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Abstract
In Ethiopia, the Ribb River is one of the tributaries of the Lake Tana sub-basin. Temperature, precipitation, and streamflow 
would all be affected by climate change in the Ribb watershed. As a result of the disruption of regular hydrological processes, 
these climate changes have an impact on water resources. The goal of this study was to look into the effects of climate change 
on the Ribb watershed’s hydro-climatic characteristics. The forecasted climatic data for rainfall and temperature (minimum 
and maximum) came from the CORDEX (Coordinated Regional Climate Downscaling Experiments) Africa database. Cli-
mate change consequences were investigated using RCP 4.5 emission scenarios for the 2021–2060 time range, compared to 
the 1985–2005 baselines. The observed precipitation and temperature data were used to adjust for bias. The simulation of 
stream flow was carried out using the semi-distributed and physically based soil and water assessment tool (SWAT). From 
1997 to 2003, the model was calibrated, and from 2004 to 2007, it was validated. To determine the trend of the climate 
variables, trend test analyses were performed on the various time series data. In all of the experiments conducted, the trend 
test revealed that historical and forecast precipitation recording stations showed statistically negligible trends for all critical 
values. At a level of 0.05, the historical and prospective maximum and minimum temperature data revealed increasing pat-
terns. In general, the results demonstrated that meteorological conditions cause the flow to decrease over the season. As a 
result, climate change will have an impact on the Ribb watersheds water resources.
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Introduction

Climate change, which is caused by an increase in green-
house gas emissions and other radiative trace gases in the 
atmosphere, has been the focus of a large number of sci-
entific studies during the last two decades (Lineman et al. 
2015; Xu et al. 2005). The widespread belief that global 
climate change has serious consequences for the environ-
ment, ecosystems, water supplies, and nearly every element 
of human life has prompted this study (Gan et al. 2016). At 
the global level, the influence of global climate change on 
water supplies is the most important study agenda (IPCC 
2007; Tenagashaw and Andualem 2022). Climate change 

is the most pressing global concern, particularly for Afri-
cans, as it increases the frequency of extreme weather events 
seen around the world (Kotir 2011; Mirza 2003). By disrupt-
ing hydrological processes in basins, climate change has a 
profound impact on water resources (Malede et al. 2022a). 
Climate change has impacted the timing, magnitudes, and 
patterns of stream flows, according to Jiang et al. (2007), 
resulting in an increase in flood damage to agricultural land, 
property, and human life.

The Intergovernmental Panel on Climate Change (IPCC) 
confirms that global climate change has both beneficial 
and negative effects on the natural and social environment 
(Malede et al. 2022b). According to the findings of the 
IPCC, emerging countries such as Ethiopia would be more 
vulnerable to climate change. Ethiopia’s climate has altered 
significantly during the previous five decades, according to 
evidence. According to previous study, there has been a con-
siderable temperature variation and trend shift throughout 
time. Annual minimum temperatures, averaged over 40 sites 
from 1951 to 2005 and shown as temperature departures 
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from the mean, exhibited a lot of variety (NAPA 2007). Over 
the course of those 55 years, the country has had both warm 
and cold years, with recent years being the warmest in com-
parison with previous decades.

Increasing demand conflicts such as irrigation, domestic, 
and hydropower of the river basin as the appropriate unit of 
analysis to meet the difficulties facing water resource man-
agement necessitate proper planning and management of 
water resources in the basin. Climate change has an impact 
on hydro-climatic variables that support water demand in the 
watershed. The primary goal of this study was to evaluate 
the impact of climate change on the hydro-climatic vari-
ables of the Ribb watershed, which have a substantial impact 
on the multi-purpose water resource development and river 
basin management.

Materials and methods

Description of the study area

This research was carried out in one of Lake Tana’s con-
tributing watersheds. The Ribb watershed is located in the 
eastern parts of the Lake, primarily in Farta Wereda, with 
a minor portion of it encompassing the Ebinat wereda of 
the South Gonder Zone in Amhara Region. The river Ribb 
drains to the eastern part of Lake Tana. The study watershed 
was taken upstream of the dam headwork with a drainage 
area of 685  km2. Geographically, the watershed is located 
between 37° 56′ 10″ and 38° 14′ 33″ longitude, and 11° 42′ 
46″ and 12° 6′ 25″ latitude. The study area’s topography 
spans from 1863 to 4092 m (Fig. 1).

The upper watershed has three major dominant soils 
namely chromic luvisol, lithic leptosol and haplic luvi-
sol. The slope of the watershed ranges from 0.08 to 44.44 
degrees. The dominant type of land cover is cultivated fol-
lowed by grassland (Fig. 1).

The climate of the Ribb watershed is marked by a rainy 
season from May to September, with monthly rainfall vary-
ing from 65 mm in May to 411 mm in July. Mean annual 
precipitation is about 1400 mm in the upper part and about 
1200 mm in the lower part of the study area. Temperature 
variations throughout the year are minor (19 °C in December 
to 23 °C in May), with maximum and minimum tempera-
tures of 28.5 °C and 8.5 °C, respectively (Ribb detail design 
documents 2007).

Dataset

For this study, the daily stream flow of a river was obtained 
from the Ethiopian Ministry of Water, Irrigation, and Elec-
tricity (MoWIE) for the dam site, and meteorological data 

(rainfall, temperature, relative humidity, wind speed, and 
sunshine hour) were collected from the Amhara National 
Metrological Agency for meteorological stations located 
inside and around the watershed (ANMA). The DEM with 
a resolution of 12.5 × 12.5 m was downloaded from the 
Alaska website and used to define the watershed’s physical 
and hydrological properties (slope, flow accumulation, flow 
direction, and stream network). The classified land use map 
of the study area by Andualem et al. (2018) for the year 
2018 was used for this study. The soil map was collected 
from Ethiopian Ministry of Water, Irrigation, and Electricity 
(MoWIE) and used as an input for SWAT.

It is a global initiative to aid climate change effect and 
adaptation research by making a relatively fine-scale climate 
projection readily available to users. The CORDEX-Africa 
database was used to collect downscaled rainfall and tem-
perature (minimum and maximum) predicted climatic data 
from the CMIP5 simulation for the period 1951–2100. (Kim 
et al. 2014; Hewitson et al. 2012). During this research, the 
Representative Concentration Pathway RCP 4.5 projection 
scenario was used. Since the RCPs are consistent with a 
wide range of possible changes in future, anthropogenic 
GHG emissions are intended to represent their atmospheric 
concentrations. RCP 4.5 is described by the IPCC as an 
intermediate scenario and emissions in RCP 4.5 peak around 
2040, then decline. RCP 4.5 is better for analyzing climate 
change impacts on hydrology because it represents the real-
ity in the Lake Tana sub-basin.

Data analysis

Climatic data analysis

A double mass curve was used to assess the consistency 
of rainfall data from individual stations. The Pettit test was 
used to determine the homogeneity of each station’s annual 
precipitation data.

Using the recorded observed data, bias correction was 
used to correct the downscaled precipitation and tempera-
ture. The power transformation method is the most popular 
and straightforward way of precipitation adjustment (Ahmed 
et al. 2013; Smitha, et al. 2018). The statistical variance of 
precipitation time series is adjusted using power transforma-
tion, a nonlinear correction approach with the exponential 
form Xb. The coefficient of variation (CV) of the corrected 
simulations Xb and the CV of the observed values are equal-
ized to estimate the parameter b. Each daily precipitation 
amount P is turned into a corrected P* using Eq. 1 in this 
nonlinear correction.

(1)P∗ = aP
b
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where P* is corrected precipitation, P is uncorrected precipi-
tation, a and b are transformer parameters.

Because temperature is known to be approximately regu-
larly distributed, power transformation cannot be used to 
adjust it. When a normally distributed dataset is corrected 
with an influence power-law function, the result is a dataset 
that is not normally distributed (Li et al. 2014). Temperature 
correction entailed regulating the mean and variance of the 
temperature data via shifting and scaling. T*, the corrected 
daily temperature, was calculated as follows:

 where Tobs is observed daily temperature, Trcp is rcp daily 
temperature, � is standard deviation and T∗ is corrected daily 
temperature.

(2)T∗ = Tobs +
�Tobs

�Trcp

[
Trcp − Tobs

]

Trend analysis

Recently assessing the status of environmental circum-
stances, as well as detecting changes in environmental 
conditions, has influenced by statistical trend assessment 
approaches (Esterby 1993).

Mann–Kendal test The Mann–Kendal test was developed to 
discover monotonic (increasing or decreasing) patterns and 
to determine whether or not they are statistically significant 
(Birsan et al. 2005).

The trend test was applied to a time series Xi, which is 
ranked from I = 1, 2… n − 1 , and a time series Xj, which is 
ranked from j = i + 1, 2… n . Each data point Xi was used 
as a benchmark against which the rest of the data points Xj 
were measured:

(3)S =

n−1∑
i=1

n∑
j=i+1

sgn(Xj − Xi)

Fig. 1  Locations of Ribb watershed
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where Xi and Xj are the annual values for years I and j, 
respectively (j I The statistic 'S' is essentially normally dis-
tributed with the mean when the number of observations is 
more than 10 (n ≥ 10), and E(S) becomes 0. (Kendall 1975). 
The variance of statistics is calculated as follows:

where n is the number of observations and ti are the ties of 
the sample time series. The test statistics Z is computed as 
follows:

where Z follows standard a normal distribution, a positive Z 
and a negative Z depict an upward and downward trend for 
the period, respectively.

Simple linear regression A statistical approach with one 
explanatory variable is simple linear regression toward the 
mean. It is concerned with two-dimensional sample points 
with one experimental variable and one variable, and it 
seeks out the most accurate linear function (a non-vertical 
straight line) to predict variable values as a function of the 
experimental variable. One predictor is given the result vari-
able (Zou et al. 2003).

A line with a slope and a y-intercept is described in this 
way. In general, such a relationship may not hold for the 
mainly unknown population of independent and dependent 
variable values. The underlying relationship (linear regres-
sion model) between yi and xi containing this error factor i 
can be expressed as follows:

Student t test Under the null hypothesis, the t test is a sta-
tistical hypothesis test in which the test statistic follows a 
Student’s t-distribution. When the test statistic has a con-
ventional distribution and the value of a scaling term within 
the test statistic is questioned, a t test is used. The test statis-
tics follow a Student’s t-distribution when the scaling term 
is unknown and is substituted by an estimate based on the 
data. The t test is commonly used to examine whether the 

(4)Sng(Xj − Xi) =

⎧
⎪⎨⎪⎩

+1 if (Xj − Xi) > 0

0 if (Xj − Xi) = 0

−1 if (Xj − Xi) < 0

(5)Var(S) =
n(n − 1)(2n + 5) −

∑m

i=1
t1(t1 − 1)(2t1 + 5)

18

(6)Z =

⎧
⎪⎨⎪⎩

s−1

𝜎
if S > 0

0 if S = 0
S+1

𝜎
if S < 0

(7)y = � + �x

(8)yi = �xi + �i

means of two sets of knowledge are significantly different. Z 
could be affected by the choice theory. The magnitude tends 
to be larger when the choice hypothesis is true, whereas S 
is a scaling parameter that allows the distribution of t to be 
(Zimmerman 1987).

 where Xav is the sample mean from a sample X1,X2,… ,Xn , 
of size n, s is the standard error of the mean, σ is the esti-
mate of the standard deviation of the population, and μ is 
the population mean.

Stream flow forecasting

Forecasting stream flow at various time intervals (hourly, 
daily, monthly, or yearly) is critical for supplying data 
(sediment and flow into reservoirs) and ensuring the proper 
operation of a water resources system (Musa 2013). Fore-
casting stream flow is critical in the case of multifunctional 
reservoirs, which are critical to the operation of flood control 
reservoir systems. Various models are used around the world 
to forecast stream flow (Liang et al. 2018). The Arc SWAT 
model was used to simulate river flow under current and 
future climate change scenarios in this study.

Watershed delineation, HRU definition, meteorological 
write-up, and stream flow simulation are all required steps 
in the SWAT model. Arc SWAT was used to demarcate the 
sub-basin and watershed. To establish the hydrologic param-
eters for each land use and soil type simulated in each sub-
watershed, the SWAT model requires land use/cover and soil 
data. SWAT can be used to model a single watershed or a 
network of hydrologically connected watersheds (Di Luzio 
et al. 2002). The SUFI-2 optimization approach was utilized 
to calibrate and validate the simulated streamflow output 
using the SWAT-CUP (calibration and uncertainty program). 
In each iteration, different parameters were modified until 
the best correlation between simulated and observed flow 
was found (Arnold et al. 2012). The model was calibrated 
between 1997 and 2003 and then validated between 2004 
and 2007. The year 1997 was labeled as a “warm” year. 
The Upper Ribb watershed’s average observed streamflow 
data were used to calibrate the system on monthly time 
increments. The Percept BIAS (PBIAS), Nash and Sutcliffe 
coefficient of efficiency (NSE), and coefficient determina-
tion (R2) assessment criteria were used to assess the SWAT 
model’s effectiveness.

(9)t =
Z

S
=

Xav − �

�∕
√
n
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Results and discussion

Bias correction for baseline period

The bias-corrected downscaled RCM output from the 
fifth phase of the Coupled Model Intercomparison Project 
(CMIP5), which was downscaled over the Africa-CORDEX 
domain by a regional climate model, was used to investigate 
the effects of climate change and variability on stream flow 
(CCLM). The SWAT model was used to simulate the stream 
flow using observed meteorological data and RCM results. 
The bias in the RCMs dataset was corrected using power 
transformation, shifting, and scaling processes. Observed 
data from 1985 to 2005 were utilized to rectify the bias in 
the different grids’ historical RCM data. The twelve-month 
power transformation constants were used to correct the 
long-run RCP 4.5 data for 2021–2040 and 2041–2060.

Precipitation

In comparison with linear scaling, gamma distribution, and 
local intensity scaling, Fang et al. (2015) found that power 
transformation and quintile mapping are the best strategies 
for bias correction of precipitation. Similarly, Teutschbein 
and Seibert (2012) found that, when compared to linear scal-
ing, delta change, and local intensity scaling, power transfor-
mation and distribution mapping are the best strategies for 
bias correction of precipitation. As a result, for this study, 
the power method for bias correction of precipitation was 
adopted.

The precipitation data bias was corrected using a power 
transformation, which corrects the coefficient of varia-
tion (CV) as well as the mean. Iterating until the CV and 
mean of the corrected daily precipitation match the CV of 

the observed daily precipitation yielded the values of the 
power transformation constants for each month. RCP and 
observed rainfall data showed good agreement in the power 
transformation correction. Before the bias is addressed, the 
RCP data are overestimated in comparison with the observed 
data (Fig. 2).

Temperature

The RCP minimum and maximum temperature values were 
corrected using the shifting and scaling procedures. For the 
baseline period, the projected maximum and minimum tem-
peratures exhibited good agreement between observed and 
bias-corrected values (Fig. 3).

Trend analysis of climate data

The Ribb watershed has just two climatic stations that are 
used to study future climate change in the watershed: Grid 
Gp11221 (near Amed Ber metrological station) and Grid 
Gp113221 (near Ibnat metrological station). The Amed-
ber observed station was used to correct climate station 
Gp112221, while the Ibnat station was used to correct cli-
mate station Gp113221. The Mann–Kendall, Linear regres-
sion, and Student’s t test trend analysis methods were used 
to analyze the trend test of climate data for each climatic 
station.

In Mann–Kendall and linear regression tests, the histori-
cal precipitation record at Gp112221 station revealed no sta-
tistically significant trend at a = 0.1. The student's t-test, on 
the other hand, revealed a significant trend at a = 0.1. Using 
Mann–Kendall and linear regression, the future forecasted 
precipitation data trend test of Gp112221 station revealed 
a statistically significant and decreasing trend at a = 0.1 

Fig. 2  Mean monthly areal 
rainfall distribution
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(Table 1). On the other hand, GP113221 showed an non-
significant trend (Table 2).

Gp112221’s historical and projected maximum and 
lowest temperature data were subjected to a trend test 
(Table 3). At a = 0.05, the data exhibited an increasingly 
substantial trend, according to the trend test results. Simi-
larly, the forecasted temperature data revealed an upward 
trend. This demonstrated that global warming resulted in 
an increase in temperature, which had a substantial impact 
on precipitation and other components of the hydrologic 
cycle.

At a = 0.01, both the future minimum and maximum 
temperature data indicated a statistically significant and 
upward trend. There was no statistically significant trend 
in the record minimum and maximum temperatures at the 
Gp113221 station (Table 4).

In all types of testing, the historical and forecasted pre-
cipitation record station exhibited no statistically significant 
trend at all key values. At a = 0.05, the maximum and mini-
mum temperature data from the past and future revealed a 
growing trend. This suggested that global warming resulted 
in an increase in temperature, which had a substantial impact 
on precipitation and other components of the Ribb water-
shed’s hydrologic cycle. Ayalew et al. (2021) and Malede 

et al. (2022a, b) finding demonstrates that although the tem-
perature is rising, the amount of precipitation is decreas-
ing. According to Addisu et al. (2015) and Tenagashaw and 
Andualem (2022), the mean, maximum, and minimum tem-
perature in Lake Tana Sub-basin showed a general increas-
ing trend, whereas rainfall amount showed a general declin-
ing trend.

Stream flow modeling

Sensitivity analysis

The sensitive and significant stream flow parameters 
(Table 5) were identified using the SWAT-CUP (Calibra-
tion and uncertainty program) model.

CN2, SOL K, CH K2 SLP, and SOL BD were determined 
to be the 1st to 5th most sensitive flow metrics in the Upper 
Ribb watershed, respectively (Table 5). ESCO, SOIL-AWC, 
EPCO, CN2, and ALPHA BF, on the other hand, were iden-
tified as the first five sensitive flow parameters by Andualem 
et al. (2020a). T-STAT and p values were used to determine 
the parameter’s level of sensitivity and significance. Param-
eters having a high absolute T-STAT value are regarded as 

Fig. 3  Mean monthly areal 
maximum temperature

0

5

10

15

20

25

30

35

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
ea

n 
m

on
th

ly
 a

re
al

  m
ax

.  
   

Te
m

pr
at

ur
e(

0 c
) 

Month 

RCP  observed  corr. RCP

Table 1  Gp112221 Station 
historical precipitation trend 
analysis

Test type Critical values Remark

a = 0.1 a = 0.05 a = 0.01

Historical precipitation Mann–Kendall  − 1.359 1.645 1.96 2.576 NS
Linear regression  − 1.518 1.729 2.093 2.861 NS
Student’s t 1.866 1.725 2.086 2.845 S (0.1)

Future precipitation Mann–Kendall  − 1.673 1.645 1.96 2.576 S (0.1)
Linear regression  − 1.772 1.681 2.012 2.685 S (0.1)
Student’s t 1.495 1.68 2.011 2.682 NS
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sensitive, whereas those with a P value near 0 are regarded 
as very significant.

Stream flow calibration and validation

The calibration of simulated flow was done using Addis 
Zemen gauging station observed flow data and the iden-
tified sensitive flow parameters. The calibration period 

Table 2  Gp113221 precipitation 
data trend analysis

Data Test type Test statistic Critical values Remark

a = 0.1 a = 0.05 a = 0.01

Historic precipitation Mann–Kendall  − 0.634 1.645 1.96 2.576 NS
Linear regression  − 0.244 1.729 2.093 2.861 NS
Student’s t 0.594 1.725 2.086 2.845 NS

Future precipitation Mann–Kendall  − 0.418 1.645 1.96 2.576 NS
Linear regression  − 0.521 1.681 2.012 2.685 NS
Student’s t 0.406 1.68 2.011 2.682 NS

Table 3  Gp112221 station 
historical and future 
temperature data trend analysis

Data Test type Test statistic Critical values Remark

a = 0.1 a = 0.05 a = 0.01

Historic maximum Mann–Kendall 2.204 1.645 1.96 2.576 S (0.05)
Linear regression 2.512 1.729 2.093 2.861 NS
Student’s t  − 1.343 1.725 2.086 2.845 NS

Future maximum Mann–Kendall 5.287 1.645 1.96 2.576 S (0.01)
Linear regression 6.73 1.681 2.012 2.685 S (0.01)
Student’s t  − 4.483 1.68 2.011 2.682 S (0.01)

Historic minimum Mann–Kendall 1.661 1.645 1.96 2.576 S (0.01)
Linear regression 1.494 1.729 2.093 2.861 NS
Student’s t  − 0.844 1.725 2.086 2.845 NS

Future minimum Mann–Kendall 5.705 1.645 1.96 2.576 S (0.01)
Linear regression 7.562 1.681 2.012 2.685 S (0.01)
Student’s t  − 4.319 1.68 2.011 2.682 S (0.01)

Table 4  Gp113221 station 
historical and future 
temperature data trend analysis

Data Test type Test statistic Critical values Remark

a = 0.1 a = 0.05 a = 0.01

Historic minimum Mann–Kendall 0.393 1.645 1.96 2.576 NS
Linear regression 1.029 1.729 2.093 2.861 NS
Student’s t  − 0.87 1.725 2.086 2.845 NS

Future minimum Mann–Kendall 4.316 1.645 1.96 2.576 S (0.01)
Linear regression 4.428 1.681 2.012 2.685 S (0.01)
Student’s t  − 3.121 1.68 2.011 2.682 S (0.01)

Historic maximum Mann–Kendall 1.6 1.645 1.96 2.576 NS
Linear regression 1.377 1.729 2.093 2.861 NS
Student’s t  − 1.257 1.725 2.086 2.845 NS

Future maximum Mann–Kendall 5.303 1.645 1.96 2.576 S (0.01)
Linear regression 6.676 1.681 2.012 2.685 S (0.01)
Student’s t  − 4.075 1.68 2.011 2.682 S (0.01)
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covered the years 1998–2003, with the first year of simula-
tion (1997) serving as a “warm-up” period. Calibration was 
used to determine the fitting values of stream flow param-
eters (Table 6).

The model performed well in the flow calibration, with R2 
and NSE values of 0.73. The flow parameters were validated 
between 2004 and 2007, and the findings revealed that the 
model performed well, with NSE, R2, and PBIAS values of 
0.5, 0.72, and 47, respectively (Figs. 4 and 5). Because of 
poor data quality and a small number of years of data uti-
lized for validation, the validation value of NSE was deter-
mined to be lower than the calibration value.

Similar research in the Ribb watershed yielded posi-
tive results. R2 and NSE values of 0.9 and 0.84 were found 
by Andualem et al. (2020a, b). As a result, the findings 
can be applied to water resource management and other 
applications.

Trend Analysis of streamflow data

The trend analysis of historic and predicted stream flow data 
from the future climate and simulation results were deter-
mined using different types of tests.

Using a trend test, the historic and expected future flow 
trends were analyzed, and it was found to be satisfactory 
at 95 and 90% level accuracy. However, with 99 percent 
accuracy, it revealed a big change. As a result, the forecasted 
stream flow data might be used to improve water resource 
management and development (Table 7 and 8).

Climate change impact on stream flow

The current global warming has had a considerable impact 
on weather factors. Changes in weather variables cause the 
water circulation system to vary.

The forecasted stream flow results revealed a decreasing 
trend in stream flow in the Upper Ribb watershed, indicat-
ing that sustainable water resource management is required 
(Figs. 6 and 7). The decline in stream flow in the Upper 
Ribb watershed could result in a major fall in the Ribb 
reservoir’s water volume. The decrease in water storage 
in Ribb reservoir will reduce the amount of land that can 
be irrigated, lowering agricultural productivity. According 
to Ayalew et al. (2021), based on the RCP4.5 and RCP8.5 
scenarios, the mean annual stream flow might potentially 
decline from 42.7 to 40.24  m3/s and from 42.78 to 37.58 
 m3/s, respectively.

Table 5  Global Sensitive flow parameters

Parameter type Parameter Name Minimum value Maximum value Fitted value T-STAT value p value

HRU R__CN2.mgt  − 0.25 0.25 0.246 80.18 0
Soil SOL-K.sol  − 0.1 0.34 0.31 7.8 0
Routing V_CH_K2.rte 125 130 126.7  − 2.6 0.01
HRU R_SLP.hru 0.05 0.1 0.052 1.98 0.048

R_SOL_BD 0.9 1.0 0.96  − 1.88 0.061
Groundwater V__ALPHA_BF.gw 0.8 1.0 0.81  − 1.513 0.131
Soil R_SOL_AWC.sol 0.9 1.0 0.99  − 1.512 0.131
Groundwater V__GW_REVAP.gw 0.189 0.197 0.195  − 1.405 0.161
HRU V__ESCO.hru 0.125 0.163 0.13 1.269 0.205
Groundwater V__GWQMN.gw 24.475 25 24.98 0.938 0.348
Groundwater V__GW_DELAY.gw 448.5 449.5 449 0.923 0.357
Routing V__CH_N2.rte 0.1 0.3 0.23 0.402 0.687
Soil R_USLE_K.sol 0.4 0.65 0.54  − 0.369 0.712
HRU R_CANMX.hru 9 10 9.14  − 0.228 0.819
Groundwater V__REVAPMN.gw 0.180 0.194 0.189  − 0.153 0.878
HRU V__EPCO.hru 0.52 1.0 0.520 0.032 0.974

Table 6  Performance measures

Performance measure Calibration 
(1998–2003)

Validation 
(2004–
2007)

Nash Sutcliff efficiency (NSE) 0.73 0.5
Coefficient of Determination (R2) 0.73 0.72
Percent bias (PBIAS)  − 5.4 47
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Fig. 4  Mean monthly areal 
minimum temperatures
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Fig. 5  Calibration and validation fitting graph
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Conclusion

Climate change had a substantial impact on the hydro-cli-
matic variables of a watershed. The evaluation of the changes 
in hydro-climatic variables is critical for sustainable water 
resources and environmental management. Downscaling cli-
mate data from CORDEX-Africa using RCP 4.5 emission 
scenarios revealed the potential implications of global cli-
mate change. Different bias correction approaches were used 
to adjust the downscaled climatic data (power transforma-
tion for precipitation data, and shifting and scaling method 
for temperature data). For the studied period, the precipita-
tion data indicated a negligible trend. Temperature trends, 
on the other hand, revealed a significant upward tendency. 
Variability in rainfall and temperature patterns was seen in 
global climate change scenarios over the catchment. Using 
a semi-distributed physically based SWAT model, this study 
attempted to simulate the effects of temperature change on 

Table 7  Trend analysis of future flow (2021–2060)

Type of test Test statistic Statistical and critical 
values

Remark

a = 0.1 a = 0.05 a = 0.01

Mann–Kendall 4.183 1.645 1.96 2.576 S (0.01)
Linear regression 5.184 1.687 2.025 2.713 S (0.01)
Student's t  − 3.988 1.685 2.023 2.709 S (0.01)

Table 8  Trend analysis of historic flow

Type of test Test statistic Critical values Remark

a = 0.1 a = 0.05 a = 0.01

Mann–Kendall  − 2.688 1.645 1.96 2.576 S (0.01)
Linear regression  − 3.848 1.729 2.093 2.861 S (0.01)
Student's t 2.999 1.725 2.086 2.845 S (0.01)

Fig. 6  Future predicted flow 
(2021–2040)
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stream flow and other parameters. The observed stream flow 
data were used to calibrate and validate the simulated stream 
flow results. Percent bias (PBIAS), Nash–Sutcliffe simula-
tion efficiency (NSE), and coefficient of determination were 
used to evaluate the model’s performance (R2). With a Per-
cent bias (PBIAS) value of 5.4, Nash–Sutcliffe simulation 
efficiency (NSE) value of 0.73, and coefficient of determina-
tion (R2) value of 0.73, the calibration method revealed a sat-
isfactory agreement between observed and simulated stream 
flow. The results of the study showed that in the long-run, 
stream flow declines during as a result of changes in climate 
variables such as temperature and evapotranspiration. As a 
result, future water resource development and management 
projects should address the effects of climate change in order 
to ensure the resource’s long-term use. The multi-purpose 
Ribb reservoir operation must also be adjusted depending 
on changes in hydro-climatic variables caused by climate 
change and their impact on reservoir volume.

Data availability The data will be available upon request.
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