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Abstract
Groundwater level fluctuations are one of the main components of the hydrogeological cycle and one of the required vari-
ables for many water resources operation models. The numerical models can estimate groundwater level (GWL) based on 
extensive statistics and information and using complex equations in any area. But one of the most important challenges in 
analyzing and predicting groundwater depletion in water management is the lack of reliable and complete data. For this 
reason, the use of artificial intelligence models with high predictive accuracy and due to the need for less data is inevitable. 
In recent years, the use of different numerical models has been noticed as an efficient solution. These models are able to 
estimate groundwater levels in any region based on extensive statistics and information and also various field experiments 
such as pumping tests, geophysics, soil and land use maps, topography and slope data, different boundary conditions and 
complex equations. In the current research, first, by using available statistics, information and maps, the groundwater level 
fluctuations of the Sonqor plain are simulated by the GMS model, and the accuracy of the model is evaluated in two stages 
of calibration and validation. Then, due to the need for much less data volume in artificial intelligence-based methods, the 
GA-ANN and ICA-ANN hybrid methods and the ELM and ORELM models are utilized. The results display that the output 
of the ORELM model has the best fit with observed data with a correlation coefficient equal to 0.96, and it also has the best 
and closest scatter points around the 45 degrees line, and in this sense, it is considered as the most accurate model. To ensure 
the correct selection of the best model, the Taylor diagram is also used. The results demonstrate that the closest point to the 
reference point is related to the ORELM method. Therefore, to predict the groundwater level in the whole plain, instead of 
using the complex GMS model with a very large volume of data and also the very time-consuming process of calibration 
and verification, the ORELM model can be used with confidence. This approach greatly helps researchers to predict ground-
water level variations in dry and wet years using artificial intelligence with high accuracy instead of numerical models with 
complex and time-consuming structures.

Keywords  Groundwater level prediction · GMS · Hybrid models · ELM · ORELM

Introduction

The excessive population growth, limited surface water 
resources, and excessive operation of aquifers have imposed 
serious damages to Iran’s natural resources in the past dec-
ades. In addition to the severe drop in the water level of 
aquifers, agricultural, industrial and urban activities impose 
various pollutants on aquifers, that in order to prevent the 
continued decrease in quantity and quality, management of 
operation and protection of groundwater should be placed 
as a principle and basis in the country’s planning. With the 
expansion of settlement in areas where there is no surface 
water or its amount is low, the use of groundwater resources 
as a safe alternative was considered. So in some areas, 
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groundwater is considered the only source of water supply. 
Therefore, for better planning and optimal use of ground-
water resources, strategies should be utilized to accurately 
forecast groundwater level (GWL) variations, especially in 
dry and low water years. In order to evaluate the effects 
of development on groundwater, both from a quantitative 
and qualitative point of view, mathematical and computer 
simulation of these resources is considered a powerful tool 
for the optimal use of these resources. Recently, many math-
ematical and computer techniques have been considered for 
simulating the hydraulic behavior of groundwater resources 
and predicting GWL fluctuations. Studying the progress of 
numerical models displays that a series of different param-
eters such as boundary and environmental conditions, physi-
cal and hydraulic properties of the aquifer, river sections 
and wetted surface, aquifer hydraulic parameters, the way of 
distribution and extraction of water in the plain, parameters 
of aquifer recharge, topographical factors and geology, etc., 
are effective in simulating GWL changes (Fleckenstein et al. 
2010; Luo and Sophocleous 2011; Zampieri et al. 2012). 
Many of these models, such as MODFLOW and GMS, are 
developed based on finite difference numerical methods, and 
in various research works, they require the definition and 
preparation of many input data and maps based on a spe-
cific standard (Larsen et al. 2000; Toddand kenneth 2001; 
Yanxun et al. 2011; Irawan et al. 2011; Lachaal et al. 2012; 
azizpour et al. (2021, 2022); Poursaeid et al. (2020, 2021, 
2022); Yosefvand and Shabanlou (2020); Malekzadeh et al. 
(2019a,b)). In such structures, checking climatic parameters 
such as temperature and precipitation on the entire system 
and predicting GWL variations in the coming years under 
the influence of these parameters using mathematical mode-
ling makes the matter more complicated and extracting valid 
results in this field requires much time and money (Klove 
et al. 2014; Shrestha et al. 2016; Lemieux et al. 2015; Panda 
et al. 2012; Erturk et al. 2014). Due to the undeniable con-
nection between surface and groundwater, the utilization of 
integrated models and the investigation of the interaction 
effect of surface and groundwater withdrawal on the changes 
in the aquifer level have attracted the attention of research-
ers, which requires adding new information and variables 
related to surface and groundwater (Fleckenstein et al. 2010; 
Graham et al. 2015; Ramírez-Hernández et al. 2013; Xie 
et al. 2016).

In some research works, in order to predict GWLs in 
the whole plain, the connection of surface and groundwa-
ter models has been carried out based on the recreation of 
saturated and unsaturated zones. The unsaturated zone is the 
boundary between the earth’s surface and the groundwater 
level. The most highlighted advantage of the recreation of 
saturated and unsaturated areas of the soil in the surface 
and groundwater linked model is that it is able to calculate 
the exchange between surface and groundwater in different 

time intervals and places. This method works based on the 
complete hydroclimatology water budget in each region. But 
due to the need for a wide range of data and complex maps, 
it is not possible to implement this method in many aquifers 
(Zeinali et al. 2020a, 2020b). Simulation methods are able 
to analyze problems related to unified systems of surface 
and groundwater resources that have complex relations and 
equations. Therefore, there is a need for one or more pow-
erful simulation tools that can express complex systems in 
accordance with existing reality and make the user able to 
participate in the model construction in order to increase 
confidence in the modeling process, and these models are 
usually expensive (Hu et al. 2016; Ivkovic 2009; Pahar and 
Dhar 2014; Bayesteh and Azari 2021).

Real system details and its behavior may be much more 
complicated than what is configurated in the model. If the 
studied system is simplified more than required, we might 
not be able to obtain the required information from the 
model (Bear 2010).

Hence, it is very important to replace simple and reliable 
methods that require little information and, at the same time, 
with very little time and cost, have accurate results compared 
to numerical methods and mathematical models (Hafezpar-
ast Mavadat and Marabi, 2021; Hafezparast and Marabi, 
2021; Fatemi and Parvini 2022). Some of these models use a 
combination of stochastic methods and artificial intelligence 
(Moeeni et al. 2017a, 2017b; Malekpour and Tabari 2020).

Therefore, it is very important to replace simple and reli-
able methods that require a small amount of information and 
at the same time have accurate results with very little time 
and cost compared to numerical methods and mathematical 
models. In most of these methods, the prediction of GWLs 
without using simulation models is usually a series of aver-
ages and does not provide a distribution map for the plain, 
but they are able to predict GWL variations in less time and 
with high accuracy (Guzman et al. 2019; Nadiri et al. 2019; 
Soltani and Azari, 2022). In recent years, along with sto-
chastic methods (Ebtehajet al. 2020; Zeynoddin et al. 2020; 
Azari et al. 2021), artificial intelligence-based methods such 
as GMDH, ELM, ORELM and hybrid methods have been 
widely used for hydroclimatological parameters such as tem-
perature, precipitation, river flow and water level changes of 
surface reservoirs and GWL have been used (Ebtehaj et al. 
2016; Zeynoddin et al. 2018; Soltani et al. 2021; Esmaeili 
et al. 2021).

Reviewing previous studies proves that the majority of 
mathematical models used in each watershed require the 
definition of new boundary conditions and information and 
maps related to that area, and practically applying the model 
requires its adaptation to the specific conditions of the stud-
ied area. Due to the large volume of required statistics and 
information, as well as the need to carry out the calibration 
and verification process in these models, which is a very 
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time-consuming and complex process, the use of an alterna-
tive method that can be used with the same accuracy and in 
less time compared to mathematical models is very impor-
tant to predict GWL fluctuations using insignificant data. In 
many plains, there is not enough information for hydraulic 
analysis and system simulation of groundwater resources to 
predict the GWL or it is not accurate enough. The objective 
of this paper is to employ the artificial intelligence tool as 
an alternative tool and compare it with the results of the 
numerical model to predict the GWL fluctuations. In this 
regard, hybrid methods such as the GA-ANN, GA-ICA and 
ELM and ORELM methods are used and their results are 
compared with the GMS numerical model.

Materials and methods

Study area

The under study area is the Sonqor plain in western Iran, 
located 100 km northwest of Kermanshah (Fig. 1). The Son-
qor plain is one of the fertile plains in Kermanshah province, 
whose demands are supplied by both systems (i.e., surface 
and groundwater). Part of the water required for the plain is 
supplied by the Soleimanshah Dam and the rest is supplied 
by 278 deep wells drilled south and west of the plain. One 
of the problems that can always be proposed is to study the 
role of extraction wells in draining and reducing river dis-
charge, especially in the southern parts of the plain. If a high 
hydraulic gradient is created between the river water level 
and the groundwater level due to the decrease in the level 
in the southern and western parts of the aquifer, the river 
leakage rate to the aquifer increases. The provision of part 
of the needs of the region by Soleimanshah Dam and the 
infiltration of surface water into the aquifer in the northern 
regions of the plain has faced the interaction of rivers and 
aquifers in this region with complications. Therefore, pro-
viding a dynamic model to calculate the interaction of the 
river and aquifer and the amount of recharge or discharge 
of the river and aquifer in different reaches of the river is 
very important. In this research, to ensure the ability of such 
models, their performance is evaluated in comparison with 
valid mathematical models such as GMS.

Groundwater model construction

By considering the general groundwater flow direction in 
the whole Sonqor plain, for gridding, a 250 × 250 m mesh 
networking is considered. Therefore, the model gridding is 
made with 2596 cells (44 rows and 59 columns) with dis-
tances of 250 m including 908 active cells and 1688 inactive 
cells. The general head boundary package is utilized in this 
research to recreate the inflow and outflow boundaries of 

the study area, in which the inflow or outflow is impacted by 
the hydraulic gradient at the boundary and the conductance 
of the boundary cell. The use of the General Head Bound-
ary package makes it is possible to simulate the input and 
output boundary flows at the plain borders more accurately. 
This method intelligently uses water level fluctuations at 
boundaries and boundary cell conductivity to predict inlet 
and outlet flows. By employing the geophysical sections and 
log information of wells, a map of the plain bedrock is pre-
pared. The DEM map of the plain is also used for specify-
ing the upper bound of the layer in the groundwater model. 
However, in the GMS model, the WELL package is used to 
reproduce existing wells within Songor plain (278 wells) 
and well cells are specified. One of the most influencing 
factors in the groundwater model is recharge. Groundwa-
ter recharge is usually different in various parts because of 
various characteristics of geology, pedology, vegetation, pre-
cipitation intensity and land slope. In the GMS model, the 
RCH package is implemented for considering recharge. The 
zoning method is used to approximate aquifer hydrodynamic 
parameters. Zoning of the region is conducted for hydraulic 
conductivity and specific yield according to the drilling log 
of observational, extraction and piezometric wells and also 
geophysical sections prepared from the region. Based on 
the soil type and sediments of each area, the initial amounts 
of hydraulic conductivity and specific yield are approxi-
mated. Eventually, after the calibration process, the optimal 
value of hydraulic conductivity and specific yield are taken 
into account for each zone. In the groundwater simulation 
step, after calibration and validation tests of the model and 
ensuring its exactness, the final zoning of the model main 
variables (i.e., hydraulic conductivity and specific yield) is 
prepared to make the model allow to reproduce the GWL 
changes for six successive years, because all data neces-
sary for six years (October 2009 to September 2015) are 
available.

Artificial intelligence models

As discussed, in order to save time and avoid processing a 
large amount of information and considering the complexi-
ties of mathematical models, in this study, in addition to the 
GMS numerical model, artificial intelligence-based models 
are also used to predict the GWL fluctuations in the Sonqor 
plain. First, to draw the GWL variations in the whole plain, 
the water level data set of 10 piezometers located in the Son-
qor plain is used to obtain the groundwater unit hydrograph 
of the plain in a statistical period of 306 months (October 
1993 to March 2019). Water level fluctuations in these pie-
zometers, groundwater unit hydrograph and rainfall during 
the study period are shown in Fig. 2.

The groundwater unit hydrograph of is drawn after 
depicting the Thiessen Polygons in GIS environment and 



	 Applied Water Science (2023) 13:54

1 3

54  Page 4 of 14

obtaining the weight of each piezometer. After adjusting 
the required information, the GA-ANN and ICA-ANN 
hybrid models and ELM and ORELM models are used 
to predict the GWL in the whole plain. To this end, the 
parameters of the groundwater unit hydrograph (UH) and 
precipitation (P) in the previous months and with different 
delays are considered as model inputs and the GWL values 
in the current month are considered as the model outputs. 
By considering 70% of the data as the train data and 30% 
of the data as the test data, the best structure of the model 

with different number of inputs with the minimum error 
rate and the maximum correlation coefficient with the 
observed data is obtained. To select the best model, the 
RMSE, NRMSE, NASH and R statistical indices are used, 
which are shown in Eqs. (1)–(4). Finally, the Taylor dia-
gram is used to ensure the correct selection of the superior 
model. This diagram introduces the best model with the 
lowest simulation error based on three indicators including 
the standard deviation, correlation coefficient and RMSE.

Fig. 1   Location of study area for building a numerical model and artificial intelligence modeling
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Extreme Learning Machine

The extreme learning machine (ELM) is a single-layer 
feed-forward neural network extended by Huang and siew 
(2004); Huang et al. (2006). The ELM specifies the input 
weights randomly and the output weights analytically. The 
general structure of this algorithm is presented in Fig. 2a. 
The only difference between the ELM and single-layer 
feed-forward neural network (SLFFNN) is not using bias 
for the output neuron. Neurons of the input layer are con-
nected with all hidden layer neurons. The activation func-
tion (AF) of hidden neurons can be a piecewise continuous 
function, while it is linear for the output layer neuron. The 
ELM model uses different algorithms to calculate weights 
and biases, which results in a significant reduction in net-
work training time. The mathematical description of the 
single-layer feed-forward neural network with n number 
of hidden nodes is expressed as follows:

Fig. 2   a Fluctuations of GWL in each of the piezometers in the plain b Thiessen polygons and weight of each piezometer c unit hydrograph of 
groundwater (m) and rainfall (mm) in the whole study period in the plain
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where βi represents the weight between the ith hidden node 
and the output node ai ∈ Rn and bi are the training factors of 
hidden nodes and G(ai, bi, x) denotes the ith node output for 
the input x. The AF g(x) (which has different types) for the 
additive hidden node G(ai, bi, x) can be rewritten as follows:

AFs are employed to calculate the response output of neu-
rons. Once a set of weighted input signal is applied, AFs are 
used to obtain the response. The nonlinear AF of ELM that 
have been investigated in this study include the step func-
tion (hardlim), sigmoid (sig), sinusoidal (sin), triangular bias 
(tribas) and radial bias (radbas), which are shown in Fig. 3.

The activation of hidden layer neurons for each training 
sample in an ELM network with the j neurons in the hidden 
layer, i input neurons and k training samples is calculated 
from the following equation:

where g(.) can be any continuous nonlinear AF, Wji is the 
weight of ith input neuron and jth is the hidden layer neuron, 
Bj is the bias of the jth hidden layer neuron, Xik is the input 
of the input neuron for the kth training sample and Hik is the 
activation matrix of the jth neuron of the hidden layer for the 
kth training sample, so that the activation of all hidden layer 
neurons for the samples employed in training is provided 
by this matrix. In this matrix, j and k represent column and 
row, respectively. The matrix H is expressed as the matrix 
of the output hidden layer of the neural network. Weights 

(5)fn(x) =

n∑
i=1

�iG(ai, bi, x)

(6)G
(
ai, bi, x

)
= g

(
ai.x + bi

)

(7)Hjk = g
(∑(
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)
+ Bj

)

between neurons of the hidden layer and the output layer 
are applied using the least square fit for target values in the 
training mode versus outputs of hidden layer neurons for 
each training example, in which its mathematical equivalent 
is expressed as

where β represents the weight between the output layer and 
hidden layer neurons and T is the vector displaying objective 
values for training samples which is described by Eq. (10):

Finally, weights can be calculated by Eq. (11):

where

where ã = a1,… ., aL; b̃ = b1,… ., bL; x̃ = x1,… ., xL , β is 
the vector of weight between hidden layer neurons and H′ 
denotes the Moore–Penrose pseudo-inverse of the matrix H. 
T represents the vector of weight between training samples. 
According to the explanations given, it is concluded that the 
ELM training consists of two steps: the first step, randomly 
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Fig. 3   a Structure of ELM network b Various activation functions (AFs) in ELM model
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assigning weights and biases to hidden layer neurons and 
calculating the hidden layer output of the matrix H, and the 
second step, calculating output weights by employing the 
Moore–Penrose pseudo-inverse of the matrix H and target 
values for different training samples. The training process to 
find the hidden layer matrix (H) is fast, so that it has a higher 
speed than the common iteration-based algorithms such as 
Lunberg-Marquardt, which does not include any type of non-
linear optimization procedure. Thus, the network training 
time is significantly reduced (Huang et al. 2006).

Outlier robust extreme learning machine (ORELM)

In order to work with models based on artificial intelligence, 
there are always outlier data, and because the existence of such 
samples in many cases is related to the nature of the problem, 
it is not possible to eliminate them. Therefore, it contains a 
percentage of the total training error (e). In order to deal with 
such data, the presence of outliers is specified by sparsity. 
Zhang and Luo (2015) knowing that the utilization of l0-norm 
reflects sparsity better than l2-norm, to calculate the output 
weight matrix (β), instead of using l2-norm, considered the 
training error (e) in such a way to be sparse.

(β) is the matrix of output weights ( wo or is the same woutput

).
(or in some sources, it is written in this way ( wo)):
)minw0Ce0 + w2

02
subjecttoT − Hw0).

The above relation is a non-convex programming problem. 
One of the easiest ways to solve this problem is to write it as 
a tractable convex relaxation form without loss of the spar-
sity characteristic. The sparse term is obtained using l1-norm. 
Replacing l0 - norm with l1 - norm not only leads to the minimiza-
tion of convexity (decreasing the error function) but also guar-
antees the existence of sparsity characteristics or the existence 
of limit events (rare data).

The above equation is a constrained convex optimization 
problem so that it completely adapts the appropriate domain 
of the augmented Lagrangian (AL) multiplier approach.

where � = 2N∕‖�‖1 represents the penalty parameter and 
� ∈ Rn is the Lagrangian multiplier vector. The optimal 

(14)min
�

C‖e‖ 0 + ‖�‖2
2

subject to y − H� = e

� = [�1, ..., �N]
T

(15)min
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‖e‖ 1 +
1

C
‖�‖2

2
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(16)
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C
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2
+ �2(y − H� − e) +

�

2
‖y − H� − e‖2

2

response (e,β) and the Lagrangian multiplier vector (λ) are 
obtained via the minimization of the following function 
through the iteration process:

GA‑ANN and ICA‑ANN hybrid models

One of the simplest and most efficient proposed methods for 
the design of neural networks is the multilayer perceptron 
(MLP) model, which contains an input layer, one or more 
hidden layers, and an output layer. In this structure, all the 
neurons of one layer are linked to all the neurons of the next 
layer. This arrangement forms a network with complete con-
nections. Unlike single-layer perceptron neural networks, 
multilayer networks can be used to train nonlinear problems 
and also problems with multiple decisions. If the data set 
has m features, then in the neural networks, the input layer 
also has m neurons, and hence, the need for n W weights 
to be multiplied by the inputs. Data set characteristics are 
independent variables that affect the output or dependent 
variable. Also, having n neurons in the hidden layer, you 
need n sets of weights (W1, W2,…, Wn) to be able to multiply 
the weights in X inputs. To accurately predict the output of 
the model, the weights of the network in all layers should 
be modified and their optimal values should be obtained. 
In order to train the network and modify the weights until 
a meaningful error is reached, there are many methods. 
One of the effective methods in this field is to combine the 
MILP model with the optimization algorithm in the form of 
a hybrid model. The GA-ANN and ICA-ANN hybrid models 
are used in this research. In the structure of these models, 
optimal weights are obtained via the genetic optimization 
and colonial competition algorithms. The target function in 
these models is to minimize the RMSE value. The genera-
tion and correction of weights in the model structure con-
tinue until the minimum error is reached, and the number of 
iterations of the algorithm is adjusted accordingly.

Results and discussion

Numerical simulation results

Prior to linking both models (i.e., surface and groundwa-
ter), the groundwater model is calibrated and verified for 
the model main variables, namely hydraulic conductivity 
and specific yield. At this stage, the RMSE index is used for 
the statistical comparison of the calculated and observed 
values of the GWL at the location of the observational wells 

(17)

{
(ek+1, �k+1) = arg min

e,�
L�(e, �, �) (a)

�k+1 = �k + �(y − H�k+1 − ek+1) (b)
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in the Sonqor plain. The results of this investigation in Fig. 4 
show that the value of this index in the steady-state model is 
around 0.65. The results of the calibration and verification of 
the groundwater model in the transient state during 6 years 
from October 2009 to September 2015 (Fig. 5) indicate that 
the model can accurately predict the changes in the GWL 
due to the stresses applied to it so that considering all simu-
lation months, the value of RMSE is around 0.42. Figure 5 

shows the box plot related to the values of average, minimum 
and maximum groundwater level simulation error in differ-
ent months in the whole plain area.

Prediction of GWL based on artificial intelligence

In this study, the methods based on artificial neural networks 
are used to predict the GWL time series in comparison with 

Fig. 4   Components of prepared numerical model and GWL in the plain for steady state

Fig.5   Values of mean absolute error for GWL in MODFLOW model in transient state during period a calibration b verification
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complex numerical models with massive data volumes such 
as GMS, so that the possibility of replacing these methods 
with complex models can be assessed. This is very impor-
tant for the place where the favorable conditions for the use 
of complex numerical models are not established or where 
there is not enough information so that GWL variations can 
be predicted with great accuracy based on a very small num-
ber of inputs. According to the objectives of this research, 
in all artificial intelligence methods and hybrid models, 
monthly data of precipitation and GWL in the past months 
(t-1, t-2, t-3, t-6, t-12, t-24) are used as input data to the 
model. Using rainfall data as an input to artificial intelli-
gence model reduces the prediction accuracy of these mod-
els. Because in the study area, groundwater level fluctua-
tions relative to rainfall are delayed, and in different months 
and in different years, the amount of this delay is different 
and an acceptable equation cannot be fitted. Because a large 
area of the north of the region is affected by the boundary 

currents of other aquifers that affect the groundwater level 
of the plain. The output of the model is the data of the GWL 
of the plain (groundwater unit hydrograph) in the current 
month (t), which is extracted based on the observed data 
in the piezometers. To predict the GWL variations in the 
Sonqor plain, the performance of these models is evaluated 
based on the RMSE, NRMSE, NASH and R indices.

To better compare the results, the number of repetitions in 
all methods was considered to be about 20,000 repetitions. 
ORELM and ELM methods were faster than other methods 
in this field.

The best results obtained from the implementation of 
each of these models are given in Table 1. Based on this 
table, the ORELM is more accurate than other models in 
the train and test stages, considering all the indices. After 
that, the ELM model is in the second place in terms of pre-
diction accuracy. Figure 6 shows the scatter points around 
the Y = X line and the squared value of the correlation 

Table 1   performance evaluation 
of GA-ANN, ICA-ANN, 
ELM and ORELM models 
in predicting GWL based on 
statistical indices in the train 
and test stages

Model Type Input combination Train Test

GWL Rainfall RMSE NRMSE NASH R RMSE NRMSE NASH R

GA-ANN t-1 t, t-1 0.5459 0.0827 0.882 0.942 0.5608 0.0696 0.865 0.93
ICA-ANN t-1 t-1 0.585 0.0817 0.866 0.932 0.5954 0.0713 0.845 0.919
ELM t-1, t-2 – 0.5372 0.075 0.854 0.924 0.823 0.1073 0.722 0.858
ORELM t-1, t-2, t-3 – 0.3731 0.0521 0.93 0.966 0.4189 0.0546 0.928 0.966

Fig. 6   Graphic representation of 
scatter points around the Y = X 
line and the squared value of 
the correlation coefficient for 
choosing the best artificial intel-
ligence model in the modeling 
test stage
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coefficient for choosing the best artificial intelligence 
model in the modeling test stage for each of the GA-ANN, 
ICA-ANN, ELM and ORELM models. The more regular 
and closer scattering of points around the Y = X line in the 
ORELM model also indicates the greater exactness of this 
model in comparison with other models. Based on this, the 
time series of the predicted values of the GWL based on 
the superior model (ORELM) compared to the observed 

data in the training and testing stages is shown in Fig. 7. 
In most studies, the ORELM model is more accurate than 
other models. But this method cannot be generalized to 
all data and to all plains and water resources issues. For 
each problem and for each data type, these models must 
be re-tested and evaluated. The technique of deleting out 
of range data can also be used in other models.

Fig. 7   Time series of predicted values of GWL based on the superior model (ORELM) compared to the observed data in training and testing 
phases
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.Choosing the best model based on Taylor diagram

To ensure the proper selection of the superior model, the 
Taylor diagram is used. Figure 8 shows the Taylor diagram 
for choosing the best method among the GA-ANN, ICA-
ANN, ELM and ORELM methods for predicting the GWL 
in the plain.

The distance of the points created for each method from 
the observed point equals centered RMSE. Thus, a model 
that is compatible with observed values is a set of simu-
lated amounts that have a coefficient of determination of 1 
and have a similar standard deviation with observed values 
(Zeynoddin et al. 2018).

In this diagram, point A represents the observed data of 
the GWL and the evaluation results of the above-mentioned 
models are shown by points B, C, D and E, respectively. 
This diagram examines the exactness of various methods 
by utilizing correlation coefficient and standard deviation 
indices. This figure compares the efficiency of the GA-ANN, 
ICA-ANN, ELM and ORELN methods with the proposed 
method to evaluate the exactness of the forecasts made. The 
distance of each point considered for various models (B, 
C, D and E) from the observed point (A) is considered as a 
comparison reference. Therefore, a model consistent with 
observed values is a set of points that have a correlation 
coefficient close to 1 and have a standard deviation similar 
to observed values (Zeynoddin et al. 2018).

The outcomes of the evaluation of the methods using 
the Taylor diagram show that the GA-ANN, ICA-ANN 
and ELN methods (points B, C and D) are less accurate in 
predicting the GWL based on the unit hydrograph of the 
plain, while the ORELM method (point E) differs rela-
tively little from the observed values. Therefore, the clos-
est point to the reference point is related to the ORELM 
method (point E). Therefore, based on this, the ORELM 
method has higher accuracy than other methods for pre-
dicting the GWL.

The results of using the ORELM artificial intelligence 
model show that this method is able to predict the GWL 
in the statistical period of 306 months with the lowest 
amount of error in the train and test stages. So that the 
value of RMSE in this method is 0.37 and 0.42 in the 
two stages of train and test, respectively. The value of 
RMSE in the numerical model of GMS considering the 
transient period of 6 years is about 0.42, which shows that 
the ORELM model does not require too much data and 
without using the complex process of modeling based on 
the governing equations and with spending much less time 
can predict GWL variations correctly and with great accu-
racy. It should be noted that the length of the simulation 
period in the GMS model is about 72 months due to the 
need for a large amount of information and related maps 
and the lack of sufficient information. However, in the arti-
ficial intelligence models, due to the fact that they only use 
the information of precipitation and the GWL recorded by 
piezometers, based on the availability of data, the length of 
the forecast period is considered to be 306 months.

Fig. 8   Taylor diagram for 
choosing the best artificial 
intelligence model in modeling 
test phase
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Conclusion

The possibility of predicting the GWL for a long-term 
period based on a very small amount of information com-
pared to numerical models and only using piezometric data 
and precipitation information is one of the most important 
achievements of this study. In this case, there is no need 
for meteorological parameters, soil, geology, layering and 
geophysical information, logs of exploitation wells, informa-
tion on water extraction from wells, springs and aqueducts, 
surface and underground water interaction data, and without 
the need for complex maps and software and without spend-
ing much time and money for the calibration and verification 
of mathematical models, the groundwater level is predicted 
based on the artificial intelligence methods. This is of great 
help to experts in the water resources sector in basins that 
lack statistics or aquifers that lack basic information and 
accurate maps, or plains that are faced with widespread sta-
tistical deficiencies. Because by using artificial intelligence 
models, very valuable management information regarding 
the prediction of GWL fluctuations in dry and wet years can 
be obtained with very little time and cost. The evaluation of 
the performance of the artificial intelligence models (GA-
ANN, ICA-ANN, ELM and ORELN) in the Sonqor plain 
showed that these models are very accurate in predicting the 
GWL fluctuations compared to the GMS numerical model. 
Among these models, the ORELM model had the highest 
accuracy with the RMSE values of 0.37 and 0.42 in the two 
phases of train and test. The Taylor diagram also confirmed 
this result by using more error criteria, so that the ORELM 
model can be introduced with high confidence as the best 
artificial intelligence model for predicting the GWL in the 
Sonqor plain. Considering the importance of knowing the 
GWL variations as one of the most important parameters of 
the water budget, the artificial intelligence models used in 
this research can be recommended, especially for areas with-
out basic statistics or in situations where it is not possible to 
use mathematical models. Based on the obtained results, the 
models developed in this research can be proposed for other 
study areas with the integrated operation approach of the 
river and aquifer like the Sonqor plain. In this case, without 
the need for complex relationships and equations to examine 
the effect of surface and groundwater interaction and only 
based on piezometric information and precipitation data, it 
is possible to predict the GWL in the study area in dry and 
wet periods with great accuracy.
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