation indicates 
the formation of zinc-oxidized nanoparticles. After that, the 
nanoparticles were dried at 70 °C for 24 h and placed in a 
kiln at 400 °C for 2 h to calcinate (Fazlzadeh et al. 2017).

Loading of ZnO nanoparticles onto AC

Preparing the composite was carried out briefly as follows: 
After adding the ZnO nanoparticles (0.05 g) to distilled 
water (200  mL), using a magnetic stirrer, the mixture 
was stirred for 10 min. Then, AC (5 g) was poured into 
the solution prepared in previous step. After placing it 
on a magnetic stirrer at 500 rpm for 2 h, loading of the 
nanoparticles onto the AC was done. After filtering the 
synthesized composite and rinsing twice with distilled water, 
it was lastly transferred to the oven at 95 °C for 10 h for 
complete drying (Rashtbari et al. 2019).

Determination of zero‑point pH (pHzpc)

PHzpc indicates the state of electrical charge dispersal on the 
nanocomposite surface. For determining pHzpc, salt solution 
of electrolyte (0.1 M), caustic soda (NaOH) and sulfuric acid 

Table 1  Physicochemical characteristics of DZN (Ouznadji et al. 2016; Samadi et al. 2010)

Chemical structure Solubility in water Molecular formula Molar mass

40 mg/L at 25 °C C12H21N2O3PS 304.35 g/mol
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 (H2SO4) solutions (0.1 N) were used as controlling agents. 
30 ml (in each Erlenmeyer) of the electrolyte solution was 
poured into 12 of 100 ml Erlenmeyer, and the solution pH 
was adjusted in the range of 2–12 using  H2SO4 and NaOH. 
After adding AC–ZnO nanocomposite (0.05  g) to each 
Erlenmeyer, they were placed on a shaker at 250 rpm for 
48 h. After the termination of the final pH, the contents of the 
Erlenmeyer were read using a pH meter, after separation of 
the nanocomposite. pHzpc was estimated by drawing the pH 
changes curve versus the initial pH (Rivera-Utrilla et al. 2010).

Determination of AC–ZnO nanocomposite 
specifications

To determine the phase of crystals in AC–ZnO from X-ray 
diffraction (XRD) at 2θ = 10–80° by XRD device [model 
with a PW 3700/30 control X-ray diffraction system (Quanta 
chrome, NOVA2000, USA)]. The FTIR technique in the 
range of 450–4000   cm−1 to pinpoint the existing factor 
group was used on the AC–ZnO surface. FE-SEM scanning 
electron microscope at an accelerated voltage of 10 keV 
was the analysis employed for determining the surface and 
morphological characteristics.

Experiment design based on Box–Behnken

The four studied variables along with their selected levels and 
amplitudes for the experiment design based on Box–Behnken 
are presented in Table 2.

Adsorption kinetics

In this section, kinetic equations, which explain how to 
transport adsorbate per unit of time or to evaluate variables 
affecting the reaction rate, were employed. Pseudo-first-order 
(PFO) and pseudo-second-order (PSO) kinetic models were 
investigated to survey the factors affecting the reaction rate of 
DZN adsorption process using nanocomposites. The PFO and 
PSO linear kinetic equations are stated in form of Eqs. (2) and 
(3), respectively (Pourali et al. 2021):

(2)ln(qe_qt) = ln qe_k1t

In mentioned equations, K1 and K2 are the velocity 
coefficient (1/min) and the PSO reaction constant (mg/g 
min), respectively. qe and qt are the adsorption capacity at 
equilibrium time and t time (mg/g), respectively. Moreover, 
qe and K1 values are y-intercept and the slope of the line 
resulting from drawing ln (qe−qt) versus t, respectively. In 
Eq. (3), determining the values of qe and K2 are done based 
on the slope and y-intercept of the linear graph of t/qt versus 
t (Abdollahzadeh et al. 2022; Kakavandi et al. 2013).

Adsorption isotherms

This section was done based on adsorption isotherms. They 
have been defined as adsorption properties and equilibrium 
data; these are utilized for describing the quality of 
contaminants’ reaction with nanocomposite materials and 
exhibit effective participation in optimizing the consumption 
of nanocomposites (Hii et  al. 2009). Langmuir's model 
comprises hypotheses such as surface uniformity, monolayer 
adsorption, and eliminating the interaction of adsorbed 
molecules. The equation of the mentioned model is the 
monolayer adsorption process as follows:

In cited equations, qe (mg/g) has been used to show the 
quantity of absorbed DZN per gram of nanocomposite, 
and Ce (mg/L) was employed to represent the equilibrium 
DZN concentration in equilibrium. Langmuir parameters 
were represented by Q and b; these indicate maximum 
adsorption capacity and adsorption correlation energy, 
respectively  (Eq.  4)  (Biglari et  al. 2018). One of the 
properties of the mentioned equation employed for 
determining the type of adsorption process is the 
dimensionless parameter of the separation coefficient 
RL (Eq.  5); for RL > 1, RL = 1, 0 < RL < 1, and RL = 0, 
adsorption is undesirable, linear, desirable, and irreversible, 
respectively (Shu et al. 2020; Zhang et al. 2019). When the 
adsorption sites are uniform and the surface is monotonous, 
the Langmuir relationship is consistent with empiric 
experiments, but if the surface is heterogeneous, the 
Freundlich relationship which has obtained by measuring the 
amount of adsorbed material at different pressures provides 
a superior description of the data. The Freundlich model of 
the adsorption process is defined by Eq. (6):

(3)
t

qt
=

1

K2q
2
e

+
1

qe
t

(4)
Ceq

qeq
=

1

Qb
+

Ceq

Q

(5)RL =
1

1 + bc

Table 2  Selected levels and code for Box–Behnken test design

Variable Sign Unit Levels

−1 0  + 1

Initial pH of the solution A – 3 7 11
Nanocomposite value B g/L 0.2 0.6 1
Contact time C min 10 35 60
Initial concentration of DZN D mg/L 5 30 55
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Ce was used to represent equilibrium concentration in 
mg/L and qe is absorption capacity at equilibrium time in 
mg/g. and Freundlich absorption constants were shown 
by Kf and n; these represent the capacity and intensity of 
adsorption (Kaushal et al. 2018). In this model, values of n 
are less than an indicator of weak absorption, and observing 
the values of 1–2 and 2–10 are representative of moderate 
and desirable absorption, respectively (Hao et al. 2010). The 
values of n and Kf coefficients are determined by the slope 
and y-intercept of the linear graph log (qe) versus log (Ce), 
respectively.

Result and discussion

Investigation of the structural nature 
of nanocomposite

XRD analysis

In Fig. 1, the X-ray patterns obtained for AC–ZnO nanocom-
posites have been detected. Considering its results, the peaks 
created at 31.75, 34.45, 36.32, 47.52, 59.6, 62.85, 66.45, 
67.95 and 69.15° are indexes of the structure of ZnO. In 
addition, appearing sharp and elongated peaks at angles of 
23, 24.43, 27.33, 28.93 and 42° was related to the existing 
carbon in the activated carbon structure. The peak 2θ = 16 
is attributed to the residual NaOH (Ai et al. 2010; Rashtbari 
et al. 2020a; Xu et al. 2017).

FTIR analysis

As perceived by the FTIR spectrum (Fig. 2), the posi-
tion of most of the bands in the nanocomposite structure 
remains unchanged after loading the nanoparticles which 

(6)log
(

qe
)

= log
(

Kf

)

+
1

n
log

(

Ce

) indicates the preservation of the structure of the nanocom-
posite. The absorption peak at 900–1300  cm−1 corresponds 
to functional groups containing phosphorus that is related 
to the activation of nanocomposites using phosphoric acid 
during the preparation process (Afshina et al. 2021). The 
peaks below 700  cm−1 are related to the vibrations of the 
Zn–O bonds. The presence of ZnO nanoparticles can be 
demonstrated by appearing a strong adsorption band at 
598–626  cm−1. The band corresponding to 3444  cm−1 is 
linked to the O–H vibration in the  H2O molecule. A peak 
in the range of 2921–2948  cm−1 indicates the effect of 
C–H and O–H (with acid origin) in the Oregano extract 
for the formation of nanoparticles. Polyphenols act as the 
foremost stabilizing agent for NPs, ranging from 1300 to 
3500  cm−1 (Rashtbari et al. 2020c). The C=O (carboxylic) 
groups are in 1540–1750  cm−1 and the aromatic group 
of C=C is in 1450–1600  cm−1 (Shahrokhi-Shahraki et al. 
2021).

Morphology of AC–ZnO nanocomposite using FE‑SEM 
analysis

Figure 3a shows ZnO nanoparticles. As shown in the fig-
ure, the agglomeration of some nanoparticles together and 
their precipitation during the heating process are detected; 
this also indicates the morphology of ZnO particles with 
a spherical nanosphere size (Gojarati et al. 2020). The 
approximate particle size distribution was obtained as 
about 21 nm. In Fig. 3b, it is seen that stabilizing ZnO 
nanoparticles on AC partially blocks the porosity of acti-
vated carbon, probably because ZnO nanoparticles can-
not enter the internal cavities of activated carbon, which 
is led to remain on the outer surface of activated carbon 
and cavities with smaller sizes remain intact. The white 
particles shown in Fig. 3b on activated carbon indicate 
the existence of ZnO on the powdered activated carbon 

Fig. 1  XRD spectrum for AC–
ZnO nanocomposite

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80

In
te

ns
ity

 (c
ps

)

2θ (degree)



 Applied Water Science (2023) 13:101

1 3

101 Page 6 of 14

surface and its proper stabilization (Afshin et al. 2020; 
Rashtbari et al. 2020c).

Fitting quadratic polynomial model and statistical 
analysis

Presentation of quadratic polynomial model and ANOVA 
analysis

Considering the Box–Behnken scheme, a quadratic 
polynomial equation was obtained to represent the empirical 
relationship between experimental results and input 
variables, which is epitomized based on coded factors as 
follows:

In above equation, Y has been employed to show the 
removal rate (%), and A, B, C and D are utilized to symbolize 
the pH, nanocomposite, time, and initial concentration, 
respectively. Considering ANOVA analysis (Table  3), 
statistically significant relationship could be detected for the 
proposed model with linear conditions according to one-way 
variance analysis (p ≤ 0/001). In addition, completely 
significant interaction was seen between A, B, C and D 
parameters and B2 (p ≤ 0/ 001). For this model, the value of 
F has been 500.71; this means the significant variance of 
each variable compared to the error variance and effective 
role of all the main parameters as a response (Heidari et al. 
2021; Rashtbari et al. 2021). pH with F = 2251.67 is the 

Y= + 87.6 − 18.67 A + 5.7 B − 16.34 C + 6.12 D
+ 1.28 AB + 0.295 AC + 1.26 AD + 2.43 BC
+ 238 + 3.63 BD + 2.83 CD − 26.04 A2

− 4.94 B2 − 5.18 C2 − 3.05 D2

Fig. 2  FTIR spectrum for ZnO 
and AC–ZnO nanocomposite
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most effective factor in DZN uptake process. In addition, the 
adjusted correlation coefficient ( R2

adj
 ) equal to 0.9723 is 

representative of the high accuracy of the statistical model. 
Figure 4a discloses the effective variables considered for 

DZN removal (reaction time, pH, nanocomposite dose and 
initial DZN concentration). The range and selectivity of the 
variables, the amount of impact and the optimal points of 
each variable can also be seen in this figure. Based on the 
Pareto diagram in Fig. 4b, the most negative effects were 
related to pH and concentration, respectively. Also, the most 
positive effects were related to the reaction time and nano-
composite mass in removing DZN, respectively.

Checking the accuracy and validity of the proposed model

In the statistical analysis of experimental data, it is neces-
sary to check that the data have a normal distribution, in the 
normal distribution, the points of the data are very close to 
each other and they follow a straight line that is descend-
ing (Almasi et al. 2016; Dargahi et al. 2022). The normal 
probability diagram (Fig. 5a) has shown to determine how 
the data distribution. The represented diagram clearly illu-
minates a reasonable normal distribution of data related to 
DZN adsorption. Validating the proposed model was done 
based on various analyses. Considering graph generated by 
drawing experimental data versus the predicted data by the 
model of Fig. 5b, the uniformity and consistency of values 
along a straight line are detected and have a high correlation 
(Ponnusami et al. 2007).

Effect of soluble pH

One of the important controlling factors in this type of 
research is the solution pH. Figure 6a discloses the effect of 

Table 3  Variance analysis of 
operational parameters in DZN 
adsorption

Source Sum of squares df Mean square F-value p value

Model 13026.65 14 930.47 500.71  < 0.0001 Significant
A-pH 4184.32 1 4184.32 2251.67  < 0.0001
B-dose 390.11 1 390.11 209.93  < 0.0001
C-conc 3201.99 1 3201.99 1723.06  < 0.0001
D-time 448.96 1 448.96 241.60  < 0.0001
AB 6.55 1 6.55 3.53 0.0800
AC 0.3481 1 0.3481 0.1873 0.6713
AD 6.30 1 6.30 3.39 0.0854
BC 23.57 1 23.57 12.68 0.0028
BD 52.64 1 52.64 28.32  < 0.0001
CD 31.98 1 31.98 17.21 0.0009
A2 4650.74 1 4650.74 2502.67  < 0.0001
B2 167.03 1 167.03 89.88  < 0.0001
C2 183.67 1 183.67 98.84  < 0.0001
D2 63.81 1 63.81 34.34  < 0.0001
Residual 27.87 15 1.86
Lack of fit 19.66 10 1.97 1.20 0.4463 Not significant
Pure error 8.21 5 1.64
Cor total 13,054.52 29

Fig. 4  Initial effect of considered parameters (a), effect of all factors 
on DZN removal (b)



 Applied Water Science (2023) 13:101

1 3

101 Page 8 of 14

mentioned parameter on the DZN removal. As shown in the 
figure, our pH range in this study was 3–11, and the highest 
and lowest amount of DZN uptake was seen at the pH of 5 
and 11, respectively. Since the evaluated parameter is very 
influential on the adsorption process through the speciation 
charge of the nanocomposite material, the surface charge of 
the nanocomposite, and the degree of ionization, based on 

the point of zero charge  (pHzpc), at a pH higher than  pHzpc, 
the dominant surface electric charge on the surface of the 
nanocomposite is a negative charge, and at pH lower than 
 pHzpc, the dominant surface charge on its surface is positive. 
The noted characteristic of nanocomposites has been recog-
nized as a principle for inferring and defining the mechanism 
of the adsorption process (Ouazene and Sahmoune 2010). 

Fig. 5  Normal probability (a), fitting experimental data versus predicted data (b)

Fig. 6  Effect of changes in variables on DZN adsorption efficiency: a Nanocomposite and pH value (initial concentration of 30 mg/L, contact 
time 35 min), b initial concentration and contact time (pH = 7, nanocomposite value = 0.6 g/L)
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In our study, the  pHzpc value was higher than the optimum 
pH value, which causes the electrostatic adsorption of DZN 
molecules to be dissociated anionically in an acidic solution. 
Electrostatic repulsion reduced the adsorption of anionic 
DZN (Armaghan and Amini 2009; Moussavi et al. 2013). 
Therefore, DZN uptake may be associated with an increase 
in negative charge at the nanocomposite surface (Moussavi 
et al. 2013; Zolgharnein et al. 2013). Our observations were 
consistent with the reports of Esfandian et al. (2016).

Effect of nanocomposite dose

The nanocomposite dose range in this study was between 
0.2 and 1 g/L, the highest DZN uptake efficiency arisen at 
the nanocomposite mass of 0.83 g/L. Based on Fig. 6a, the 
adsorption efficiency has increased by raising the amount 
of used nanocomposite. It is readily available that the active 
adsorption sites increase by increasing nanocomposite mass 
in solution. Determination of nanocomposite mass is a most 
important issue in adsorption systems due to economic 
considerations (Fazlzadeh et al. 2016). Although raising 
the nanocomposite dose increases the removal of DZN, it 
leads to reduce the adsorption capacity. The diminution 
in capacity might be described as follows: Increasing the 
nanocomposite mass for a constant concentration and 
volume of solution will lead to saturating the active sites of 
the nanocomposite during the studied process. Moreover, 
it may also be related to the interaction between particles 
such as the particles caused by the high concentration of 
nanocomposites (Jesus et al. 2011; Rashtbari et al. 2020b). 
The increase in DZN removal percentage is due to greater 
access to adsorption sites. It may also be explained based on 
the raise of ion exchange sites on the nanocomposite surface, 
which develops the dye bonding to the nanocomposite 
surface (Bazrafshan et al. 2014; Haghighi et al. 2016). Our 
results exhibited a consistency with Hung et al. (Shu et al. 
2007).

The effect of DZN concentration

Contaminant concentration is a central and influential 
factor in the adsorption process. In this study, the initial 
concentration in the range of 5–55 mg/L was studied, and 
5 mg/L was obtained as the optimal concentration. Figure 6a 
shows that the adsorption efficiency is associated with 
a decline for higher DZN concentration. Saturating the 
nanocomposite surface at high DZN concentrations was the 
main reason for the observed dwindling trend. Furthermore, 
at high concentrations, there will be larger amounts of 
remaining DZN ions in a certain volume of the unabsorbed 
solution, and as a result, the DZN removal diminishes in 

the solution. In contrast, for low concentrations of DZN, 
the ratio of DZN to the nanocomposite surface was low. 
Therefore, the DZN ion adsorption is effortlessly happened 
by active sites, and DZN ion removal enhances (Ouznadji 
et al. 2016; Rashtbari et al. 2022). Our study represented 
results similar to the study of Dehghani et al. (2019).

The effect of contact time

To study the effect of reaction time on eliminating DZN, 
a contact time in the range of 10–60 min was selected. 
Examination of mentioned parameter effect on DZN removal 
by nanocomposite in Fig. 6b disclosed that raising contact 
time develops the removal rate so that the maximum removal 
for DZN occurred at 55 min. Considering Fig. 6b, a rapid 
enhancement in DNZ removal is recognized at the beginning 
of the adsorption process; existing high unsaturated active 
sites on the outer surface of the nanocomposite describe the 
mentioned event (Liu et al. 2018; Saeidi et al. 2016). After 
a while, the repulsion between the DZN molecules in the 
solid and liquid phases leads to difficulty in occupying the 
remaining empty surface spaces (El Bakouri et al. 2009; 
Hameed et al. 2009; Moussavi et al. 2013). Our results were 
detected to be in agreement with the results reported by 
Dehghani et al. (2019).

Fig. 7  Pseudo-first (a) and second-order (b) kinetic model in DZN 
adsorption using AC–ZnO composite
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The studies of isotherm and adsorption kinetics

Figure 7 shows the pseudo-first-order (PFO) and second-
order (PSO) kinetic models, respectively. Considering men-
tioned figure, the fit of the experimental data to the PSO with 
the regression coefficient (R2 = 0.99) has been associated 
with a superior compared to the PFO. Also, the predicted 
equilibrium adsorption capacity by the PSO differs less from 
the experimental value of the equilibrium adsorption capac-
ity than the PFO. The parameters of the PFO and PSO are 
publicized in Table 4; based on this figure, the rate constant 
of the PSO equation (K2) declines by increasing DZN con-
centration. Since there are enough sites in a fixed amount of 
nanocomposite to adsorb lower concentrations of DZN, a 
tendency to reduce K2 is detected, which enhanced the rate 
of adsorption. However, a gradual decline in the adsorp-
tion rate of soluble substances is perceived later, which cor-
responds to the reduction of active sites required for high 
concentrations of DZN, (Nikzad et al. 2019).

To draw the utilized isotherms in our research, adsorption 
experiments were performed on pH, nanocomposite dose, 
and optimal contact time. Finally, adsorption isotherms were 
plotted for both models based on laboratory data and gotten 
parameters from linear regression. Considering Fig. 8 and 
Table 5, the DZN adsorption using AC–ZnO nanocomposite 
follows the Freundlich isotherm model (R2 = 0.997). Accord-
ingly, the Freundlich model shows an enhanced fit and is 
able to well define the DZN adsorption behavior; therefore, 
the results are indicative of the uniform scattering of active 
sites on the nanocomposite surface and subsequently occur-
ring DZN adsorption on homogeneous locations. The results 
completely correspond with the reports represented in other 
similar documents (Amarathunga and Mathota Arachchige 
2020; Farhadi et al. 2021).

According to Table 6, which has been represented for 
comparing the adsorption capacity detected for employed 
adsorbents in earlier studies for eliminating DZN, the 
adsorption capacity of DZN using AC–ZnO nanocom-
posite found in our research was superior compared to the 
other nanocomposites. AC–ZnO nanocomposite has been 
recognized as an apt, inexpensive, and eco-friendly adsor-
bent since it exhibited a high adsorption capacity in DZN 
adsorption.

Conclusion

Considering this study, the notable effective synthesis of 
AC–ZnO nanocomposite was confirmed so that the DZN 
elimination from aqueous environments at the studied range 
of concentrations was successfully done by this nanocompos-
ite. It is also revealed that by raising the time and the nano-
composite mass, the process could offer more preferable 
results, and in contrast, raising the initial DZN concentration 
decreases the adsorption efficiency. Considering isotherm and 
kinetics analysis, the data follow the Freundlich model and 
PSO kinetics. A high adsorption capacity (based on Lang-
muir model) of 44 mg/g was detected for this nanocomposite. 
Using optimal conditions (initial DZN concentration = 5 mg/L, 

Table 4  Calculated variables for 
kinetic models

Pseudo-first-order Pseudo-second-order

C0 (mg/L) qe,epx (mg/g) q1,cal (mg/g) k1 (1/min) R
2

1
q2,cal (mg/g) K2 (g mg/min) R

2

2

1 1.2 1.77 0.0736 0.7481 1.25 0.2497 0.9932
5 7 5.38 0.0269 0.8985 6.59 0.0192 0.9678
25 31 25.14 0.0271 0.8902 30.12 0.003 0.9342
50 50 41.43 0.0281 0.9162 49.26 0.0017 0.9294
75 57 45.49 0.0352 0.8673 60.24 0.0014 0.9087

Fig. 8  Langmuir (a) and Freundlich (b) isotherm model in DZN 
adsorption using AC–ZnO nanocomposite
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nanocomposite mass = 0.83 g/L, time = 55 min, and pH = 5), 
the process efficacy was about 100%. Overall, AC–ZnO nano-
composite was introduced as high efficient and accessible, eco-
friendly, and inexpensive adsorbent for removing DZN from 
industrial wastewater; this was obtained by careful surveying 
of the operating conditions of the adsorption process.
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